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Abstract: Salinity is one of the major constraints causing soil problems and is considered a limitation
to increased rice production in rice-growing countries. This genome-wide association study (GWAS)
experiment was conducted to understand the genetic basis of salt tolerance at the seedling stage
in Korean rice. After 10 days of salt stress treatment, salt tolerance was evaluated with a standard
evaluation system using a visual salt injury score. With 191 Korean landrace accessions and their
genotypes, including 266,040 single-nucleotide polymorphisms (SNPs), using a KNU Axiom Oryza
580K Genotyping Array, GWAS was conducted to detect three QTLs with significant SNPs with
a −log10(P) threshold of ≥3.66. The QTL of qSIS2, showed −log10(P) = 3.80 and the lead SNP
explained 7.87% of total phenotypic variation. The QTL of qSIS4, showed −log10(P) = 4.05 and the
lead SNP explained 10.53% of total phenotypic variation. The QTL of qSIS8 showed −log10(P) = 3.78
and the lead SNP explained 7.83% of total phenotypic variation. Among the annotated genes located
in these three QTL regions, five genes were selected as candidates (Os04g0481600, Os04g0485300,
Os04g0493000, Os04g0493300, and Os08g0390200) for salt tolerance in rice seedlings based on the
gene expression database and their previously known functions.

Keywords: GWAS; salt-tolerance; Korean landrace rice; candidate gene

1. Introduction

Rice is grown in more than 100 countries over approximately 158 million hectares,
with production of more than 700 million tons annually. Yields range from less than 1 t/ha
under very poor rainfed conditions to more than 10 t/ha in intensively irrigated systems in
temperate conditions (http://ricepedia.org/rice-as-a-crop/rice-productivity, accessed on
11 September 2021). Salinity is one of the major constraints causing soil problems and is
considered as a limitation to increased rice production in rice-growing countries.

Salinity includes all soil problems due to excessive salt; these soils are categorized
as sodic (or alkaline) and saline soils. Sodic soils can occur widely in arid and semi-arid
regions, and excessive Na+ occurs at the exchangeable sites of clay particles. These soils
have higher than pH 8.5 and a high exchangeable sodium percentage (ESP > 15). Saline soils
are generally distributed in arid regions, estuaries, and coastal fringes and are dominated
by Na+ cations with electrical conductivity (EC) > 4 dSm−1. In saline soils, ESP values are
<15 and pH values are much lower than those of sodic soils (http://www.knowledgebank.
irri.org/ricebreedingcourse/Breeding_for_salt_tolerance.htm, accessed on 11 September
2021). Generally, rice is relatively tolerant to stress during germination, active tillering, and
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maturity, but is particularly sensitive at the both the seedling and reproductive stages [1].
Rice is included among the most sensitive cereal crops, with a threshold level of 3 dSm−1.
Moderate salinity can be defined as electrical conductivity of the soil or solution culture of
4 dSm−1, and high salinity as 4–8 and 8–12 dSm−1 [2].

Symptoms of salinity stress at the seedling stage include whitened tops of affected
leaves, chlorotic patches on some leaves, plant stunting, reduced tillering, and patch field
growth, which can lead to death [3]. Major symptoms of salinity at the reproductive stages
are white leaf tip followed by tip burning, stunted plant growth, low tillering, spikelet
sterility, low harvest index, fewer florets per panicle, less 1000 grain weight, low grain
yield, change in flowering duration, leaf rolling, white leaf blotches, poor root growth, and
patchy growth in the field [4]. A 12% reduction in yield will occur with every unit (dSm−1)
increase in electrical conductivity above the threshold level [5–8]. Salt concentrations of
4, 8, and 12 dSm−1 were reported to lead to significant grain yield reduction of 31, 56, and
71%, respectively [9]. Hasamuzzaman et al. [10] reported 36.17–50% grain loss due 150 mM
salinity. Another study showed that when rice seedlings were inhibited by salt, the shoot
length and dry root weight were significantly decreased, but chlorophyll content, fresh
shoot weight, and dry shoot weight were increased [11].

Identifying QTLs related to salt-tolerance traits has become a major effort for breeding
programs. By using targeted marker-assisted backcrossing and selection, several salt-
tolerant rice lines have been developed by introgression of Saltol QTL (major QTL of
seedling stage tolerance) in salt-sensitive, high-yielding varieties [12,13]. Many scientists
have carried out experiments and detected QTLs related to salt tolerance. In BC3F4 in-
trogression lines of Pokkali developed in IR29, 6 QTLs for salt injury score (SIS) were
associated with chromosomes 1, 3, 4, 10, and 11 [14]. Seven QTLs were identified for SIS on
chromosomes 2, 5, 6, 7, 8, 9, and 11 in a Bengal/Pokkali RIL population [15], and one major
QTL on chromosome 5 in Nona Bokra IL lines [16]. Two major QTLs for shoot Na+ and K+

concentration were found on chromosomes 7 and 1 [17]. Rahman et al. [18] identified three
QTLs related to salt tolerance at the seedling stage on chromosome 1 and four QTLs on
chromosome 3 that were located at 162.9 cM and 111 cM, respectively.

Genome-wide association study (GWAS) has great potential for identifying valuable
natural variations in trait-associated loci, as well as allelic variations in candidate genes un-
derlying quantitative and complex traits, including those related to growth, development,
stress tolerance, and nutritional quality [19]. Naveed et al. [20] identified 6 and 14 QTLs for
salt-tolerance traits at the germination and seedling stages in 208 rice accessions. Another
study demonstrated a significant association of 10 genes with salt tolerance related traits
at seedling and yield stages and related traits in rice plants grown under saline condi-
tions [21]. A total of 11 QTLs were identified at the germination and early seeding stages
in japonica rice [22]. Yu et al. [23] obtained 93 candidate genes significantly associated with
salt tolerance in rice at the seedling stage.

Hoang et al. [24] generated transgenic rice expressing the anti-apoptotic genes AtBAG4,
Hsp70, and p35 for enhanced salinity tolerance with many characteristics (maintenance
of shoot growth, dry weight, number of panicles, number of spikelets; suppression of
programmed cell death (PCD) pathway; detoxification of reactive oxygen species (ROS);
minimization of cellular membrane electrolyte leakage; high photosynthetic efficiency; low
Na+ accumulation). Transgenic rice harboring HsCBL8 gene was isolated from XZ166, a
wild-type barley line. HsCBL8 gene encodes a calcium-sensor calcineurine B-like (CBL)
protein in rice, and its overexpression leads to significant improvement in water protection
and plasma membrane in vivo, more proline accumulation, and reduced overall Na+

uptake, but little change in K+ concentration in the plant tissues [25]. Tang et al. [26]
studied the overexpression of OsMYB6 gene in transgenic rice lines at the seedling stage for
salinity stress. After 6 days in salt solution, OsMYB6 transgenic rice plants resulted in more
green leaves and less leaf wilting and rolling than the wild-type plant. When the seedlings
were moved to Yoshida solution, all wild-type seedlings were dead and 43.9% transgenic
seedlings survived.
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Sensing and signaling (stress and ROS scavenging and signaling) and functional
adaptation, including stomatal regulation, osmotic adjustment, and ion homeostasis, are the
main factors of salt-tolerant molecular mechanisms [27]. Overexpression of OsMYB91 gene
enhanced salt tolerance, increased ROS scavenging ability, and increased proline levels [28].
The salt- and drought-inducible ring-finger 1 (OsSDIR1) gene was upregulated under
drought and high salinity, and its overexpression resulted in enhanced tolerance to water
deficit in plants by decreasing water loss, mediated by stomatal closure [29]. Functional
analysis of SKC1 gene shows that it encodes an HKT-type transporter (OsHKTS1;5), which
is preferentially expressed in parenchyma cells surrounding the xylem vessels in rice and
regulates K+/Na+ homeostasis under salt stress [30].

2. Materials and Methods
2.1. Plant Materials

In this study, 191 Korean landrace accessions were used to evaluate salt tolerance at the
seedling stage (Table S1). Seeds of all accessions were acquired from the Rural Development
Administration (RDA) Genebank, Jeonju, Republic of Korea (http://genebank.rda.go.kr,
accessed on 5 July 2020).

2.2. Evaluation of Salt Tolerance

The seeds were heat treated at 50 ◦C for 3 days to break dormancy. To control microbial
contamination and promote germination, the seeds were surface sterilized by soaking in
sodium hypochlorite (NaClO) for 20 min and then washed with distilled water 3 times.
Sterilized seeds were placed in Petri dishes lined with moistened filter paper and incubated
at 30 ◦C for 3 days to germinate. The germinated seeds were sown in 96-well PCR plates,
the bottoms of which had been cut. The PCR plates were suspended on distilled water,
and after 2 days were transferred to nutrient solution (Yoshida solution) [31]. The salt
screening was done in a controlled growth chamber (Hanbaek Sci. Bucheon, South Korea) at
29 ◦C/ 21 ◦C day/night temperature and 70% relative humidity. After 2 weeks in nutrient
solution, the seedlings for salt treatment were introduced to salt stress by adding sodium
chloride (NaCl) to the nutrient solution up to 150 mM. Before adding NaCl, 5 uniform
plants per line were selected for salt screening and the others were removed. The pH
of the nutrient solution was adjusted to 5.0–5.5 with hydrochloric acid (HCL) or sodium
hydroxide (NaOH), and the solution was renewed every week. After 10 days in salt stress,
the seedlings were evaluated for salt injury score by phenotype according to the standard
evaluation system (Figure 1, Table 1) [32].
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Table 1. Standard evaluation system of visual salt injury at seedling stage [32].

Score Observation Tolerance

1 Growth and tillering nearly normal Highly tolerant

3 Growth nearly normal but some reduction in
tillering and some whitish and rolled leaves Tolerant

5 Growth and tillering reduced, most leaves
whitish and rolled, only a few elongated Moderately tolerant

7 Growth completely ceased, most leaves dry,
some plants dying Susceptible

9 Almost all plants dead or dying Highly susceptible

2.3. DNA Extraction and High-Throughput SNP Genotyping

The genomic DNA of 191 landraces was extracted from fresh leaves of 14-day-old
seedlings using the CTAB method [33]. The quality of DNA was checked by agarose gel
electrophoresis and quantified using a Nanodrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, USA). High-throughput SNP genotyping and genotype
calling of 191 landraces were carried out using KNU Axiom Oryza 580K Genotyping Array
and Affymetrix Power Tools according to the description in a previous study [34].

2.4. Population Structure Analysis

For population structure analysis in present populations, we first filtered the genotype
data by PLINK software [35], then high-quality, low-LD SNP sets were collected and
underwent subsequent analysis; PCA analysis and plot visualization were performed
using R package (version 4.03, http://r-project.org, accessed on 7 June 2021) [36], and
for structural analysis we used ADMIXTURE software with bed format file. Finally, the
result was visualized by Pophelper web tools [37], and the delta k values were shown for
identifying the population groupings.

2.5. Genome-Wide Association Study (GWAS) Analysis

The Trait Analysis by Association, Evolution, and Linkage (TASSEL) package [38]
was used to conduct association analysis of the salt tolerance of 191 landrace accessions.
The mixed linear model (MLM) was performed, in which a kinship (K) matrix as the
variance–covariance matrix between individuals was combined with population structure
from PCA. Due to the fact that many SNPs have strong LD in genotype data, the thresholds
decided by the total number of SNPs were too rigorous for detecting association loci [39],
thus the genotype was filtered by PLINK software [35]. Non-independent SNPs were
removed, and a total of 4556 effective and independent SNPs remained, and the association
threshold was calculated by the formula: −log10(1/number of independent SNPs) [40].
Finally, the threshold was set as −log10(P) = 3.66 for identification of association loci, and
SNP markers located at locus peaks were designated as lead SNPs for the detected loci.
The areas 300 kb upstream and downstream of the lead SNPs were considered as candidate
genomic regions for gene identification.

2.6. Identifying Candidate Genes for Salt Tolerance

GWAS analysis was used to identify promising candidate genes for salt tolerance in
rice. We identified candidate genes associated from 300 kb upstream and downstream of
significant SNP regions. For the expression patterns of the genes located in QTL regions, the
RNA-seq data of GSE119720 GEO accessions was obtained from the NCBI GEO database
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 11 September 2021) [41]. A heatmap
was plotted by http://www.bioinformatics.com.cn, 13 September 2021, an online platform
for data analysis and visualization.

http://r-project.org
https://www.ncbi.nlm.nih.gov/geo/
http://www.bioinformatics.com.cn
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2.7. Haplotype Analysis

The previously reported phenotype dataset for the salt stress study by Yu et al. [23]
was used in the haplotype analysis. In the study of Yu et al., the phenotypes of the leaf
width (LW) and the length of plant shoots (SL) and roots (RL) were measured immediately
after salt treatment. The total dry weight (TDW) was measured after 80 ◦C for 24 h incuba-
tion. Relative TDW (R-TDW), relative shoot length (R-SL), and relative leaf width (R-LW)
were measured as the ratio of TDW, SL, and LW under salt stress to those under control
conditions. Haplotype variation analysis was performed using PopART software [42].
LD blocks within 300 kb upstream and downstream of significant SNP regions were con-
structed using HaploView 4.2 [43]. Visualization of gene structures and SNP positions of
candidate genes was illustrated by the Gene Structure Display Server 2.0 online tool [44].
One-way analysis of variance followed by Duncan’s test was used to compare phenotypic
differences among haplotypes by SPSS version 26.0 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Salt Stress Tolerance at Seedling Stage

After 10 days in salt stress, salt tolerance in the seedlings was evaluated by phenotype
according to the standard evaluation system. The distribution of salt injury scores was
normal, with a score of 7 showing the highest frequency among 45 accessions (Figure 2).
The average salt injury score of 191 accessions was 5.7. Accession ja110-Jwiiparibyeo
(japonica) was the most salt-susceptible, with a score of 9.0, and the most tolerant accession
was ja046-Jangsamdo (japonica), with a score of 1.67, followed by ja036-Noinjo (japonica),
ja338-Duchungjong (japonica), and ja 281-Gangreungdo (japonica), with a score of 2.0.
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Figure 2. Frequency distribution of salt tolerance in 191 rice accessions. Histogram of salt tolerance
score. Dotted line shows moving average (2 intervals). Colors indicate average salt tolerance score:
orange, 2; gray, 3; yellow, 4; light blue, 5; green, 6; dark blue, 7; brown, 8; gold, 9.

3.2. Genetic Structure of 191 Rice Accessions

According to the PCA results (Figure 3A), 191 accessions were clearly separated into
three clusters following the X- and Y-axis. PC1 matrix explained about 57% and PC2 matrix
explained about 25% of phenotype variation in this study, indicating that PCA = 3 is a
suitable grouping to reduce the population error in the present population. In structural
analysis, large error was observed in K = 1 and K = 2, but it rapidly decreased when
K = 3 (Figure 3B), indicating that the 3 is the most suitable group for this population, and
in the detailed grouping results shown in Figure 3C, clusters 1, 2, and 3 represent the
different groupings.
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3.3. GWAS Analysis

Genotyping was done with 266,040 single-nucleotide polymorphisms (SNPs) using
KNU Axiom Oryza 580K Genotyping Array. The SNP dataset was filtered by using TASSEL
version 5.2.33 [38] and PLINK software [35]. Minor allele frequencies (<0.03) and missing
values (0.01) were removed. After filtering the genotype with minor allele frequency
0.03, 124,347 SNPs were left to analyze. The Manhattan plot for the markers significantly
associated with salt tolerance at seedling stage is represented in Figure 4. Associations
higher than the threshold of −log10(P) ≥ 3.66 were detected as significant SNPs (refer to
Materials and Method). Significant SNPs within the 600 kb surrounding the lead SNPs
were considered as one association locus, and, in total, three QTLs were mapped (Table 2).

One associated QTL was detected on chromosome 2, designated as qSIS2, showing
−log10(P) = 3.80, and the lead SNP explained 7.87% of total phenotypic variation. One asso-
ciated QTL was detected on chromosome 4, designated as qSIS4, showing−log10(P) = 4.05,
and the lead SNP explained 10.53% of total phenotypic variation. The other associated QTL
was detected on chromosome 8, designated as qSIS8, showing −log10(P) = 3.78, and the
lead SNP explained 7.83% of total phenotypic variation. For the regions of the three QTLs,
previously reported QTLs were used for comparison (Table 2). There were no salt-tolerance-
associated QTLs reported based on Gramene (http://archive.gramene.org, accessed on
21 September 2021). We detected only two reported QTLs associated with root response
to soil environment. For the region of qSIS4, phosphorus-sensitivity-associated QTL was
reported, and for the region of qSIS8, iron-sensitivity-associated QTL was reported.

http://archive.gramene.org
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Figure 4. Genome-wide association mapping and LD block of salt injury score (SIS) under salt stress (150 mM).
(A) Manhattan plot of genome-wide association mapping using MLM. Colors indicate rice chromosome: red, chr1; blue,
chr2; yellow green, chr3; yellow, chr4; pink, chr5; light blue, chr6; crimson, chr7; gray, chr8; dark brown, chr9; dark blue,
chr10; green, chr11; gold, chr12. Red-dotted line indicate threshold 3.66 (B–D) LD blocks for region of qSIS2 on chromosome
2, region of qSIS4 on chromosome 4, and region of qSIS8 on chromosome 8, respectively.

Table 2. Locations of QTLs detected in GWAS and previously reported QTLs.

QTLs Chr. Position of Lead SNP −log10(P)
Reported QTLs 1

QTL Accession Reported Trait

qSIS2 2 29138395 3.80 - -

qSIS4 4 24390487 4.05 AQCI011 Phosphorus
sensitivity

qSIS8 8 18649847 3.78 AQDP005 Iron sensitivity
1 Gramene (http://archive.gramene.org, accessed on 20 September 2021).

http://archive.gramene.org
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3.4. Identifying Candidate Genes

To identify candidate genes responsible for salt tolerance, all annotated genes located
within 600 kb of the QTL regions were extracted based on the RAP-DB (IRGSP 1.0). A total
of 212 genes were located in the three QTL regions (Table S2): 83 genes in chromosome
2, 93 genes in chromosome 4, and 36 genes in chromosome 8. The expression patterns
of 212 genes were searched with previously reported RNA-seq in the database [41]. The
results revealed that 44 genes were significantly differentially expressed under salt-stressed
conditions (Figure 5, Table S3).

Agriculture 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

revealed that 44 genes were significantly differentially expressed under salt-stressed con-

ditions (Figure 5, Table S3).  

Among the 44 differentially expressed genes, 19 genes were increased under salt 

stress conditions. In the susceptible IR29 variety under salt-treated conditions, 12 genes 

were increased; these genes were not increased in the tolerant Pokkali variety. Five genes 

were increased in both susceptible and tolerant varieties, and two genes were increased 

only in the tolerant variety. Based on the expression patterns in the database, we selected 

Os04g0481600 encoding WD domain, G-beta repeat domain containing protein, and 

Os08g0390200 encoding B-box zinc finger family protein as the candidate genes associated 

with salt tolerance, because they were significantly increased in the salt-tolerant Pokkali 

variety under salt-treated conditions, but were not increased in the susceptible IR29 vari-

ety. In addition, three candidate genes were selected based on their association with salt 

tolerance previously reported in other plants such as soybean and Arabidopsis. 

Os04g0485300 encodes glucose-6-phosphate 1-dehydrogenase, which was previously re-

ported to have a possible role in salt tolerance in soybean [45] and reed [46]. Os04g0493000 

encodes B-box zinc finger family protein and Os04g0493300 encodes glycine-rich protein. 

A possible role for these genes against salt tolerance in Arabidopsis was suggested [47,48]. 

 

Figure 5. Gene expression analysis of 44 candidate genes related to salt stress between IR 29 and 

Pokkali. Red and green represent high and low expression level, respectively. Red asterisk mark (*) 

represents the candidate genes used in the haplotype analysis. 

3.5. Haplotype Analysis of Candidate Genes 

 For the five candidate genes selected based on the previously reported gene expres-

sion pattern and their reported function, we conducted haplotype analysis. Since our ex-

periments were conducted with gene-chip based technology, we used a previously re-

ported database constructed with a resequencing method to capture as many possible 

haplotypes as we could. For the phenotype and genotype data, the reported data by Yu et 

al. [23] for salt stress were used. In the previous study, 295 rice germplasms and genomic 

Figure 5. Gene expression analysis of 44 candidate genes related to salt stress between IR 29 and
Pokkali. Red and green represent high and low expression level, respectively. Red asterisk mark
(*) represents the candidate genes used in the haplotype analysis.

Among the 44 differentially expressed genes, 19 genes were increased under salt
stress conditions. In the susceptible IR29 variety under salt-treated conditions, 12 genes
were increased; these genes were not increased in the tolerant Pokkali variety. Five genes
were increased in both susceptible and tolerant varieties, and two genes were increased
only in the tolerant variety. Based on the expression patterns in the database, we se-
lected Os04g0481600 encoding WD domain, G-beta repeat domain containing protein, and
Os08g0390200 encoding B-box zinc finger family protein as the candidate genes associated
with salt tolerance, because they were significantly increased in the salt-tolerant Pokkali
variety under salt-treated conditions, but were not increased in the susceptible IR29 variety.
In addition, three candidate genes were selected based on their association with salt toler-
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ance previously reported in other plants such as soybean and Arabidopsis. Os04g0485300
encodes glucose-6-phosphate 1-dehydrogenase, which was previously reported to have a
possible role in salt tolerance in soybean [45] and reed [46]. Os04g0493000 encodes B-box
zinc finger family protein and Os04g0493300 encodes glycine-rich protein. A possible role
for these genes against salt tolerance in Arabidopsis was suggested [47,48].

3.5. Haplotype Analysis of Candidate Genes

For the five candidate genes selected based on the previously reported gene expression
pattern and their reported function, we conducted haplotype analysis. Since our experi-
ments were conducted with gene-chip based technology, we used a previously reported
database constructed with a resequencing method to capture as many possible haplotypes
as we could. For the phenotype and genotype data, the reported data by Yu et al. [23] for
salt stress were used. In the previous study, 295 rice germplasms and genomic sequencing
data were used for GWAS analysis for root and shoot growth traits under the 200 mM
NaCl salt condition. Haplotype analysis of these five candidate genes is presented in
Figures 6–10. Heterozygous SNPs and missing data were excluded, and SNPs from exons
were used for haplotype and haplotype variation analysis. We detected significant differ-
ences among haplotypes varying in the five candidate genes for at least three out of the
seven phenotypic traits (root length, shoot length, leaf width, total dry weight, relative
shoot length, relative leaf width, and relative total dry weight). Based on the evaluated
traits by Yu et al., the traits of relative shoot length, relative leaf width, and relative total dry
weight can explain the salt tolerance by eliminating the intrinsic differences among acces-
sions. Except Os04g0493000, we detected significant differences among haplotypes varying
in the other four candidate genes for the trait of relative leaf width. There were seven non-
synonymous SNP regions in Os04g0481600 (WD domain, G-beta repeat domain containing
protein) (Figure 6A). Among them, five SNPs showed amino acid substitution when alleles
changed (C→T, Chr4_24087653, R→C substitution; T→C, Chr_24087785, C→R substitu-
tion; C→G, Chr4_2408783, H→D substitution; A→G, Chr4_24087804, H→R substitution;
A→G, Chr4_24087809, T→A substitution). Os04g0481600 consists of four haplotype groups
(Figure 6B). Significant differences among haplotypes varying in Os04g0481600 for root
length, shoot length, leaf width, and relative leaf width were detected. For example, the
relative leaf width of Hap1 and Hap2 of Os04g0481600 differed significantly from Hap3.
Indica varieties were assigned into Hap1, Hap3, or Hap4, while japonica varieties were
assigned into Hap2 (Figure 6C).

The gene structure of Os04g0485300 encoding glucose-6-phosphate 1-dehydrogenase is
represented in Figure 7A. There are 15 exons and one SNP in exon 11 (C→T, Chr4_24265926,
V→V), and one SNP in exon 15 (A→G, Chr4_24267469, E→E) showed changed allele with-
out amino acid substitution. Os04g0485300 consists of two haplotype groups (Figure 7B).
Significant differences among haplotypes varying in Os04g0481600 for root length, shoot
length, leaf width, total dry weight and relative leaf width were detected. For example,
the relative leaf width of Hap1 of Os04g0485300 differed significantly from Hap2. Hap 1
includes only indica varieties, and Hap 2 consists of indica and japonica varieties (Figure 7C).

Os04g0493000 encodes B-box zinc finger family protein. (Figure 8A). It has two exons,
and one SNP in exon 1 (T→C, Chr4_24648785, T→A substitution), and allele A changed to
C in exon 2 on position Chr4_24648070. Os04g0485300 consists of two haplotype groups,
and Os04g0481600 consists of four haplotype groups (Figure 8B). Significant differences
among haplotypes varying in Os04g0493000 for root length, leaf width and relative leaf
width were detected. The relative leaf width of Hap2 of Os04g0493000 differed significantly
from Hap1. The haplotype of Hap1 consists of japonica varieties, and the haplotype of Hap2
consists of indica (Figure 8C).
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Figure 6. Haplotype analysis of Os04g0481600. (A) Gene structure and SNP positions on Os04g0481600. Green, blue, and
red represent exon, untranslated region (UTR), and SNPs, respectively. (B) Significant haplotypes by ANOVA at *** p < 0.001.
a, b and c indicate different levels, and ab indicates same level of Duncan’s test. RL, SL, LW, TDW, R-SL, R-LW, and R-TDW
refer to average value of root length, shoot length, leaf width, total dry weight, relative shoot length, relative leaf width, and
relative total dry weight, respectively. (C) Haplotype variation analysis. Colors indicate rice subspecies, as indicated in
legend. Circle size represents number of varieties in each Hap. Transverse lines show extent of variation between two Haps.
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Figure 7. Haplotype analysis of Os04g0485300. (A) Gene structure and SNP positions on Os04g0485300. Green, blue, black,
and red indicate exon, untranslated region (UTR), intron, and SNPs, respectively. (B) Significant haplotypes by ANOVA at
*** p < 0.001. a, and b indicate different levels of Duncan’s test. RL, SL, LW, TDW, R-SL, R-LW, and R-TDW refer to average
value of root length, shoot length, leaf width, total dry weight, relative shoot length, relative leaf width, and relative total
dry weight, respectively. (C) Haplotype variation analysis. Colors indicate rice subspecies, as indicated in legend. Circle
size represents number of varieties in each Hap. Transverse lines show extent of variation between two Haps.
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two SNPs have changed alleles but not changed amino acids (T→G, Chr8_18493061, P→

P; C→G, Chr8_18492926, V→V). Os08g0390200 is composed of five haplotype groups (Fig-
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length, shoot length, and leaf width were detected. For example, the root length of Hap1 
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Figure 9. Haplotype analysis of Os04g0493300. (A) Gene structure and SNP positions on Os04g0493300. Green, blue, black,
and red represent exon, untranslated region (UTR), intron, and SNPs, respectively. (B) Significant haplotypes by ANOVA
at *** p < 0.001, ** p < 0.01, and * p < 0.05. a and b indicate different levels, and ab means same level of Duncan’s test. RL,
SL, LW, TDW, R-SL, R-LW, and R-TDW refer to average value of root length, shoot length, leaf width, total dry weight,
relative shoot length, relative leaf width, and relative total dry weight, respectively. (C) Haplotype variation analysis. Colors
indicate rice subspecies, as indicated in legend. Circle size represents number of varieties in each Hap. Transverse lines
show extent of variation between two Haps.

Os04g0493300 encodes glycine-rich protein and three SNPs in exon regions (Figure 9A).
This gene contains three significant SNPs (T→A, Chr4_24670944, N→Y substitution; A→T,
Chr4_24669078, F→Y substitution; G→A, Chr4_24668037, R→C substitution) that con-
tain four haplotypes (Figure 9B). Significant differences among haplotypes varying in
Os04g049330 for root length, shoot length, leaf width, and relative leaf width were detected.
The relative leaf width of Hap1 of Os04g0493300 differed significantly from Hap2 and
Hap4, and maximum root length variation was 6.46. The haplotype of Hap1 and Hap2
consist of japonica varieties, and the haplotype of Hap3 and Hap4 consist of indica varieties
(Figure 9C).
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The gene Os08g0390200 encodes 1-aminocyclopropane-1-carboxylate oxidase homolog
4 protein (Figure 10A). This gene includes only one exon, but four non-synonymous
SNPs. Two of the four SNPs have changed alleles, with amino acid substitutions (C→A,
Chr8_18493027, A→S substitution; T→A, Chr8_18492194, E→D substitution). The other
two SNPs have changed alleles but not changed amino acids (T→G, Chr8_18493061,
P→P; C→G, Chr8_18492926, V→V). Os08g0390200 is composed of five haplotype groups
(Figure 10B). Significant differences among haplotypes varying in Os08g0390200 for root
length, shoot length, and leaf width were detected. For example, the root length of
Hap1 of Os08g0390200 differed significantly from Hap3 and Hap5, and maximum root
length variation was 3.24. The haplotype of Hap1, Hap2 and Hap5 consist of japonica and
indica varieties. The haplotype of Hap4 consist of japonica and admixture varieties and the
haplotype of Hap3 consists of indica, japonica and admixture (Figure 9C). The number of
individuals assigned to Hap 2 is the largest, with 123 accessions (6 indica, 117 japonica).
The smallest number of individuals is Hap 5, which consists of one indica and one japonica
accession (Figure 10C).

4. Discussion

The world’s population continues to increase, requiring more rice production. How-
ever, global salinization is also increasing and we face many limitations, including limited
parental resources for conventional breeding and the complexity of salinity tolerance in
rice [49]. To develop salt-tolerant varieties, molecular marker techniques and biotechnology
are being used in combination with conventional breeding methods [50–52].

We compared the physical/genetic regions of the QTLs identified in this study with
previously reported QTLs. The results revealed that the region of qSIS4 QTL was over-
lapped with that of AQCI0118 QTL which is associated with phosphorus sensitivity. The
region of qSIS8 QTL was overlapped with that of AQDP005 QTL which is associated
with iron sensitivity. Unexpectedly, there was no previously reported QTLs for salt tol-
erance in the regions of currently detected QTLs. The result of the overlapped regions



Agriculture 2021, 11, 1174 13 of 17

among the two previously QTLs for performance of root and currently detected QTLs
for salt tolerance suggests that there may be some overlapped pathway between salt
tolerance and root performance. To further narrow down the candidate genes in the
QTL regions, we utilized a database of gene expression studies [41] and GWAS for salt
tolerance [23]. From the gene expression database, we detected two candidate genes
(Os04g0481600 and Os08g0390200) which were specifically upregulated in salt tolerant
varieties under the salt treatment. The haplotype analysis for these two genes, performed
with the database of a previously reported GWAS for salt tolerance, showed significant
differences for the phenotypic performance under salt conditions of rice cultivars carrying
different haplotypes of Os04g0481600 and Os08g0390200, therefore providing additional
indirect evidence for their possible role in salt tolerance. The candidate Os04g0481600 gene
encodes WD domain, G-beta repeat domain containing protein. Five salt responsive WD40
proteins (SRWDs) were reported, which were specifically expressed in leaf or root under
salt treatment. For example, expression of SRWD1 is regulated with different responsive
patterns in leaves and roots of tolerant cultivar Jiucaiqing and sensitive cultivar IR26 under
salt stress [53]. In wheat, a number of TaWD40 genes respond to abiotic stress such as
cold, heat, or drought. In addition, specific expression of TaWD40 genes against abiotic
stress such as powdery mildew or rust pathogen infection was reported [54]. O8g0390200
gene encodes ACO, which is involved in the final step of ethylene production in plant
tissues [55]. Ethylene is a gaseous plant hormone that regulates all physiological pro-
cesses during the plant’s life cycle. Many ACO genes have been isolated from different
plant species, and the expression of those genes have been found to vary depending on
the tissue, developmental stage, and environmental conditions [56]. A wheat TaACO1
negatively regulated salinity stress in Arabidopsis thaliana [57]. Additionally, we selected
three more candidate genes (Os04g0485300, Os04g0493300, and Os04g0493000) among
the 44 specifically expressed genes against the salt treatment, Os04g0485300 encodes a
glucose-6-phosphate 1-dehydrogenase (G6PDH), Os04g0493300 encodes glycine-rich pro-
teins (GRPs), and Os08g0390200 encodes 1-aminocyclopropane-1-carboxylate oxidase ho-
molog 4 protein (ACO). Even though the expressions were downregulated in the tolerant
variety under the salt treatment, we selected these three genes as candidate genes based on
the relation between encoded proteins and salt tolerance previously reported in other plants.
Interestingly, the haplotype analysis for these three genes with the database of previously
reported GWAS for salt tolerance also showed significant difference among the pheno-
typic performance of haplotypes of Os04g0485300, Os04g0493300, and O8g0390200. Even
though, no direct evidence that the down regulation of Os04g0485300, Os04g0493300, and
Os08g0390200 is associated with salt tolerance has not been reported in rice, in other plant,
the encoded protein from these genes were reported to be related in various stress includ-
ing salt stress. Moreover, the negative effect of GRPs on salt stress conditions in Camelina
sativa [58] and negative regulation of TaACO1 on salt stress in Arabidopsis thaliana were re-
ported, suggesting the possible role of downregulation of Os04g0493300 and Os08g0390200
in salt tolerance in rice. Os04g0485300 encodes G6PDH, which was previously reported for
its possible role in salt tolerance in soybean [45,46]. Zhao et al. [45] examined the physiolog-
ical and transcriptional responses of GmG6PDH to different stresses in soybean, including
salt, alkali, and osmotic stress. Significant induction was observed in all treatments, espe-
cially under salt stress. Transgenic soybean, including GmG6PDH2 overexpressing hairy
roots (GmG6PDh2-OHR), showed significantly improved resistance to salinity stress at
the seedling stage by increasing root fresh weight and root length. The roles of plant
G6PDHs in the response to various abiotic stresses were reported, such as salinity toler-
ance in reed [46], cold tolerance in tobacco [59] and strawberry [60], drought tolerance
in tomato [61], and heat tolerance in Przewalskia tangutica and tobacco [62]. Moreover, it
was reported that G6PDH is involved as a regulator in maintaining cell redox balance in
rice suspension cultures under salt stress [63]. Os04g0493300 encodes GRPs. The protein
encoded by GRP-1 consists of 384 amino acids, of which 67% are glycine [64]. Based on the
arrangement of glycine repeats and the presence of conserved motifs, GRPs are divided
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into five classes [65]. In Arabidopsis, GRP2, GRP4, and GRP7 genes are upregulated to
enhance freezing tolerance compared with wild-type and grp-2 knockout mutants [66].
Kim et al. [67] reported that GRP2 enhanced seed germination under cold stress (11 ◦C) and
influenced Arabidopsis growth in an ABA-dependent manner. Overexpression of AtGRP1
improved stress response under high salt conditions [68]. Overexpression of Medicago
sativa GRPs in transgenic Arabidopsis showed retarded seed germination and seedling
growth [69]. The candidate Os04g0493000 encodes B-box (BBX) zinc finger family protein.
The specific responses of BBX under abiotic stress in various crops were reported [70–74].
Genome-wide identification analysis of BBX genes in maize, rice, sorghum, millet, and
stiff brome was conducted, and expression under abiotic (cold, drought, salt), hormonal
(GA, ABA, SA, MeJA), and metal (Cr, Cd, Ni, Fe) stress in rice was significantly affected.
The transcript level of most rice BBX genes was high at the heading stage, followed by the
booting and seedling stages [72]. Overexpression of MdBBX10 in Arabidopsis induced
enhanced tolerance to salt and drought stress, with a high germination ratio and long
root, and improved the plant’s ability to scavenge reactive oxygen species and conduct
ABA signaling [48]. Moreover, the BBX family protein in chrysanthemum, CmBBX19,
suppresses the expression of a set of stress and ABA responsive genes, such as CmRAB18
and CmRD29B, in normal conditions, but its expression is downregulated to release those
genes to increase tolerance in drought stress conditions [74].

5. Conclusions

Through a genome-wide association study, we detected three QTLs for salt tolerance
in rice seedlings. With the aid of bioinformatics analysis with a gene expression database
and a previously reported salt stress experiment, we determined five candidate genes
(Os04g0481600, Os04g0485300, Os04g0493000, Os04g0493300 and Os08g0390200). Further
studies evaluating the molecular role of these candidate genes will be carried out in near
the future.
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