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Abstract: Climate change has dramatic impacts on the growth and the geographical distribution of tea
(Camellia sinensis L.). Assessing the potential distribution of tea will help decision makers to formulate
appropriate adaptation measures to use the altered climatic resources and avoid the damage from
climate hazards. The objective in this study is to model the current and future distribution of tea
species based on the four SSPs scenarios using the MaxEnt model in China. For the modeling
procedure, tea growth records in 410 sites and 9 climate variables were used in this paper. The area
under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance
of the model. The AUC value was over 0.9 in this study, showing the excellent simulation result of
the model. In relation to the current distribution, areas of 82.01 × 104 km2 (8.51% of total land area in
China), 115.97 × 104 km2 (12.03% of total land area in China), and 67.14 × 104 km2 (6.97% of total
land area in China) were recognized as Marginal, Medium, and Optimal climate suitable habitats
for tea over China. Compared to the current distribution, most of the Optimal suitability areas in
southeast China would be lost in four scenarios. The area of Marginal and Medium suitable habitats
would expand in SSP370 and SSP585, especially in 2041–2061 and 2081–2100. The suitable area of tea
would expand northwards and westwards, suggesting that additional new suitable habitats could be
created for tea production with the future climate change, especially in Shandong, Henan, Guizhou,
and Yunnan Provinces. This research would provide vital scientific understanding for policy making
on tea production, tea garden site chosen and adopyion of adaptation methods in the future.
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1. Introduction

Global climate change is happening at an unprecedented speed, which is partially
accelerated by human activities. The evidence is shown from the IPCC (Intergovernmental
Panel on Climate Change) report that temperature of global surface in 2011–2020 was
1.09 ◦C higher than 1850–1900, with larger increases over land (1.59 ◦C) than over the
ocean (0.88 ◦C) [1]. In China, the annual average temperature increased at a rate of about
0.15 ◦C/10 years from 1901 to 2020, and the warming trend was more obvious in 1951–2020
with the rate of 0.26 ◦C/10 years. The past 20 years have been the warmest period since
1900, which had a profound impact on biodiversity, species distribution, community
composition, vegetation pattern, ecosystem structure, function, and service [2].

Tea (Camellia sinensis L.) is widely distributed in tropical and subtropical mountainous
areas over 50 countries and regions all over the world [3]. In China, the long history of
tea cultivation and suitable environment provide favorable conditions for tea production,
the yield and area of tea have been rising continuously and the tea industry has been
booming in recent years [4]. As a green cash crop, the successful cultivation of tea is
highly dependent on climate conditions, including moderate temperature, rainfall, solar
radiation and so on [5–7]. Han et al. [8] found that tea yield will decrease by 11% to 35%
due to extreme weather events, which may cause the fluctuations of tea prices. Meanwhile,
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the suitable area can be influenced in some provinces by climate warming. Jin et al. [9]
demonstrated that the climate suitability of tea decreased significantly in the 1970s and
increased obviously after the 1990s in Zhejiang Province because of the climate change.
From 1981 to 2013, the suitability of main tea producing areas in Fujian Province showed a
downward trend, and the decline in coastal counties was greater than that in mountainous
counties [10]. On the contrary, tea planting suitability increased in the north production
region, leading to the northern movement of tea production boundary in China due to
the warming [4]. From 1961 to 2019, the limit of the suitable tea plant area in the eastern
provinces in China moved obviously to north mountainous areas [11]. At present, the
research on tea suitable areas is scattered, and the research contents are mostly based on
the previous climate conditions. Future climate change may have a negative impact on the
distribution areas of tea in China, but the research on the suitable regional distribution of
tea at a national perspective is still relatively lacking.

In the future, the productivity and sustainability of tea gardens could be affected by
the rising temperature and decreasing rainfall [12]. It has been found that in Sri Lanka,
the monthly rainfall reduction of 100 mm would reduce productivity of 30–80 kg “made”
tea/ha/month [13], and the change of rainfall also could reduce the labor demand of
the whole tea garden sector in this country by about 1,175,000 man-days per year by
2050, which is likely to have considerable social and welfare implications [14]. However,
the existing studies seldom investigate the changes of tea species niche in China. The
variation of priority areas suitable for tea industry development under climate change is
poorly understood. It is necessary to understand the distribution characteristics change
of tea species under the climate change and the impact of climate performance on the
potential habitats of tea, which could provide support for tea production planning and
management. In modeling suitable distribution, species distribution model (SDMs) is often
used to simulate species distribution and its ecological requirements based on the existing
distribution data and related environmental factors [15]. Over the past decades, numerous
SDMs from a range of methods, such as domain environmental envelope (DOMAIN),
Ecological Niche Factor Analysis (ENFA) [16], Genetic Algorithm for Rule-set Production
(GARP) [17], Artificial Neural Network (ANN) [18], and Maximum Entropy (Maxent), have
been developed. The Maximum Entropy (Maxent) model is a density estimation and species
distribution model, and it is a selective method based on the maximum entropy theory [19].
This was developed in 2006 and had played critical roles in species reserves planning,
prediction of the potential distribution of invasive species, and spatial distribution of plant
and animal species [20–22]. The model is robust in prediction capability and stability, and
it is not affected by sample size and sample deviations [23]. Therefore, the MaxEnt model
was chosen to simulate and analyze the distribution of suitable areas of tea species in the
future at a national level in China based on new SSPs climate scenario data instead of RCPs.
The results are expected to enhance scientific understanding of variation of priority areas
suitable for the development of tea industry under climate change.

Studying the current and potential distribution of tea on a large scale can help to
understand the dynamic of overall planting patterns under climate change, which could
be used to determine the suitable area for tea cultivation in China. The objective of
this study was to use the MaxEnt model to map the current potential distribution of tea
(Camellia sinensis L.) by the key environmental variables that highly correlate with tea
distribution, predict the potential distribution of tea species under future climate change
scenarios, and evaluate the effects of climate change on the suitable habitat area of tea, all
to identify the change suitable area under future climate change scenarios.

2. Materials and Methods
2.1. Species Data of Camellia sinensis

The tea occurrence data in Chinese mainland were collected from databases of Chinese
Virtual Herbarium (CVH, http://www.cvh.ac.cn, last accessed on 20 October 2020) and
the Global Biodiversity Information Facility (GBIF, http://www.gbif.org, last accessed
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on 20 October 2020). These two websites provide the most accurate and reliable location
information of tea species. In this study, a total of 3921 occurrences data were obtained, out
of which 2030 were collected from CVH and 1891 were collected from GBIF. Firstly, the
GPS and Coordinate pick up system of Baidu Map (http://api.map.baidu.com/lbsapi/
getpoint/index.html) were used to carry out geographic registration on the event records
with detailed location information. Then, 2854 incomplete records as well as 657 duplicated
entries were removed. Finally, 410 accurate existence points remained (Figure 1). The
coordinates of latitude and longitude for each record were stored in an Excel database as
“.csv” format with the title “species, longitude, latitude” for MaxEnt model building.
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Figure 1. Distribution of tea specimen occurrences in China. The red dots are the occurrence location; SD: Shandong, He’N:
He’nan, SX: Shaanxi, GS: Gansu, SC: Sichuan, XZ: Tibet, CQ: Chongqing, HB: Hubei, AH: Anhui, JS: Jiangsu, ZJ: Zhejiang,
JX: Jiangxi, Hu’N: Hu’nan, GZ: Guizhou, YN: Yunnan, GX: Guangxi, GD: Guangdong, FJ: Fujian, HN: Hainan, TW: Taiwan.

2.2. Bioclimatic Data

Bioclimatic variables are the key factors that determine the distribution of tea vari-
eties [24]. Nineteen bioclimatic variables from WorldClim 2.1 (https://www.worldclim.
org/data/cmip6/cmip6_clim2.5m.html, accessed on 20 October 2020) were extracted as
environmental data [25]. The new version of 19 bioclimatic variables was released in
January 2020 and the data records are from 1970 to 2000 period, which have been widely
used to predict the current potential distribution of species in recent research due to the
ecological meaning and can reflect the seasonal variation characteristics of temperature
and precipitation [26,27]. WorldClim could provide four gridded global climate layers at
10 min, 5 min, 2.5 min, and 30 s in CGS_WGS_1984 projection [28]. Due to the diversity
of climatic condition and topography in China in the short term, we chose the spatial
resolution of 2.5 min (5 km2) for modeling. The datasets downloaded from WorldClim are
in “tiff” format and were converted to ASCII files in ArcGIS by “Raster to ASCII”, for use
in MaxEnt software.

http://api.map.baidu.com/lbsapi/getpoint/index.html
http://api.map.baidu.com/lbsapi/getpoint/index.html
https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html
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2.3. Preprocessing of Bioclimatic Variables

Multicollinearity among variables may lead to over-fitting of the model and misinter-
pretation of the modeled results [29]. In order to avoid the influence of the cross-correlation
of the 19 bioclimatic variables, the contribution rate of each variable was firstly evaluated
by the Jackknife test in MaxEnt software version 3.4.1 (https://biodiversityinformatics.
amnh.org/open_source/maxent/, accessed on 20 October 2020) with default setting, and
then correlation analysis was carried by SPSS software version 22.0 (SPSS, Inc., Chicago, IL,
USA) to eliminate the highly correlated variables [30]. If the absolute value of correlation
coefficient of two variables was greater than 0.8, only one variable with a greater contribu-
tion was selected [31]. At last, the remaining 9 bioclimatic variables (bio2, bio3, bio6, bio7,
bio10, bio12, bio14, bio15, and bio18) were selected to simulate the distribution of tea in
China under current and future climatic conditions (Table 1, in bold). The change of land
use and land cover, human interference, species diffusion and biological interactions were
neglected in the modeling.

Table 1. Climate variables used for modeling climatic niches.

Code Variable Name Unit

bio1 Annual Mean Temperature oC
bio2 Mean Diurnal Range oC
bio3 Isothermality (BIO2/BIO7) (×100) -
bio4 Temperature Seasonality (standard deviation × 100) C of V
bio5 Max Temperature of Warmest Month oC
bio6 Min Temperature of Coldest Month oC
bio7 Temperature Annual Range (BIO5-BIO6) oC
bio8 Mean Temperature of Wettest Quarter oC
bio9 Mean Temperature of Driest Quarter oC

bio10 Mean Temperature of Warmest Quarter oC
bio11 Mean Temperature of Coldest Quarter oC
bio12 Annual Precipitation mm
bio13 Precipitation of Wettest Month mm
bio14 Precipitation of Driest Month mm
bio15 Precipitation Seasonality (Coefficient of Variation) -
bio16 Precipitation of Wettest Quarter mm
bio17 Precipitation of Driest Quarter mm
bio18 Precipitation of Warmest Quarter mm
bio19 Precipitation of Coldest Quarter mm

The bolded variables were used in modeling.

2.4. Species Distribution Modeling Procedure

In this study, the MaxEnt software [19] was used to model the current and future
distribution of tea in China because it has better prediction capabilities and stability that
will not be affected by small sample deviations and fewer samples [23,32,33]. The Species
data were inputted in the box of Samples, and the Bioclimatic variables were inputted
in the box of Environmental layers. The MaxEnt model was run with 10 replicates and
25% of random test percentage, the convergence threshold of 10−5, a maximum number
of backgrounds points of 10,000, the maximum iterations as 1000, and a regularization
parameter value of 0.5, an auto-feature option, and cloglog output format. Meanwhile,
“Create response cures” and “Do Jackknife to measure variable importance” were chosen
before running the model. Other values were kept as default [34].

The random test percentage was 25%, which means that 75% of the total database
was used as the random sample to train the model, and other 25% of the total database
was used to test the model predictions [35]. To avoid over-fitting of the test data, we
set the regularization multiplier value as 0.5. The output format was default “cloglog”
transform, which has the stronger theoretical justification than the logistic transform [36].
The auto features setting was used in this research based on the number of sample sizes.
Phillips and Dudík [37] classified the features for sample sizes: auto features setting for

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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more than 80 records, quadratic and hinge setting for 15–79 record, linear and quadratic
for 10–14 record, and linear setting for sample sizes fewer than 10 records [24,38]. The
Jackknife test (systematically leaving out each variable) was used to assess the contribution
and the importance of each bioclimatic variables to the model [39].

2.5. Evluating the Model Performance

The performance of this model was evaluated based on the computed receiver operat-
ing characteristic (ROC) curve and the area under the curve (AUC) [19,23]. Taking the false
positive rate (the probability of being predicted as positive without the actual distribution
of the species) as the horizontal axis and the true positive rate (the probability of being
predicted as positive by species) as the vertical axis, the ROC curve was drawn [40]. The
area surrounded by the curve and the horizontal axis was AUC (area under curve) value.
In general, AUC values vary from 0.5 to 1, which could be divided into five classes: fail
(0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), and excellent (0.9–1) [41]. The closer
the AUC value was to 1, the farther away from the random distribution, the greater the
correlation between environmental variables and the predicted geographical distribution
of species, and the more accurate the performance of the model, while AUC < 0.5 is a
contingency difference, which can be regarded as a stochastic forecasting model, and rarely
happens [42].

2.6. Future Spatial Change Detecation

The same nine bioclimatic variables were employed to analyze the future potential
distribution of tea from 2040 to 2100. The global climate model, BCC-CSM2-MR (modeling
data from the Beijing Climate Center Climate System Model) was used as future simulated
climate at four emissions scenarios driven by different socio-economic assumptions named
as Shared Socio-economic Pathways (SSPs) 126, 245, 370, and 585 with a 2.5 min spatial
resolution, which were downloaded from WorldClim (http://www.ccafs-climate.org)
and both available for three time-periods including 2050s (2041–2060), 2070s (2061–2080)
and long-term 2090s (2081–2100) [43,44], which can better simulate the temperature and
precipitation variables in Asia [45,46]. SSP126 represents the low end of the forced pathways
in the future, updating the RCP2.6, and the radiative forcing in 2100 is 2.6 W/m2. SSP245
represents the medium part of the range of future forcing pathways and updates the RCP4.5
pathway. The radiation forcer will be stable at 4.5 W/m2 in 2100. SSP370 represents the
medium to high end of the range of future forcing pathways, which the radiation forcing
will stabilize at 7.0 W/m2 in 2100. SSP585 represents the high end of the range of future
pathways, updating the RCP8.5 pathways, and its emissions are high enough to generate a
radiative forcing of 8.5 W/m2 in 2100 [47].

After modeling the species distribution, the spatial changes were calculated for the
future compared to the current by in ArcGIS 10 software. The prediction results of current
and future were imported into ArcGIS by ASCII to raster” and reclassified as Unsuitable
habitat (0–5%), Marginal suitable habitat (5–33%), Medium suitable habitat (33–67%), and
Optimal suitable habitat (67–100%) [48,49]. In order to compare the future and current area
variation and distributions, Unsuitable habitat, Marginal suitable habitat, Medium suitable
habitat, and Optimal suitable habitat was further reclassified as 0, 1, 2, 3 and 4, and the
current results layer was subtracted from the future results by the “subtraction” tool in
Arctoolbox [50]. Area calculation of the suitable habitat and the subtraction result were
carried out in ArcGIS 10.

3. Results
3.1. Model Performance and Variable Contributions

The average AUC value of the test data and training data in this study was 0.902
(Figure 2), indicating that this model performs excellent in modeling tea distribution in
China. It is worth noting that the AUC values tend to be lower for species with wide
distribution range [51,52].

http://www.ccafs-climate.org
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Figure 2. ROC curve and AUC value under the current period (10 replicated runs). The current
period was from 1970 to 2000.

The importance of the permutation of the predictor variables to the MaxEnt model
are shown in Table 2. Among the input environmental variables, Temperature Annual
Range (bio7) was most influential and contributed 51% to this model. Precipitation of
Warmest Quarter (bio18) was the second most important variable with the permutation
importance of 14%, followed by Min Temperature of Coldest Month (bio6) (9.7%) and
Mean Temperature of Warmest Quarter (bio10) (8.9%). Precipitation of Driest Month
(bio14) and Mean Diurnal Range (bio2) accounted for 4.9% and 4.2%. Annual Precipitation
(bio12) and Precipitation Seasonality (bio15) had the smaller influence on the habitat model,
which was 3.7% and 2.9%, respectively. Isothermality (bio3) only contributed 0.7%, which
was the lowest contribution, as shown in Table 2. Meanwhile, the percent contributions
of the environmental variables showed that Precipitation of Driest Month (bio14) had
the greatest impact of 63.9% followed by Annual Precipitation (bio12) of 18.9%, while
Temperature Annual Range (bio7) contributed 4.5%, and the lowest was Precipitation of
Warmest Quarter (bio18), 0.3%.

Table 2. Percentage contribution and permutation importance of the predictor variables to the
MaxEnt model.

Variable Percent Contribution Permutation Importance

bio14 63.9 4.9
bio12 18.9 3.7
bio6 7.8 9.7
bio7 4.5 51

bio10 2.3 8.9
bio15 1.1 2.9
bio2 0.7 4.2
bio3 0.6 0.7

bio18 0.3 14

An individual variable with highest training gain in Jackknife test means that it was
the most significant bioclimatic variable with more contribution or information to species
habitat distributions [53]. The results showed that the Annual Precipitation (bio12) and
Min Temperature of Coldest Month (bio6) provided very high gains (>1.2) when used
independently (Figure 3), indicating that bio12 and bio6 contained more useful information
by themselves than the other variables did, and more sensitive to Camellia sinensis habitats
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suitability. Precipitation of Driest Month (bio14), Precipitation of Warmest Quarter (bio18),
Mean Diurnal Range (bio2), and Temperature Annual Range (bio7) had moderate gain
when used independently. Other variables such as Mean Temperature of Warmest Quarter
(bio10), Precipitation Seasonality (bio15), and Isothermality (bio3), had low gains with few
information when used in isolation.
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3.2. Variable Response Curves

The quantitative relationship between environmental variables and the logical proba-
bility of existence (also known as habitat suitability) is shown as the response curves in
Figure 4, which could deepen the understanding of the species niche. Based on the results
of the Jackknife test, each environmental factor was selected for modeling to reveal the
climate characteristics’ impacts on tea suitable distribution area. According to the response
curve of Temperature Annual Range (bio7), the probability of tea occurrence was lower
than 26 ◦C (Figure 4a). The suitable range of Precipitation of Warmest Quarter (bio18) was
from 500 to 900mm with a peak at 600mm (Figure 4b). The response curve of Min Tem-
perature of Coldest Month (bio6) showed that habitat suitability of tea is associated with
areas where the optimal temperature ranged over 0 ◦C, but it has a fluctuant range at 10 to
16 ◦C (Figure 4c). The response curve of Mean Temperature of Warmest Quarter (bio10)
indicated that 27 ◦C would be conducive for the development of tea in Warmest Quarter
(Figure 4d). The response curve of Precipitation of Driest Month (bio14) demonstrated
that there was a wide range of precipitation from 17 to 180 mm to adapt to the tea habitat,
and it reaches the peak at 48 mm (Figure 4e). The highest suitability of Mean Diurnal
Range (bio2) was 7 ◦C, with the decreasing trend beyond 7 ◦C (Figure 4f). The response
curve of Annual Precipitation (bio12) showed that tea prefers precipitation between 1300
and 1800 mm (Figure 4g). Precipitation Seasonality (bio15) is calculated from the ratio of
the standard deviation between monthly total precipitation and monthly average total
precipitation, indicating that the seasonal value of the highest precipitation of tea was
about 70, and habitat suitability decreased with the increase of variation (Figure 4h). Based
on the response curves of Isothermality (bio3), the highest suitability for tea occurred in
the areas where bio3 was from 25 to 36, and over 45 (Figure 4k). However, the effects of
bio15 and bio3 on the model performance are less important than other variables because
of the low value of percent contribution and permutation importance (Table 2).
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Figure 4. Response curves of climatic suitability for the major climate factors according to MaxEnt model. (a) response of tea
to bio7 (Temperature Annual Range); (b) response of tea to bio18 (Precipitation of Warmest Quarter); (c) response of tea to
bio6 (Min Temperature of Coldest Month); (d) response of tea to bio10 (Mean Temperature of Warmest Quarter); (e) response
of tea to bio14 (Precipitation of Driest Month); (f) response of tea to bio2 (Mean Diurnal Range); (g) response of tea to bio12
(Annual Precipitation); (h) response of tea to bio15 (Precipitation Seasonality); (k) response of tea to bio3 (Isothermality).

3.3. Simulated the Distribution of Suitable Habitats in Current Climate Condition

Based on the current bioclimate variables and tea distribution records, a climatically
suitable habitat map was created by ArcGIS 10 (Figure 5). The result shows that the
area from latitude 18◦ N to 39◦ N and from 93◦ E to 122◦ E was the primary potential
suitable region of tea in China. The suitable habitats (including Marginal, Medium, and
Optimal suitable habitat) accounted for approximately 26.89% (259.15 × 104 km2) of
the total land area, primarily located in 20 provinces or autonomous regions: Hainan,
Yunnan, Guizhou, Guangdong, Guangxi, Fujian, Zhejiang, Hubei, Hunan, Jiangxi, Anhui,
Chongqing, Jiangsu, Taiwan, central and southeast of Sichuan, southeast of Gansu, central
and eastern Shandong, Southern Shaanxi, central and southern Henan, and southeast of
Tibet. The Optimal suitable habitat for tea was remarkably located in central and southeast
China, and accounted for approximately 8.25% (79.49 × 104 km2) (Table S1) of the total
land area, including the provinces of Chongqing, Guizhou, Guangxi, north of Guangdong,
south of Zhejiang, northwest of Fujian, southwest of Yunnan, southeast of Sichuan, and
southwest of Hubei, which was mainly located in the mountainous areas of east and
southwest Yun-Gui Plateau, and hills of the southeast coast of China. The Medium suitable
habitat accounted for 11.22% (108.15 × 104 km2) of the total land area, including Hunan,
southern Guangdong, central and eastern Yunnan, southern Anhui, eastern Hubei and
Sichuan. Meanwhile, the area of Marginal suitable habitat was lower than that of Medium
and Optimal, consisting of 7.42% (71.51 × 104 km2) of the total land area, mainly located at
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southeast of Gansu, central and eastern Shandong, southern Shaanxi, central and southern
Henan and some small regions of south Tibet and south Sichuan.
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3.4. Changes in the Spatial Distribution of Habitats Suitability in the Future

Using the same classification standard in Figure 5, the future habitats suitability for tea
can be divided into four classes (Figure S1). The distribution of suitable habitats category
code is mapped in Figure 6 by comparing the current and future climate conditions under
SSP126, 245, 370, and 585 for the years 2050s (2041–2060), 2070s (2061–2080), and 2090s
(2081–2100). The category code “0” indicates Unsuitable habitat, “1” indicates Marginal
suitable habitat, “2” indicates Medium suitable habitat, and “3” indicates Optimal suitable
habitat. The regions with increased suitability in the future will mainly be located in
the central and eastern Hubei Province, southern Anhui and Jiangsu Provinces, southern
Yunnan Province, and northern Shandong and Henan Provinces. Under the current climatic
conditions, these regions are in the Marginal or even Unsuitable habitat. However, the
areas with reduced suitability are located at the Optimal area of current climate, including
the junction of Zhejiang and Fujian Provinces, and the middle of Guangxi and Guangdong
Provinces. Two major observations can be drawn as shown in Figures 6 and 7. Firstly,
the results showed that the suitability category code can change to sub-level, but hardly
change across levels (Figure 7); that is, suitability can be increased from category code “1 to
2”, but hardly from “1 to 3”, which means that the impact of climate change on suitability
is gradual and periodic. Secondly, the increased area of Marginal and Medium could lead
to the increasing of suitable area, especially if the area of “0 to 1” leads to the expansion of
the new habitat, which has different trends in different scenarios (Figures 6 and 7).

In SSP126, there is a downward trend on suitability because of the suitability area of
increasing category code (57.54 × 104 km2) less than decreasing code (75.26 × 104 km2)
(Table S2), especially the area of category code 3 to 2 in the 2050s and 2070s, corresponding
with the suitability decreasing in the coastal areas in southeast China, while the suitability
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of northern China increases, especially in southwestern Shandong. The area of Marginal
and Medium habitat would increase in all study periods, but the area of Optimal habitat is
lower than current in in 2070s and 2090s (Figure S1 and Table S1). Suitable planting area
may be stable in SSP245 because the area of increasing of suitability is 77.70 × 104 km2

while with decreasing of suitability is 70.58 × 104 km2. It is worth noting that the newly
occurring tea suitable area (0 to 1) in the 2090s are mainly located over the boundary of
Shandong and Henan provinces and the northeast to the central of Hebei province in
this scenario, but the Medium area increases to 124.87 × 104 km2 in the 2090s (Figure S1
and Table S1), which is second only to that of SSP370 of 128.92 × 104 km2 in the 2090s,
while the Optimal area increases first and then decreases. In SSP370, the reduced area
(84.21 × 104 km2) will be more than the increased area (75.95 × 104 km2), which is mainly
due to the reduction of a large area of category code “3–2”, most of which is in the south
of China, and even expanded to the southwest edge of Shaanxi in the 2090s (Figure 6).
Meanwhile, Optimal suitability will be increased in the south of Yunnan province in
SSP370 with the area of 67.54 × 104 km2 (12.60% of total land area) by comparison with
the current climate (Figure S1 and Table S1). The area in SSP585 will change significantly,
and the suitable area of Shandong, Henan, Hubei, and Jiangsu will increase significantly
with the increase of “0–1” and “1–2”, resulting in a larger increase (79.44 × 104 km2) in
area as compared to the decrease (44.88 × 104 km2) in area (Figure 6 and Table S2). The
southernmost part of the suitable area will reach the southern part of Hunan Province,
with the increase of Marginal and decrease of Optimal (Figure 6 and Table S2).

In summary, compared with the current conditions, climate change in the future may
have a negative impact on the optimal suitable habitat, but a positive impact on Medium
and Marginal suitable habitat. The optimal suitable habitat will be lost in southeast China,
especially in Fujian and Zhejiang province. However, areas of Medium and Marginal
suitable habitat will increase, replacing the Optimal suitable area, especially in Guangxi
and Yunnan province. At the same time, the new suitable area will be expanded from the
middle of Henan and Shandong province to the north.
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4. Discussion

Climate change has a crucial factor of changing geographical distribution of many
species [54–56]. It is shown from the observation facts that climate change has led to the
extinction of some species, and many species have escaped from their habitats to avoid
the terrible climatic environment [57]. Therefore, predicting the response from species
to climate change, especially their potential habitats distribution, can be regarded as a
great effort to help the planning and decision-making to improve the sustainability and
adaptability of ecosystems [58]. Previous studies have shown that various plants and
animal species can transfer suitable areas to high altitude and high latitude regions, so as to
avoid the adverse effects of extreme weather and utilize available climate resources [59–62].
In order to formulate countermeasures to adapt to climate change, it is necessary to predict



Agriculture 2021, 11, 1122 12 of 18

the impact of climate change on the potential distribution pattern of species [63]. The
MaxEnt model has been widely used to predict the potential distribution changes of species
under different climatic scenarios because of its simple operation, high fitting accuracy
and low requirement on sample numbers [64]. As a famous edible economic species, the
potential distribution of tea and the impacts of climate change on it are little known. This
study comprehensively analyzed the changes of suitable habitat of tea plants in China
under the latest climate scenario, which provided an important reference for formulating
sustainable development policies, planning and management strategies.

4.1. The Performance of MaxEnt Model

In this study, 410 species location data and 9 environmental variables were analyzed
by MaxEnt to predict the distribution of tea in mainland China. Area under the curve
(AUC) is an important model quality index to evaluate the model accuracy, because it
provides a single measure of the accuracy of the overall model independent of selection
threshold [65,66]. Generally, models with an AUC value greater than 0.75 might show
good performance for niche model [23,67]. The AUC value of this study under current
climate conditions is greater than 0.9, which indicates that the model has excellent fitting
ability, and the results can objectively reflect the distribution of tea species. Furthermore,
our simulation of the potential distribution of tea is only based on the occurrence data in
native regions rather than occurrence data in exotic areas, which indicated that the climatic
niche of tea is the realized niche instead of the fundamental niche [68,69]. Previous studies
have shown that the realized niche is always smaller than the fundamental niche [70,71].
Our study of tea potential habitat was only based on the impact of climate variables and
did not include the hydro-geological characteristics, due to data limitations.

4.2. Variable Influence on Tea Suitable Habitats Distribution

MaxEnt is a powerful suitability analysis model based on geographic information,
which is mainly used for species prediction based on “existing” data, and environmental
variables are very important for the model [23]. Many researchers use this model to predict
the influence of all environmental factors or major environmental factors on the geographi-
cal distribution of species [53,72]. However, environmental variables are selected according
to the different requirements, which could bring about problems such as autocorrelation
and multicollinearity among these variables, thus negatively affecting the simulation re-
sults [73,74]. This study predicted the current and future climate suitability habitats based
on the nine key climate factors with close correlation to tea distribution. The Temperature
Annual Range (bio7) was found to be the most influential variable, with the permutation
importance of 51% according to the results of the Jackknife test. Previous studies showed
that temperature plays an important role in tea production and quality [14,75,76]. Mean-
while, temperature can also affect the distribution of tea by affecting water absorption,
photosynthesis, transpiration, respiration, reproduction, and growth. The key Temperature
Annual Range was 26 ◦C, which is higher than the result of Jayasinghe in Sri Lanka [24].
As a kind of rain-fed crop, tea growing needs a large amount of rainfall to maintain its life
cycle and ensure the production of fresh leaves. The growth and production of tea plants
are threatened by the uncertainty of rainfall brought by climate change [12]. Furthermore,
climate change, especially global warming, changes the distribution pattern of precipitation.
The precipitation in the dry season is a key indicator of tea survival [77]. In this study, it
was found that the Precipitation of Driest Month (bio14) contributed a lot to the MaxEnt
model (63.9%), ranging from 17 mm to 180 mm, and was used to evaluate the suitability of
tea habitat. Precipitation will be diversified in the future [78], and extreme weather such
as rainstorm or drought is expected to occur repeatedly, which will play a key role in the
distribution of tea in China in the future.
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4.3. Current and Future Dynamic Trend of Tea Suitable Habitats Distribution under
Climate Change

Previous studies have shown that tea plants in China are distributed from 94◦ E
to 122◦ E longitude, and from 18◦ N to 37◦ N latitude, but the economic planting areas
are concentrated in the region between 94◦ E to 121◦ E eastwards and 18◦ N to 32◦ N
northwards [78,79]. Our simulated potential distribution areas of tea are mainly located
in the southeast of Tibet to the north of Shandong province, ranging from 93◦ E to 122◦ E
and 18◦ N to 39◦ N, including 20 provinces or autonomous regions. In this study, only the
natural geographical distribution of tea was considered, and areas with low temperature
in winter, such as western Sichuan and parts of Tibet, will become potential low-level
suitable areas.

Because of the uncertainty of future climate, there are obstacles to assessing the impacts
of climate change on species distribution [80]. Numerous previous findings proved that
global warming would have negative effects on ecosystems and species [81,82]. Our study
indicated that the suitable area of tea species will expand in the future by the increasing of
Marginal and Medium suitable area, mainly located in the mountainous regions such as
southern Yunnan and Anhui Provinces by comparing spatial distribution and calculating
area change. This indicated that under the current climate background, the area of the
Optimal suitable area has reached the highest value, and there is little potential for future
area increase. Other low-level suitable areas will become more conducive to production due
to warming, and the potential for future increase is not great. In the period of 2081–2100,
the Optimal habitat will decrease at SSP126, but there is an opposite trend between Medium
and Marginal. However, in the high emission scenario SSP585, there are negative impacts
of climate on Marginal in the 2070s and Medium in the 2050s, respectively. The areas
that can be used for expanding production in the future are mainly located in Marginal
and Medium areas, while the newly-increased production areas with great development
potential are mainly located in the edge areas such as Shandong, Yunnan, and Henan. On
the one hand, because of its high economic value, tea tree is different from other species,
and it is mainly managed according to the management method of Gramineae crops in
actual production. The development of tea to cope with climate change is highly dependent
on social and economic input, and the benefits brought by tea production could promote
the excavation of potential distribution areas, but this process is meaningful only when
the climatic conditions of a certain area meet the requirements of tea production. On the
other hand, according to the physiological characteristics of tea tree, as an evergreen plant,
it is suitable for growing in a humid and warm environment, with limited resistance to
cold and heat [83,84]. Under the climatic conditions of increasing CO2 concentration and
temperature in the future, the temperature in northern Shandong and southern Shanxi
will reach the minimum standard for tea growth, which will lead to the northward shift
of the suitable regional boundary for its distribution. At the same time, due to the higher
elevation in southwest China, the temperature in high altitude area will also rise, which
will lead to the distribution boundary moving to southwest China. Moreover, the suitable
area of tea will expand northward and west in response to global warming and social and
economic development, suggesting that additional new suitable habitats will be created
for Chinese tea production with the future climate change.

4.4. Other Uncertainty of Tea Distribution in the Future Climate Change

Due to changes of environmental factors caused by climate change, the suitable
habitats of tea plants in China have changed, and it is difficult to formulate a suitable
long-term tea production management plan for adapting to climate change [38]. The
MaxEnt model is an important tool to simulate the suitable habitats distribution of the
species, because it can predict suitable distribution areas under future climate change
scenarios. It should be noted that, although the simulation results of the MaxEnt model
have high accuracy, it does not mean that the suitable area is completely consistent with the
actual distribution area [21]. The simulation result of the model is the maximum possible
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geographical distribution of tea, which is the maximum possible distribution range under
ideal conditions. However, due to the limitation of data, the economic value of tea quality
has not been considered, and not all simulated suitable areas have better quality and
higher economic benefits. Moreover, the distribution of tea is affected not only by climate
factors, but also by non-biological factors such as topography and soil. On the other hand,
it is also influenced by social and economic development, human intervention, policies,
and other human activities. Although there are many assumptions and uncertainties in
the tea distribution model, this model is still the key data source for future suitability
prediction [85], so as to evaluate scientific adaptation strategies at the level of species,
community and ecosystem, and to offset the impact of future warming on tea distribution.

5. Conclusions

In this study, the present-day occurrence data of tea (Camellia sinensis L.) were used to
predict the current and future potential suitable distribution habitats in China by MaxEnt
model under four SSPs climate change scenarios. The main conclusions are as follows:
(1) AUC value was over 0.9, which reveals that the model performance was excellent to
predict the future suitable habitats of tea. The nine dominant climate factors were selected
by correlation analysis and Jackknife test, in which bio14 (Precipitation of Driest Month)
contributed the most, accounting for 63.9%, and bio7 was the most important to predict tea
distribution, with the permutation importance accounting for 51%. (2) Under the current
climatic condition, tea distribution areas were mainly located from south of Hainan to
the north of Shandong province, including 20 provinces or autonomous regions. The
most suitable climate zone was mainly located in the higher elevation zones including
the central and eastern Guizhou, Chongqing, Zhejiang, and the coastal areas of Fujian
Province. (3) Compared with current distribution, this study revealed that the suitable
area would increase in the future climate change scenarios because of the expansion of
Medium and Marginal suitable habitats in central and eastern Hubei Province, central
Anhui and Jiangsu Provinces, southern Yunnan Province, and even northern Shandong and
Henan Provinces. Only considering climate factors, tea production in western provinces
such as Chongqing, Guizhou, Yunnan, and other provinces such as Shandong and Henan
have great development space, so formulating the adaptative technology of tea production
should be considered in these provinces.

The distribution map of tea potential habitat is helpful to strengthen land use manage-
ment, create new tea gardens, increase farmers’ welfare, avoid competing for arable land
with food production, and make the future distribution prediction an important backbone
for formulating the development plan of the tea industry. Climate factors are considered in
the distribution model, but the other factors such as socio-economic development, human
intervention, policies, and other human activities have always played a significant role in
species distribution, which should be strengthened in future study.
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Author Contributions: Conceptualization, Y.Z. and Y.X.; methodology, Y.Z. and L.Z.; software, Y.Z.
and L.Z.; formal analysis, M.Z. and C.W.; writing–original draft preparation, Y.Z.; writing—review
and editing, M.Z. and Y.X.; funding acquisition, M.Z. and Y.X. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was financially supported by the National Natural Science Foundation of
China (No. 42001217).

https://www.mdpi.com/article/10.3390/agriculture11111122/s1
https://www.mdpi.com/article/10.3390/agriculture11111122/s1


Agriculture 2021, 11, 1122 15 of 18

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data is contained within the article or Supplementary Materials.

Acknowledgments: The authors are grateful to Amatus Gyilbag for polishing the language.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambrdge, UK, 2021.
2. CMA Climate Change Centre. Blue Book on Climate Change in China; Science Press: Beijing, China, 2021.
3. Chang, K.; Brattlof, M. Socio-Economic Implications of Climate Change for Tea Producing Countries; FAO: Rome, Italy, 2015.
4. FAO; CAAS. Carbon Neutral Tea Production in China–Three Pilot Case Studies; FAO: Rome, Italy, 2021.
5. Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C.; Robbat, A.; Cash, S.; Xue, D.; Long, C.; Unachukwu, U.; et al. Effects of

extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences
in tropical China. PLoS ONE 2014, 9, e109126. [CrossRef]

6. Duncan, J.M.A.; Saikia, S.D.; Gupta, N.; Biggs, E.M. Observing climate impacts on tea yield in Assam, India. Appl. Geogr. 2016,
77, 64–71. [CrossRef]

7. Rwigi, S.K.; Oteng’I, S.B.B. Influence of Climate on Tea Yields in Mount Kenya Region; University of Nairobi Department of
Meteorology: Nairobi, Kenya, 2009.

8. Han, W.Y.; Li, X.; Ahammed, G.J. Stress Physiology of Tea in the Face of Climate Change; Springer: Singapore, 2018.
9. Jin, Z.; Ye, J.; Yang, Z.; Sun, R.; Hu, B.; Li, R. Climate suitability for tea growing in Zhejiang Province (in Chinese). Chin. J. Appl.

Ecol. 2014, 25, 967–973. [CrossRef]
10. Yu, H. Variation characteristics of climate suitability of tea in eastern Fujian (in Chinese). Mt. Res. 2016, 34, 424–425. [CrossRef]
11. Tang, J.; Wang, P.; E, Y.; Ma, Y.; Wu, D.; Huo, Z. Climatic Suitability Zoning of Tea Planting in Mainland China. J. Appl. Meteorol.

Sci. 2021, 32, 397–407.
12. Wijertane, M.A. Vulnerability of Sri Lanka tea production to global climate change. Water Air Soil Pollut. 1996, 92, 87–94.

[CrossRef]
13. Wijeratne, M.A.; Anandacoomaraswamy, A.; Amarathunga, M.K.S.L.; Ratnasiri, J.; Basnayake, B.R.S.B.; Kalra, N. Assessment

of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. J. Natl. Sci. Found Sri. 2007,
35, 119–126. [CrossRef]

14. Gunathilaka, R.P.D.; Smart, J.C.R.; Fleming, C.M.; Hasan, S. The impact of climate change on labour demand in the plantation
sector: The case of tea production in Sri Lanka. Aust. J. Agric. Resour. Econ. 2018, 62, 480–500. [CrossRef]

15. Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope
modelling under climate change. Prog. Phys. Geogr. Earth Environ. 2006, 30, 751–777. [CrossRef]

16. Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps
without absence data? Ecology 2002, 83, 2027–2036. [CrossRef]

17. Stockwell, D.; David, P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf.
Sci. IJGIS 1999, 13, 143–158. [CrossRef]

18. Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change.
Glob. Chang. Biol. 2003, 20, 1353–1362. [CrossRef]

19. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model 2006,
190, 231–259. [CrossRef]

20. Adams-Hosking, C.; Grantham, H.S.; Rhodes, J.R.; McAlpine, C.; Moss, P.T. Modelling climate-change-induced shifts in the
distribution of the koala. Wildl. Res. 2011, 38, 122. [CrossRef]

21. Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G.
Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change
in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [CrossRef]

22. Shrestha, U.B.; Bawa, K.S.; Lumbsch, H.T. Impact of climate change on potential distribution of Chinese caterpillar fungus
(Ophiocordyceps sinensis) in Nepal Himalaya. PLoS ONE 2014, 9, e106405. [CrossRef]

23. Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Zimmermann, N.E. Novel methods improve prediction of species’ distri-
butions from occurence data. Ecography 2006, 29, 129–151. [CrossRef]

24. Jayasinghe, S.L.; Kumar, L. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka in response to
current and future climate change scenarios. Agric. For. Meteorol. 2019, 272, 102–117. [CrossRef]

25. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land
areas. Int. J. Climatol. 2005, 25, 1965–1978. [CrossRef]

26. Al-Obaidi, M.J.; Ali, H.B. Effect of Climate Change on the Distribution of Zoonotic Cutaneous Leishmaniasis in Iraq. J. Phys. Conf.
Ser. 2021, 1818, 12052. [CrossRef]

http://doi.org/10.1371/journal.pone.0109126
http://doi.org/10.1016/j.apgeog.2016.10.004
http://doi.org/10.13287/j.1001-9332.2014.0070
http://doi.org/10.16089/j.cnki.1008-2786.000146
http://doi.org/10.1007/BF00175555
http://doi.org/10.4038/jnsfsr.v35i2.3676
http://doi.org/10.1111/1467-8489.12262
http://doi.org/10.1177/0309133306071957
http://doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
http://doi.org/10.1080/136588199241391
http://doi.org/10.1046/j.1365-2486.2003.00666.x
http://doi.org/10.1016/j.ecolmodel.2005.03.026
http://doi.org/10.1071/WR10156
http://doi.org/10.1186/s13717-019-0210-8
http://doi.org/10.1371/journal.pone.0106405
http://doi.org/10.1111/j.2006.0906-7590.04596.x
http://doi.org/10.1016/j.agrformet.2019.03.025
http://doi.org/10.1002/joc.1276
http://doi.org/10.1088/1742-6596/1818/1/012052


Agriculture 2021, 11, 1122 16 of 18

27. Chhogyel, N.; Kumar, L.; Bajgai, Y.; Sadeeka Jayasinghe, L. Prediction of Bhutan’s ecological distribution of rice (Oryza sativa L.)
under the impact of climate change through maximum entropy modelling. J. Agric. Sci. 2020, 158, 25–37. [CrossRef]

28. Rosenzweig, M.L. Species Diversity in Space and Time; Cambridge University Press: Cambrdge, UK, 1995.
29. Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their under-lying

methods. Ecol. Model 2011, 222, 1343–1346. [CrossRef]
30. Rong, Z.; Zhao, C.; Liu, J.; Gao, Y.; Zang, F.; Guo, Z.; Mao, Y.; Wang, L. Modeling the Effect of Climate Change on the Potential

Distribution of Qinghai Spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests 2019, 10, 62. [CrossRef]
31. Yang, X.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant,

Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [CrossRef]
32. Kumar, S.; Stohlgren, T.J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica

monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 94–98. [CrossRef]
33. Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. ORIGINAL ARTICLE: Predicting species distributions from small

numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [CrossRef]
34. Phillips, S.J. A brief tutorial on MaxEnt. 2017. Available online: https://biodiversityinformatics.amnh.org/open_source/maxent/

(accessed on 20 October 2020).
35. Zhang, K.; Sun, L.; Tao, J. Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees. Forests 2020,

11, 525. [CrossRef]
36. Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent.

Ecography 2017, 40, 887–893. [CrossRef]
37. Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation.

Ecography 2008, 31, 161–175. [CrossRef]
38. Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of

Cunninghamia lanceolata in China. Forests 2020, 11, 302. [CrossRef]
39. Li, G.; Du, S.; Wen, Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and

cultivation at a global scale. Sci. Rep. 2016, 6, 30009. [CrossRef] [PubMed]
40. Wang, Y.; Xie, B.; Wa, F.; Xiao, Q.; Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’

potential distribution models. Biodivers. Sci. 2007, 15, 365–372. [CrossRef]
41. Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [CrossRef]
42. Hanley, J.A.; McNeil, B.J. The Meaning under a Receiver Characteristic and Use of the Area Operating (ROC) Curve. Radiology

1982, 143, 29–36. [CrossRef] [PubMed]
43. Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.;

Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [CrossRef]
44. Vuuren, D.P.V.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F. The

representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [CrossRef]
45. Wu, T.; Song, L.; Li, W.; Wang, Z.; Zhang, H.; Xin, X.; Zhang, Y.; Zhang, L.; Li, J.; Wu, F.; et al. An overview of BCC climate system

model development and application for climate change studies. Acta Meteorol. Sin. 2014, 28, 34–56. [CrossRef]
46. Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System

Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [CrossRef]
47. O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.;

Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482.
[CrossRef]

48. Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the current and future cultivation regions of Carthamus tinctorius L.
using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 2018, 16, e477. [CrossRef]

49. Wang, R.; Li, Q.; He, S.; Liu, Y.; Wang, M.; Jiang, G. Modeling and mapping the current and future distribution of Pseudomonas
syringae pv. actinidiae under climate change in China. PLoS ONE 2018, 13, e192153. [CrossRef]

50. Anand, V.; Oinam, B.; Singh, I.H. Predicting the current and future potential spatial distribution of endangered Rucervus eldii
eldii (Sangai) using MaxEnt model. Environ. Monit. Assess 2021, 193, 147. [CrossRef]

51. McPherson, J.M.; Jetz, W. Effects of species’ ecology on the accuracy of distribution models. Ecography 2007, 30, 135–151.
[CrossRef]

52. Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Jarnevich, C.S.; Crall, A.W.; Iii, J.B.N.; Barnett, D.T. Modelling invasion for a habitat
generalist and a specialist plant species. Divers. Distrib. 2010, 14, 808–817. [CrossRef]

53. Yi, Y.; Cheng, X.; Yang, Z.; Zhang, S. Maxent modeling for predicting the potential distribution of endangered medicinal plant
(H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [CrossRef]

54. Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol.
Lett. 2012, 15, 365–377. [CrossRef]

55. Lenoir, J.; Gegout, J.C.; Marquet, P.A.; de Ruffray, P.; Brisse, H. A Significant Upward Shift in Plant Species Optimum Elevation
During the 20th Century. Science 2008, 320, 1768–1771. [CrossRef] [PubMed]

56. Lowe, C.B.; Kellis, M.; Siepel, A.; Raney, B.J.; Clamp, M.; Salama, S.R.; Kingsley, D.M.; Lindblad-Toh, K.; Haussler, D. Three Periods
of Regulatory Innovation During Vertebrate Evolution. Science 2011, 333, 1019–1024. [CrossRef] [PubMed]

http://doi.org/10.1017/S0021859620000350
http://doi.org/10.1016/j.ecolmodel.2011.01.018
http://doi.org/10.3390/f10010062
http://doi.org/10.1016/j.ecoleng.2012.12.004
http://doi.org/10.5897/JENE.9000071
http://doi.org/10.1111/j.1365-2699.2006.01594.x
https://biodiversityinformatics.amnh.org/open_source/maxent/
http://doi.org/10.3390/f11050525
http://doi.org/10.1111/ecog.03049
http://doi.org/10.1111/j.0906-7590.2008.5203.x
http://doi.org/10.3390/f11030302
http://doi.org/10.1038/srep30009
http://www.ncbi.nlm.nih.gov/pubmed/27443221
http://doi.org/10.1360/biodiv.060280
http://doi.org/10.1126/science.3287615
http://doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://doi.org/10.1038/nature08823
http://doi.org/10.1007/s10584-011-0148-z
http://doi.org/10.1007/s13351-014-3041-7
http://doi.org/10.5194/gmd-12-1573-2019
http://doi.org/10.5194/gmd-9-3461-2016
http://doi.org/10.1016/j.gecco.2018.e00477
http://doi.org/10.1371/journal.pone.0192153
http://doi.org/10.1007/s10661-021-08950-1
http://doi.org/10.1111/j.2006.0906-7590.04823.x
http://doi.org/10.1111/j.1472-4642.2008.00486.x
http://doi.org/10.1016/j.ecoleng.2016.04.010
http://doi.org/10.1111/j.1461-0248.2011.01736.x
http://doi.org/10.1126/science.1156831
http://www.ncbi.nlm.nih.gov/pubmed/18583610
http://doi.org/10.1126/science.1202702
http://www.ncbi.nlm.nih.gov/pubmed/21852499


Agriculture 2021, 11, 1122 17 of 18

57. Worth, J.R.P.; Harrison, P.A.; Williamson, G.J.; Jordan, G.J. Whole range and regional-based ecological niche models predict differ-
ing exposure to 21st century climate change in the key cool temperate rainforest tree southern beech (Nothofagus cunninghamii).
Austral. Ecol. 2015, 40, 126–138. [CrossRef]

58. Thuiller, W.; Lavorel, S.; Araújo, M.B. Niche properties and geographical extent as predictors of species sensitivity to climate
change. Glob. Ecol. Biogeogr. 2005, 14, 347–357. [CrossRef]

59. Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42.
[CrossRef] [PubMed]

60. Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals
and plants. Nature 2003, 421, 57–60. [CrossRef] [PubMed]

61. López-Martínez, V.; Sánchez-Martínez, G.; Jiménez-García, D.; Pérez-De La O, N.B.; Coleman, T.W. Environmental suitability
forAgrilus auroguttatus (Coleoptera: Buprestidae) in Mexico using MaxEnt and database records of four Quercus (Fagaceae) species.
Agric. For. Entomol. 2016, 18, 409–418. [CrossRef]

62. Zahoor, B.; Liu, X.; Ahmad, B.; Kumar, L.; Songer, M. Impact of climate change on Asiatic black bear (Ursus thibetanus) and its
autumn diet in the northern highlands of Pakistan. Glob. Chang. Biol. 2021, 27, 4294–4306. [CrossRef] [PubMed]

63. Edmar, I.T.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate
change. Agric. For. Meteorol. 2013, 170, 206–215. [CrossRef]

64. Nabout, J.C.; Magalhaes, M.R.; de Amorim Gomes, M.A.; Cunha, H.F.D. The Impact of Global Climate Change on the Geographic
Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environ. Manag. 2016, 57, 814–821.
[CrossRef]

65. Evans, J.M.; Fletcher, R.J.; Alavalapati, J. Using species distribution models to identify suitable areas for biofuel feedstock
production. Gcb Bioenergy 2010, 2, 63–78. [CrossRef]

66. Saatchi, S.; Buermann, W.; ter Steege, H.; Mori, S.; Smith, T.B. Modeling distribution of Amazonian tree species and diversity
using remote sensing measurements. Remote. Sens. Environ. 2008, 112, 2000–2017. [CrossRef]

67. Ferrier, P.S. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol. Model
2000, 128, 127–147. [CrossRef]

68. Booth, T.H. Assessing species climatic requirements beyond the realized niche: Some lessons mainly from tree species distribution
modelling. Clim. Chang. 2017, 145, 259–271. [CrossRef]

69. Booth, T.H.; Nix, H.A.; Hutchinson, M.F.; Jovanic, T. Niche analysis and tree species introduction. For. Ecol. Manag. 1988,
23, 47–59. [CrossRef]

70. Soberón, J.; Arroyo-Peña, B. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson.
PLoS ONE 2017, 12, e175138. [CrossRef]

71. Zhang, X.; Li, G.; Du, S. Simulating the potential distribution of Elaeagnus angustifolia L. based on climatic constraints in China.
Ecol. Eng. 2018, 113, 27–34. [CrossRef]

72. Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why
inputs and settings matter. Ecography 2013, 36, 1–12. [CrossRef]

73. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib.
2011, 17, 43–57. [CrossRef]

74. Worthington, T.A.; Zhang, T.; Logue, D.R.; Mittelstet, A.R.; Brewer, S.K. Landscape and flow metrics affecting the distribution of a
federally-threatened fish: Improving management, model fit, and model transferability. Ecol. Model 2016, 342, 1–18. [CrossRef]

75. Lou, W.; Sun, S.; Wu, L.; Sun, K. Effects of climate change on the economic output of the Longjing-43 tea tree, 1972–2013. Int. J.
Biometeorol. 2015, 59, 593–603. [CrossRef]

76. Sitienei, B.; Juma, S.; Opere, E. On the Use of Regression Models to Predict Tea Crop Yield Responses to Climate Change: A Case
of Nandi East, Sub-County of Nandi County, Kenya. Climate 2017, 5, 54. [CrossRef]

77. De Costa, W.A.J.M.; Mohotti, A.J.; Wijeratne, M.A. Ecophysiology of tea. Braz. J. Plant Physiol. 2007, 19, 299–332. [CrossRef]
78. Zhang, Y.; Fu, L.; Meng, C.; Zhang, L.; Xu, Y. Projected changes in extreme precipitation events over China in the 21st century

using PRECIS. Clim. Res. 2019, 79, 91–107. [CrossRef]
79. Huang, S. Meteorology of the tea plant in China: A review. Agric. For. Meteorol. 1989, 47, 19–30. [CrossRef]
80. Xiao, Z.; Huang, X.; Zang, Z.; Yang, H. Spatio-temporal variation and the driving forces of tea production in China over the last

30 years. J. Geogr. Sci. 2018, 28, 275–290. [CrossRef]
81. Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al.

Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl.
Acad. Sci. USA 2014, 111, 3268–3273. [CrossRef] [PubMed]

82. Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; Siqueira, M.D.;
Grainger, A.; Hannah, L. Extinction risk from climate change. Nature 2004, 427, 145. [CrossRef]

83. Ashardiono, F.; Cassim, M. Climate Change Adaptation for Agro-forestry Industries: Sustainability Challenges in Uji Tea
Cultivation. Procedia Environ. Sci. 2014, 20, 823–831. [CrossRef]

http://doi.org/10.1111/aec.12184
http://doi.org/10.1111/j.1466-822X.2005.00162.x
http://doi.org/10.1038/nature01286
http://www.ncbi.nlm.nih.gov/pubmed/12511946
http://doi.org/10.1038/nature01333
http://www.ncbi.nlm.nih.gov/pubmed/12511952
http://doi.org/10.1111/afe.12174
http://doi.org/10.1111/gcb.15743
http://www.ncbi.nlm.nih.gov/pubmed/34101949
http://doi.org/10.1016/j.agrformet.2011.09.002
http://doi.org/10.1007/s00267-016-0659-5
http://doi.org/10.1111/j.1757-1707.2010.01040.x
http://doi.org/10.1016/j.rse.2008.01.008
http://doi.org/10.1016/S0304-3800(99)00227-6
http://doi.org/10.1007/s10584-017-2107-9
http://doi.org/10.1016/0378-1127(88)90013-8
http://doi.org/10.1371/journal.pone.0175138
http://doi.org/10.1016/j.ecoleng.2018.01.009
http://doi.org/10.1111/j.1600-0587.2013.07872.x
http://doi.org/10.1111/j.1472-4642.2010.00725.x
http://doi.org/10.1016/j.ecolmodel.2016.09.016
http://doi.org/10.1007/s00484-014-0873-x
http://doi.org/10.3390/cli5030054
http://doi.org/10.1590/S1677-04202007000400005
http://doi.org/10.3354/cr01576
http://doi.org/10.1016/0168-1923(89)90083-X
http://doi.org/10.1007/s11442-018-1472-2
http://doi.org/10.1073/pnas.1222463110
http://www.ncbi.nlm.nih.gov/pubmed/24344314
http://doi.org/10.1038/nature02121
http://doi.org/10.1016/j.proenv.2014.03.100


Agriculture 2021, 11, 1122 18 of 18

84. Fu, C.; Zhu, Q.; Yang, G.; Xiao, Q.; Wei, Z.; Xiao, W. Influences of extreme weather conditions on the carbon cycles of Bamboo and
Tea ecosystems. Forests 2018, 9, 629. [CrossRef]

85. Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the
assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [CrossRef]

http://doi.org/10.3390/f9100629
http://doi.org/10.1073/pnas.0901639106

	Introduction 
	Materials and Methods 
	Species Data of Camellia sinensis 
	Bioclimatic Data 
	Preprocessing of Bioclimatic Variables 
	Species Distribution Modeling Procedure 
	Evluating the Model Performance 
	Future Spatial Change Detecation 

	Results 
	Model Performance and Variable Contributions 
	Variable Response Curves 
	Simulated the Distribution of Suitable Habitats in Current Climate Condition 
	Changes in the Spatial Distribution of Habitats Suitability in the Future 

	Discussion 
	The Performance of MaxEnt Model 
	Variable Influence on Tea Suitable Habitats Distribution 
	Current and Future Dynamic Trend of Tea Suitable Habitats Distribution under Climate Change 
	Other Uncertainty of Tea Distribution in the Future Climate Change 

	Conclusions 
	References

