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Abstract: Asparagus is highly appreciated for its organoleptic and nutritional characteristics and wild
genotypes are valuable components of traditional dishes. In this study, the physical and chemical
traits of wild (green and violet) and cultivated asparagus (‘Grande’, ‘Purple Passion’, and ‘Bianco
di Bassano del Grappa’), both raw and steamed, were evaluated. Steaming did not affect the total
phenols content with the exception of wild green (+49%) and ‘Grande’ (−31%). Only for wild violet
asparagus steaming increased the total antioxidant activity (+46%). Chlorogenic acid and chicoric
acid were found only in wild asparagus, while rutin was generally higher in colored cultivated
asparagus than wild ones. The highest content of isorhamnetin-3-rutinoside was found in wild
violet asparagus while only traces of this compound were detected in the cultivated ones. Steaming
influenced the content of both chlorophylls and carotenoids in asparagus, also resulting in changes in
the color parameters in cooked spears. Overall, the sugar content in wild asparagus was lower than
in the cultivated ones and steaming had a low impact on this chemical trait. Principal component
analysis highlighted the most evident separation between wild asparagus and cultivated ones. These
results indicate that wild asparagus can be considered a nutritious and refined food, and provide
specific information required for cooking process strategies in the agri-food industrial sector.

Keywords: Asparagus acutifolius; Asparagus officinalis; antioxidant activity; polyphenols; sugars;
chlorophylls; carotenoid; color parameters; steam cooking; principal component analysis

1. Introduction

The asparagus spears from wild (Asparagus acutifolius L.) and cultivated (Asparagus officinalis L.)
species are highly appreciated for their organoleptic and nutritional characteristics. This
plant has a low caloric content (approximately 22–35 kcal 100 g−1) [1], but it is very rich
in bioactive compounds, with strong antioxidant properties [2,3], mainly represented by
phenols, sterols, saponins, oligosaccharides, carotenoids, sulfurated acids, essential amino
acids [4,5], fibers [6], minerals, and vitamins [1]. In particular, quercetin-3-rutinoside (rutin)
has been reported as the most representative phenol in asparagus spears [7–9]. In a recent
study, asparagus turned out to be the most important dietary source of quercetin (29%),
following onions (41%) and ahead of green tea (8%) [10].

These compounds may play an important role in human health, reducing the risk
of cancer [11,12], cardiovascular diseases [13], diabetes [14], and showing therapeutic
activities such as being a diuretic and immunostimulant [15].

Wild asparagus is highly appreciated as a component of a wide range of traditional
dishes [16]. Currently, the interest in wild asparagus is not only due to its taste and
high nutritional value but also due to social and symbolic motives [17]. A. acutifolius is
widespread in the Mediterranean region in brushland, plowed fields, and in uncultivated
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areas close to paths, even in poor soils. Wild asparagus is usually found surrounded by
other wild plants and near the base of olive, holm oak, or cork oak trees. This happens both
because trees foster the spread of asparagus seeds by the animals that rest in the shelter of
the foliage and because of the lack of plowing around the trees, which favors the rooting of
the plants.

By carefully observing a bunch of wild asparagus, it is possible to notice a high
variability in the chromatic characteristics and the degree of tenderness of the shoots. In
practice, asparagus harvested in the sunniest areas are dark green to purplish and are
more fibrous, whereas those collected in the undergrowth are a lighter green. This is
predominantly determined by the micro environment in which each spear grew and, in
particular, by the prevalence of direct or diffused solar radiation [18].

Wild asparagus could become a new crop with high income potential, especially
for marginal areas where its cultivation fits perfectly within sustainable agriculture and
biodiversity and environmental conservation approaches. Many studies are underway to
make this species cultivable [19–22].

Asparagus cultivars show a high variability in agronomic and morpho-biochemical
traits due to genotypic as well as agronomic and environmental factors. Fanasca et al. [23]
reported the content of phenols, carotenoids, and vitamin C in four green asparagus
cultivars. Slatnar et al. [9] compared the sugar, organic acid, anthocyanin, flavonol,
flavone, and hydroxycinnamic acid content of six green and two purple asparagus cultivars.
Sergio et al. [24] compared biometrical traits, ion composition, enzymes (peroxidase and
polyphenoloxidase), sugars, phenols, and antioxidant activity in green and violet asparagus
cultivars during cold storage.

Even cooked asparagus retains its nutrients well. In wild asparagus, Garcia-Herrera
et al. [1] report that the loss of minerals (34–44%) is lower than that of other leafy vegetables
(47–65%) and that, even after being boiled, A. acutifolius is an excellent source of some
vitamins. An increase in antioxidant activity was also observed with some cooking meth-
ods [25,26]. The aim of our research was to compare the qualitative characteristics (dry
matter, color parameters, chlorophylls, carotenoids, sugars, polyphenol composition, total
phenols, and antioxidant activity) of two types of wild asparagus (green and violet) and
three asparagus cultivars (‘Grande’, green; ‘Purple Passion’, violet; and ‘Bianco di Bassano
del Grappa’, white), based on the hypothesis that wild products have better qualitative
properties than cultivated ones and that cooking usually modify vegetable quality.

2. Materials and Methods
2.1. Chemical Reagents

High-performance liquid chromatography (HPLC)-grade water was prepared by
a Milli-Q system (Millipore, Bedford, MA, USA). Methanol (HPLC grade), acetic acid,
acetone, sodium chloride, sodium phosphate, potassium persulphate, and sodium carbon-
ate were purchased from Carlo Erba Reagents (Milan, Italy). Glucose, fructose, sucrose,
Folin-Ciocalteu reagent, 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox),
2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), chlorogenic acid, caffeic
acid, and chicoric acid were purchased from Sigma-Aldrich (Milan, Italy). Quercetin
3-rutinoside (Q-3-rut, rutin) and isorhamnetin-3-rutinoside (I-3-rut) were purchased from
Extrasynthèse (Genay, France). All HPLC standards had a chromatographic purity > 95%.

2.2. Plant Material

The wild asparagus spears were sampled in an oak (Quercus spp.) forest of Gravina in
Puglia (40◦51′ N–16◦19′ E, Italy) in shady (green asparagus) and sunny (violet asparagus)
areas (Figure 1A). Cultivated asparagus ‘Grande’ (green asparagus) and ‘Purple Passion’
(violet asparagus) were sampled in a field near Foggia (41◦28′ N–15◦34′ E, Italy), while
‘Bianco di Bassano del Grappa’ (white asparagus) was purchased from METRO (Italia Cash
& Carry SpA, Milan, Italy) (Figure 1B). Immediately after harvesting, wild and cultivated
(‘Grande’ and ‘Purple Passion’) asparagus spears were transferred to the laboratory under
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refrigerated conditions (4.0 ± 1.0 ◦C). The asparagus ‘Bianco di Bassano del Grappa’
samples, purchased from METRO, were transferred to the laboratory under the same
refrigeration conditions. The assessment of the color parameters and the extractions for
biochemical analyses were performed within 20 h from arrival in the laboratory.
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Figure 1. (A) Wild violet (below) and wild green (above) asparagus. (B) ‘Purple Passion’ (left),
‘Bianco di Bassano del Grappa’ (center), and ‘Grande’ (right) cultivars of cultivated asparagus.

2.3. Sample Preparation and Steaming

The fibrous basal portion of the spears was trimmed with a sharp steel knife. Each
sample was then washed with tap water and dried with paper towels. For each asparagus
lot (wild as well as cultivated ones), two batches of about 1 kg each were selected, the
first one for the analysis of the raw sample and the second one for the analysis of the
cooked sample. Both batches (the second after steaming) were chopped into small pieces
in order to obtain a randomized sample. The determination of the dry matter and of all
biochemical parameters reported below was carried out in triplicate using this randomized
vegetable material. Due to differences in the texture characteristics among spears, optimal
steaming time and conditions were established according to preliminary trials. Asparagus
spears were placed on a tray in a steam cooker (VC 101 630 Tefal, Italy), equipped with
a tank containing 1 L of distilled water, covered with a lid, and cooked with water vapor
(99.0 ± 1.0 ◦C) under atmospheric pressure. Steaming times were 5 min for wild asparagus,
7 min for ‘Grande’, 8 min for ‘Purple Passion’, and 9 min for ‘Bianco di Bassano del
Grappa’. After cooking, the samples were drained and rapidly cooled in an ice bath. We
chose steaming because this cooking method allows to cook asparagus spears without
causing mechanical damage to the sprouts and without or only minimal loss of nutrients
by leaching into the cooking liquid.

2.4. Physico-Chemical Methods

To determine the color parameters, L (brightness), a* (redness), and b* (yellowness), a
colorimeter (CR-400, Konica Minolta, Osaka, Japan) in the reflectance mode and in the CIE
L* a* b* color scale was used. Hue angle (h◦ = arctg b*/a*) and saturation (Chroma = C) were
then calculated from the primary L, a*, and b* readings. The colorimeter was calibrated
with a standard reference having values of L, a*, and b* corresponding to 97.55, 1.32, and
1.41, respectively. The color measurement was performed on three whole asparagus spears
of each lot, at nine different points along each shoot. To calculate the weight change after
cooking, samples were weighed individually before and after cooking. The result was
expressed as a percentage change compared to the initial weight of the raw material.

To evaluate the dry matter (DM) percentage, three replicates of a 50 g sample from
the randomized batch were weighed and maintained in a forced ventilation oven at 65 ◦C
until a constant weight was achieved.
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2.5. Biochemical Methods
2.5.1. Chlorophyll and Carotenoid Content

Three replicates of a 30 g sample from the randomized batch were finely chopped in a
mortar with liquid nitrogen and then stored at−20 ◦C in the dark. To carry out the pigment
extraction, the plant material was homogenized with 80% acetone (0.2 g mL−1) and cen-
trifuged for 10 min at 14,000 rpm. On the recovered supernatant, three spectrophotometric
readings (i.e., 662, 646, and 470 nm) were performed. The concentrations of chlorophyll a
(Chl a), chlorophyll b (Chl b), and total carotenoids (TC) were obtained by inserting the
absorbance (Abs) values in the following equations [27]:

Chl a (µg mL−1) = 12.21 (Abs 662 nm) − 2.81 (Abs 645 nm)

Chl b (µg mL−1) = 20.13 (Abs 645 nm) − 5.03 (Abs 662 nm)

TC (µg mL−1) = [1000 (Abs 470 nm) − 3.270 Chl a − 104 Chl b]/198

All extraction procedures were performed in refrigerated and low-light conditions.

2.5.2. Sugars

Three replicates of a 25 g sample from the randomized batch were homogenized and
extracted for 1 h using 200 mL of deionized water at boiling temperature. The extract
was filtered through a Whatman 1 paper filter, and then analyzed for glucose, fructose,
and sucrose content using a method already used by Sergio et al. [24]. Briefly, a Dionex
chromatographic system (ED40 electrochemical detector, GP50 gradient pump, PeakNet
5.11 software) and a CarboPacPA1 column (4 × 250 mm) (Dionex Corporation, Sunnyvale,
CA, USA) were used. All chromatographic details were as already reported by Sergio
et al. [24]. The glucose, fructose, and sucrose content was expressed as g 100 g−1 DM.

2.5.3. Phenols and Antioxidant Activity

Three replicates of a 25 g sample from the randomized batch were homogenized and
extracted (twice for 1 h) with boiling methanol (1:5 w/v). The extract was filtered through a
Whatman 1 paper filter, and then the methanol was removed under vacuum. The obtained
residue was dissolved in methanol 50% in water (v/v) and used for total phenolic (TP)
content evaluation, antioxidant activity (TAA) assay, and for the HPLC analysis of phenolic
compounds. The TP concentration was determined spectrophotometrically using the Folin–
Ciocalteu method as reported by Gatto et al. [28]. Briefly, an aliquot of each extract was
mixed with 0.5 mL of Folin–Ciocalteu reagent; then, an aliquot of 1 mL of sodium carbonate
solution (20% w/v) was added after 3 min. After incubation at 40 ◦C for 20 min, the
absorbance at 750 nm was measured using a Cary 50 UV–vis spectrophotometer (Varian Inc.,
Palo Alto, CA, USA). Caffeic acid was used as the reference standard. The concentration of
TP was expressed as mg of caffeic acid equivalent (CAE) 100 g−1 DM. Individual phenolics
were evaluated by HPLC using an Agilent 1100 Series liquid chromatograph (Agilent
Technologies Inc., Santa Clara, CA, USA) equipped with binary gradient pump (Agilent
P/N G1312A) and spectrophotometric photodiode array detector (DAD) (Agilent P/N
G1328A); data were processed using the Agilent ChemStation (Rev. A.06.03) software.
All chromatographic details were as reported by Gatto et al. [28]. The TAA was assayed
by the ABTS assay [29]. Briefly, the ABTS radical cation (ABTS•+) was produced by
adding potassium persulphate (2.45 mM, final concentration) to a 7 mM ABTS solution.
The mixture was allowed in the dark at room temperature for 12–16 h. The ABTS•+ solution
was then diluted with absolute ethanol to an absorbance of 0.700 ± 0.020 at 734 nm (blank)
at the temperature of 30 ◦C. An amount of extract producing a decrease from 20% to 80%
of the blank absorbance was used. The absorbance of the samples was read exactly 2.5 min
after initial mixing. The antiradical activity was expressed as mg Trolox 100 g−1 DM.
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2.6. Statistical Analysis

The effect of genotype and steaming on the physico-chemical and biochemical parameters
were tested by performing a two-way ANOVA analysis using the SAS GLM procedure (SAS
software, Cary, NC, USA). Means were separated by the Student–Newman–Keuls (SNK) test.
For a visual analysis of the data, a Principal Component Analysis (PCA) (XLStat, Addinsoft,
Paris, France) was performed on mean centered and standardized (unit variance scaled) data
prior to the analysis. The data matrix submitted to the PCA was made up of 10 observations
(five genotypes per two matrix types, raw and cooked) and 14 variables. The results of the
PCA are shown as biplots of scores (genotypes ×matrices) and loadings (variables).

3. Results and Discussion
3.1. Dry Matter of Raw Asparagus and Weight Change after Steaming

The effect of genotypes on DM content is reported in Figure 2, whereas the interaction
between genotypes and steaming treatment was not significant. Wild asparagus showed
on average a DM content 70% higher than the cultivated ones. This result is expected in
consideration of the smaller diameter of the wild shoot and its greater fibrousness due also
to the more uncertain growth conditions and the absence of external inputs (i.e., fertilizers
and irrigation). On average, steaming did not determine significant changes in DM content,
as also reported by Gonnella et al. [30] and Sergio et al. [26].
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Figure 2. Average dry matter (DM) in different genotypes of raw asparagus (p ≤ 0.001). The same
letters indicate that mean values are not significantly different (p = 0.05). Vertical bars indicate standard
deviation. Grande = ‘Grande’; Purple = ‘Purple Passion’; Bianco = ‘Bianco di Bassano del Grappa’.

Steaming led to weight loss for all types of asparagus. The weight loss, which occurred
following the steaming process, was more consistent in the cultivated asparagus than in
the wild one. In particular, ‘Bianco di Bassano del Grappa’ had the greatest weight loss
percent (6.93 ± 0.21) followed by ‘Purple Passion’ (3.29 ± 0.19), ‘Grande’ (2.67 ± 0.38),
wild green (2.01 ± 0.41), and wild violet (1.12 ± 0.25).

3.2. Antioxidant Activity and Phenol Content

Steaming did not affect TAA in all genotypes, with the exception of wild violet
asparagus, for which the TAA was raised by about 46% (Figure 3). This latter result might
be explained by the remarkable increase of all recorded individual phenolics in wild violet
asparagus after steaming (Table 1). Furthermore, no changes in TAA after steaming were
also previously reported in wild green asparagus [25,26].
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Table 1. Effects of steaming on phenolic composition in different genotypes of asparagus.
SD = standard deviation.

Genotype Type Value

Chlorogenic
Acid

Chicoric
Acid Rutin I-3-

Rutinoside

(mg 100 g−1 DM)

Wild green
Raw

Mean 66.76 b 82.08 a 80.41 e 95.69 d
SD 6.01 7.88 7.94 7.02

Steamed
Mean 77.11 b 79.20 a 116.32 d 137.15 c

SD 6.95 6.9 9.88 10.03

Wild violet
Raw

Mean 70.16 b 30.94 b 203.03 c 154.16 b
SD 7.04 3.25 20.11 11.38

Steamed
Mean 84.63 a 78.46 a 220.19 bc 206.42 a

SD 8.04 7.01 20.8 15.01

‘Grande’
Raw

Mean n.d. n.d. 241.17 b tr.
SD - - 22 -

Steamed
Mean n.d. n.d. 205.21 c tr.

SD - - 15.15 -

‘Purple
Passion’

Raw
Mean n.d. n.d. 310.40 a tr.

SD - - 24.2 -

Steamed
Mean n.d. n.d. 318.04 a tr.

SD - - 24.75 -

’Bianco di
Bassano del

Grappa’

Raw
Mean n.d. n.d. n.d. n.d.

SD - - - -

Steamed
Mean n.d. n.d. n.d. n.d.

SD - - - -

Significance * *** * ***
Significance: * and *** significant for p ≤ 0.05 and p ≤ 0.001, respectively. Different letters indicate statistically
significant differences at p = 0.05; n.d. = not detected; tr. = traces, below the limit of quantification.

Steaming did not affect the TP content in the wild violet, ‘Purple Passion’, and ‘Bianco
di Bassano del Grappa’ genotypes (Figure 4). Steaming increased the total phenols in
wild green asparagus by about 49%, while it reduced them by about 31% in ‘Grande’.
(Figure 4). In general, changes in phenolic content in vegetables after cooking might
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be caused by different processes: (i) oxidative degradation of phenolic acids (including
enzymatic browning); (ii) release of free acids from conjugated forms; and (iii) formation
of complex phenolic structures from related compounds, such as proteins, tannins, and
anthocyanins [31]. In this specific case, steaming plays an important role in producing the
final TP content of the cooked vegetable. In a previous study [26], no significant differences
in TP content were found between the raw and steamed wild asparagus. On the contrary,
in the present study, a tendency of an increase in phenolic content with steaming was
observed in wild asparagus, probably due to a release of free phenolics into its fibrous
structure. Indeed, in ‘Grande’, the observed decrease in TP content might be associated
with the loss of rutin after steaming (Table 1).
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Figure 4. Total phenols (TP) content in raw and steamed asparagus (p ≤ 0.001). The same letters
indicate that the mean values are not significantly different (p = 0.05). Vertical bars indicate the standard
deviation. Grande = ‘Grande’; Purple = ‘Purple Passion’; Bianco = ‘Bianco di Bassano del Grappa’.

The quantification of different phenolic compounds is reported in Table 1. Chlorogenic
acid and chicoric acid were found only in wild asparagus. Steaming did not affect the
content of these phenolic compounds in wild green asparagus, while in the wild violet
asparagus it increased the chlorogenic acid by about 21% and chicoric acid by about 154%
(Table 1). The highest rutin content was found in ‘Purple Passion’, while it was not found
in ‘Bianco di Bassano del Grappa’ (Table 1). Steaming did not affect the rutin content
in wild violet asparagus, while in the wild green and ‘Grande’ it caused an increase of
about 45% and a decrease of about 15%, respectively (Table 1). I-3-rutinoside was found
in both wild asparagus genotypes, while only in very small amount (below the limit of
quantification) in the ‘Grande’ and ‘Purple’ cultivated genotypes. In the wild genotypes
its content was affected by steaming. Indeed, the content of this phenolic compound
was 43 and 34% higher in steamed vs. raw wild green and violet asparagus, respectively
(Table 1). It should be noted that all phenolic compounds found in the other genotypes
were not found in ‘Bianco di Bassano del Grappa’; in the latter, only a very small amount
of an unidentified phenolic compound was detected, without significant differences in
content caused by steaming.

Regarding the phenolic composition of wild asparagus, our findings are in agreement
with results previously reported; actually, the presence of chlorogenic and chicoric acids,
together with rutin and I-3-rutinoside as the main phenolic components, has been reported
in wild asparagus [26,32]. Regarding cultivated asparagus, the presence of rutin as the
main phenolic component has already been reported [7,23,24]. Changes in the content of
individual phenolics as a consequence of the steaming were also found in good accordance
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with data previously reported [26], confirming the goodness of the choice of steaming as
the cooking method with the least impact on the phenolic compounds [26].

Generally speaking, structural differences between wild and cultivated genotypes
could be responsible for a different balance between two opposite phenomena affecting
the concentration of phenolics after steaming: degradation plus leaching, on the one
hand, and matrix softening plus consequent higher extractability, resulting in a higher
final concentration, on the other hand [31]. The first prevails in determining a higher
susceptibility of the ’Grande’ to lose rutin; the second causes a retention or even increase in
all of the phenolic compounds in the wild asparagus.

3.3. Chlorophyll and Carotenoid Content

Steaming caused a significant reduction of chlorophylls and total carotenoids in all
genotypes with the exception of ’Bianco di Bassano del Grappa’, for which these pigments
were not found (Figure 5).
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Figure 5. Content of chlorophyll (Chl) a and b, and total carotenoids (TC), in raw and steamed asparagus (p ≤ 0.001).
‘Bianco di Bassano del Grappa’ is missing because the three pigments shown in the graph were not detected. For columns of
the same parameter equal letters indicate that the mean values are not significantly different (p = 0.05). Vertical bars indicate
the standard deviation. Grande = ‘Grande’; Purple = ‘Purple Passion’.

Among raw asparagus, the highest contents of Chl a and b were found, respectively, in
‘Grande’ and ‘Purple Passion’, while the lowest ones were found in wild green asparagus.
‘Purple Passion’ raw asparagus also showed the highest total carotenoid content, while raw
wild green showed the lowest one (Figure 5). Similarly to what reported for raw asparagus,
also in the steamed ones the highest contents of Chl a and b were found, respectively, in
‘Grande’ and ‘Purple Passion’, while the lowest ones were found in wild asparagus (both
green and violet) (Figure 5). ‘Grande’ and ‘Purple Passion’ showed the highest content of
total carotenoid among the steamed asparagus, while the lowest one was found in wild
green asparagus (Figure 5).

The different content of these pigments in the studied cultivars and wild ecotypes
could be attributed to both genetic and environmental factors. However, a study on the
genetic distance between different populations of wild asparagus has not yet been carried
out to evaluate the real differences. On the other hand, it could be probable that the wild
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violet asparagus showed a significant increment in the content of Chl a (23%), Chl b (37%),
and total carotenoids (35%) due to a higher exposition to the sun, since the violet type is
more frequent in the areas with greater insolation than the green one. On the opposite,
there is the absence of these pigments in the white asparagus cultivar due to its cultivation
technique: the traditional growing method is to mound up soil over the plant row, before
the spears start to grow and harvesting is done before the spear is exposed to light [33].

Genetic and environmental factors also influence the loss of these pigments during steam-
ing, as the texture of the asparagus spears also affects the separation and breakdown of cells and
thus the release of pigments. Indeed, as expected, steaming reduced the chlorophyll content
more in cultivated asparagus (59%) than in the wild one (56%) (Figure 5), which generally
have a more fibrous structure. After steaming, the total carotenoid content decreased by about
20–24%, in the following order: ‘Grande’ < wild violet < ‘Purple Passion’ < wild green. Our
finding are consistent with those of Gonnella et al. [30], reporting for ‘Grande’ cooked by
steaming a reduction in total chlorophyll of more than 57% and total carotenoids by 20%.

The content of chlorophyll a and b changed differently with the steaming; in particular,
chlorophyll b showed a more severe reduction (63–71%) than chlorophyll a (55–59%). This
results in an increase in the chlorophyll a/b ratio in accordance with Gonnella et al. [30], but
in disagreement with Danowska-Oziewicz et al. [34], who for a steamed green asparagus
cultivar found a reduction of Chl a (22%) but no change in Chl b.

The loss and/or degradation of chlorophylls during cooking was not only due to the
separation and breakdown of the cells causing the pigment release but also due to the
transformation of chlorophyll a into pheophitin a and chlorophyll b into pheophitin b [35].
Some authors in different green vegetables report greater lability, and therefore a greater
susceptibility to pheophytinisation of Chl a [8,36] and others of Chl b [35].

For carotenoids, in addition to the release by cell breakdown that occurs with cooking,
oxidation due to the double bonds presenting in their structure also has been hypothe-
sized; this transformation would be highly dependent on oxygen, light access, and high
temperature during processing [37].

3.4. Sugar Content

According to Slatnar et al. [9], fructose was the most abundant sugar in both the wild
and cultivated genotypes, followed by glucose and lower amounts of sucrose; the latter was
also reported by Di Maro et al. [31] (Figure 6). Overall, the sugar content in wild asparagus
was lower than in the cultivated ones (Figure 6); this is probably due to the different
structure of the shoot in the two genotypes, with a higher percentage of fibrous tissue in the
wild than in the cultivated one. Steaming did not affect the glucose and fructose content in
all genotypes with the exception of ‘Purple Passion’, for which steaming caused a reduction
of about 47% for both glucose and fructose (Figure 6). Regarding sucrose, steaming did not
affect the content in wild green asparagus and ‘Grande’, while for ‘Purple Passion’ and
‘Bianco di Bassano del Grappa’ it caused a reduction of 38% and 25%, respectively. On the
other hand, the sucrose content in steamed wild violet asparagus was 40% higher than in
the raw ones. On average, among the steamed asparagus, ’Bianco di Bassano del Grappa’
showed a total sugar content higher than all the other genotypes (Figure 6).

The variation in sugar content due to steaming, as well as of other soluble components
of a vegetable, could strongly depend on genetic differences in the tissue structure of the
vegetable itself [31]. Therefore, the different behavior shown by each genotype towards
these variations can be attributed to this factor. In particular, this might justify the poor
ability to retain sugars during steaming, shown by ‘Purple Passion’, in which there was a
significant decrease in all three soluble sugars. On the other hand, the same justification
could be given, albeit with a reverse effect, for the slight but significant increase after
steaming in the sucrose content recorded in wild violet.
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Figure 6. Content of glucose (p ≤ 0.001), fructose (p ≤ 0.001), and sucrose (p ≤ 0.01) in raw and steamed asparagus. For
columns of the same color the same letters indicate that mean values are not significantly different (p = 0.05). Vertical bars
indicate the standard deviation. Grande = ‘Grande’; Purple = ‘Purple Passion’; Bianco = ‘Bianco di Bassano del Grappa’.

3.5. Color Traits

The color traits of different genotypes of asparagus (raw and steamed) are reported
in Table 2. Steaming caused a decrease in the L value in all genotypes with the exception
of purple-like asparagus (both ‘Purple Passion’ and wild violet). Among raw asparagus,
the highest and lowest L value were found, respectively, in ‘Bianco di Bassano del Grappa’
and wild green, while the highest and lowest L value in steamed asparagus were found,
respectively, in the cultivar ‘Bianco di Bassano del Grappa’ and the purple-like types (both
‘Purple Passion’ and wild violet). With the exception of green-like asparagus (both ‘Grande’
and wild green), steaming caused a more negative value of the a* parameter. At the same
time, steaming caused an increase in both the b* and C values in purple-like asparagus
(both ‘Purple Passion’ and wild violet). Steaming did not affect the h◦ value in ‘Grande’ and
wild green asparagus but it caused an increase in all the other samples. The L parameter
(lightness) indicates a value of luminosity (between 0 and 100), which is the property
according to which each color can be considered as equivalent to a member of the grey
scale, between black (0) and white (100) [38]. The parameter a* takes positive values for
reddish colors and negative values for the greenish ones, whereas b* takes positive values
for yellowish colors and negative values for the bluish ones. The C parameter, considered
the quantitative attribute of colorfulness, is used to determine the degree of difference of a
hue in comparison to a grey color with the same lightness. The higher the chroma values,
the higher is the color intensity of samples perceived by humans [39]. Hue angle (h◦),
considered the qualitative attribute of color, is the attribute according to which colors have
been traditionally defined as reddish, greenish, etc., and it is used to define the difference
of a certain color with reference to grey color with the same lightness [39].

Color is an important quality attribute for vegetable products, and it influences con-
sumer’s choice and preferences. It is important to highlight that the color of vegetables is
derived from natural pigments, many of which change depending on genotype as well as
being a consequence of the applied food processing. Actually, color may be considered also
an indicator of heat treatment and can be used to predict the corresponding quality deterio-
ration resulting from heat exposure [40–42]. The primary pigments that are responsible for
the color quality in vegetables are chlorophylls (green), carotenoids (yellow, orange, and
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red), water-soluble anthocyanins (red, blue), flavonoids (yellow), and betalains (red) [43].
In agreement, results of our study highlight that steaming influenced the content of both
chlorophylls and carotenoids in asparagus spears, translating also in changes in the color
parameters in steamed spears. Actually, we found a negative correlation between h◦ and
Chl b (R = −0.827; p = 0.05) as well as between L and total carotenoids (R = −0.768; p = 0.05).

Table 2. Effects of steaming on color traits in different genotypes of asparagus. SD = standard deviation.

Genotype Type Value L a* b* C h◦

Wild green
Raw

Mean 46.94 d −16.47 f 32.42 a 36.37 a 116.92 b
SD 0.94 0.76 0.13 0.46 0.98

Steamed
Mean 40.15 e −14.03 e 28.82 b 32.06 b 115.93 b

SD 1.43 1.41 1.53 1.96 1.23

Wild violet
Raw

Mean 26.77 g 8.17 a 9.16 f 12.28 d 48.27 e
SD 1.57 0.11 0.34 0.31 0.83

Steamed
Mean 32.05 f −10.80 d 19.11 d 21.95 c 119.47 b

SD 0.92 0.12 0.34 0.33 0.37

‘Grande’
Raw

Mean 52.15 c −16.12 f 32.97 a 36.69 a 116.05 b
SD 1.14 0.41 0.2 0.36 0.44

Steamed
Mean 41.71 e −13.81 e 27.34 c 30.63 b 116.78 b

SD 0.55 1.03 1.06 1.41 0.83

‘Purple
Passion’

Raw
Mean 25.86g 9.02 a 1.81 h 9.21 e 11.46 f

SD 0.43 0.86 0.34 1.38 2.71

Steamed
Mean 31.22 f −3.43 c 11.98 e 12.47 d 105.79 c

SD 1.25 1.04 1.16 1.38 3.29

‘Bianco di
Bassano del

Grappa’

Raw
Mean 78.85 a −1.22 b 11.23 e 11.30 d 96.21 d

SD 1.06 0.13 0.23 0.22 0.79

Steamed
Mean 63.43 b −4.34 c 6.00 g 7.40 f 125.86 a

SD 1.1 0.19 0.15 0.23 0.53

Significance *** *** *** *** ***
Significance: *** significant for p ≤ 0.001. Different letters indicate statistically significant differences at p = 0.05.

3.6. Principal Component Analysis

The PCA gives a graphical representation of the separation of the effects that can be
analyzed through ANOVA. Indeed, the results given by the ANOVA can be also found
in the biplot shown in Figure 7. The biplot shows scores (observations) and loadings
(variables) at the same time, allowing an easier view of their distribution. The most evident
separation in this biplot is that between the wild asparagus samples (raw and steamed) on
the left (the negative side of PC1) and all the cultivated asparagus on the right (the positive
side of PC1). The main variables affecting PC1 are sugars, positively correlated to this PC,
and most of the antioxidant compounds (chlorogenic, chicoric acids, and I-3-rut) and DM
on the opposite side. The first ones are highly correlated with the white asparagus, both
raw and steamed, effectively rich in reducing sugars and sucrose. The variables negatively
influencing PC1 are highly correlated to the wild asparagus, green and violet, where the
listed compounds were found (Table 1), and characterized by the highest DM content
(Figure 2). Regarding PC2, the most influencing variables are chlorophyll a and b, TC, and
rutin, which among the t hose positively correlated to this PC, whereas L and h◦ are among
the negatively correlated variables. Indeed, the white asparagus and L are in the same
quarter of the biplot, since it showed the highest value of L (Table 2). On the other hand,
purple asparagus, especially raw, was highly correlated to the compounds (chlorophyll a
and b, TC, and rutin) placed on the positive side of PC2.
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4. Conclusions

In this study, for the first time, some quality traits of wild and cultivated asparagus
spears were compared before and after steaming. The results indicate that wild asparagus
has a qualitatively richer phenolic compounds composition than the cultivated ones; this
in some cases could have determined an increase in antioxidant activity following steam-
ing. On the other hand, wild asparagus generally showed lower values of chlorophylls,
carotenoids, and sugars (glucose, fructose, and sucrose) than cultivated asparagus. Steam-
ing influenced the content of both chlorophylls and carotenoids in asparagus spears, also
causing changes in the color parameters in steamed spears. Overall, results of the present
study indicate that wild asparagus can be considered a nutritious and refined food. Our
results also provide specific information usually useful for cooking process strategies in
the agri-food industrial sector. Our findings are of particular interest taking into considera-
tion the increasing market demand for wild asparagus due to their high nutritional value.
Nevertheless, more information about the effect of storage on the preservation of quality in
steamed wild asparagus will be required before any hypothetical industrial implementation.
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