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Abstract: The valorization of municipal solid waste (MSW) can serve as an organic amendment
in agriculture while reducing solid waste accumulation in the environment. This research aimed
to evaluate the valorization of a bio-stabilized MSW amendment for the production of faba bean
(Vicia faba L.) crop. For this purpose, biomass production and growth, as well as, seed yield and seed
components, seed nutrient accumulation, plant pigments, soil properties, and microorganisms were
evaluated in comparison with faba bean mineral fertilization in a greenhouse experiment. The results
demonstrated that the bio-stabilized MSW amendment achieved similar biomass production, plant
growth, seed yield, nitrogen and protein content, and pigment content as the mineral fertilization
treatment. On the other hand, the organic fertilization did not exhibit significant effects on the yield
components number of pods per plant, and number of seeds per pod, and nutrient accumulation in
seeds with respect to mineral and control treatments in both soils. Sandy and clay soil properties
were improved in the organic treatments in comparison with the control soils by increasing soil
organic carbon, nitrogen, and other soil nutrients, and providing a suitable pH for faba bean growth.
Additionally, biological activity was favored by applying this source of organic fertilizer, enriching
the nematode community. Reusing bio-stabilized MSW for agronomical purposes can add value to
this waste product, serving as an effective alternative to mineral fertilizers in faba bean cultivation.

Keywords: organic fertilization; soil; mineral fertilization; soil amendment; agriculture

1. Introduction

Exponential population growth and urbanization have led to fast waste generation
and accumulation. Currently, 2.01 billion tons of municipal solid waste (MSW) are gen-
erated worldwide each year and it is predicted to increase to 3.4 billion tons by 2050 if
current conditions remain unchanged [1]. Extremely alarming is the fact that 33% of the
MSW generated is mismanaged, causing subsequent negative social, economic, and envi-
ronmental impacts [1,2]. Even when the MSW is collected, most of this waste is disposed
of in conventional ways, such as in landfills and incinerators [2], despite their detrimental
impacts on the environment [3–5] and being regarded as not favorable disposal options for
biodegradable waste [6].

In light of the environmental burdens exhibited by MSW current disposal options,
attention has recently been focused on exploring and fostering alternative waste manage-
ment strategies. The organic fraction of the MSW is a valuable source of organic matter and
nutrients, which is worth reusing and recycling for other applications [7]. In this way, MSW
valorization can be achieved through bio-stabilization processes, such as composting and
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digestion, which are common methods applied worldwide to recover organic waste [8,9].
Regarding their applications, bio-stabilized amendments have been used in agriculture,
horticulture, and soil remediation [10,11]. Some investigations have been carried out to
study the effects of compost, which is the most extended bio-stabilized product, on crop
growth. The use of compost has been studied for its application in agriculture, for example
for cereal production, such as wheat [12,13], barley [14], and maize [15,16], and in horti-
culture [17,18]. In addition, compost is considered a nutrient-rich fertilizer useful for land
restoration and improving soil quality [19].

Regarding crop production, faba bean (Vicia faba L.) is one of the most globally signifi-
cant leguminous crops. The subspecies known as tick bean or pigeon bean (Vicia faba L. spp.
minor) and horse bean (Vicia faba L. spp. equina) are mainly used as animal feed, while
the subspecies broad bean (Vicia faba L. spp. major) is used for human consumption [20].
Faba bean seeds are highly nutritious because of their high protein and starch content [21].
Known as broad beans, faba beans’ production worldwide was approximately 4.4 million
tons in 2019 [22]. In agriculture, the cultivation of faba bean extends around the world
and its benefits in crop rotation systems by reducing the use of mineral nitrogen fertilizers,
reducing greenhouse emissions, improving soil properties and fertility, and providing
higher yields for the following crops has been demonstrated [23]. Research has been con-
ducted with regards to faba bean fertilization and nutrient supply [24,25]. Pötzsch et al. [26]
studied sulfur fertilization on seed yield. Additionally, Barłóg et al. [27] investigated the
effect of soil potassium availability and sulfur fertilization, concluding that potassium-rich
soils favor dry matter accumulation and that sulfur application can increase seed yield in
potassium poor soils. Other micronutrients have been identified to be essential for faba
bean yield [28]. Depending on the variety, higher phosphorus utilization efficiency can
result in higher grain and biomass yields [29].

In faba bean cultivation, studies have been carried out to determine the effects of
organic fertilizers on crop yield, seed quality, and soil fertility. Cucci et al. [30] investigated
the application of three organic fertilization rates with non-composted wet olive pomace
combined with mineral fertilization and determined that applying 140 Mg ha−1 of organic
fertilizer and half mineral fertilizer achieved the same productivity results as full mineral
fertilization. Similarly, rice straw with poultry manure and oilseed rape cake compost
proved to not only increase faba bean growth and yield but also improve the soil’s physical-
chemical properties [31]. Compost from by-products can be an alternative to mineral
fertilizers, improving plant development and increasing faba bean production [32].

In this context, this research aims to evaluate the application of a bio-stabilized
amendment obtained from the organic fraction of MSW as an organic fertilizer on faba
bean and identify its effects on crop biomass production, seed quality, and soil properties
in comparison with mineral fertilization and two types of soils, sandy and clay soils.
Additionally, the evaluation of the nematode community was carried out to provide
important insights on soil fertility, and soil food web structure and complexity.

2. Materials and Methods
2.1. Plant Cultivation

The experiments with faba bean (Vicia faba var. Claro de Luna) were conducted under
greenhouse conditions at the National Institute for Agricultural Research (INIA), sited
in Madrid (Spain). Two types of soils were used for these experiments, sandy soil (92%
sand) and clay soil (35% clay and 37% loam) (Table 1). The characteristics of both soils
before faba bean cultivation are shown in Table 1. Eighteen plastic pots of twelve liters
of capacity were used in total. The treatments consisted of two types of fertilization,
mineral and organic, and the control without fertilization. Each treatment was carried
out with the two types of soils. The pots were arranged in a split-plot design with three
replicates. Mineral fertilization was applied at a dose of 2 g pot−1 of complex fertilizer
N-P-K (15–15–15). Organic fertilization was carried out using a commercial bio-stabilized
amendment from MSW provided by the company URBASER [33] (Table 1). The bio-
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stabilization process carried out to obtain this commercial product is similar to composting.
The difference between this amendment and compost relies on the fact that, according
to a Spanish regulation, compost implies a selective collection of material, while in this
case non-source separated municipal solid wastes were used [34]. The bio-stabilized
amendment application was 115 g pot−1. As the faba bean is a legume, both fertilizer rates
were adjusted based mostly on the phosphorous rate (around 41 kg P2O5 ha−1 for the
organic and 50 for the mineral) as the most limiting nutrient, in an attempt to avoid large
differences in mineral nitrogen application (around 66 kg N ha−1 for the organic and 50 for
the mineral).

Table 1. Physico-chemical properties of the organic amendment (bio-stabilized municipal solid waste
amendment), sandy soil, and clay soil in dry matter.

Parameter Organic Amendment Sandy Soil Clay Soil

Humidity (%) 78.8 15.90 24.23
Ashes (g/kg) 39.00 − −
pH,1:2.5 H2O 6.80 6.35 6.50

E.C.,1:5 H2O (dS/m) 5.59 0.07 0.08
Humic acids (%) 8.30 − −
Fulvic acids (%) 8.00 − −

Humic extract (%) 16.00 − −
Organic carbon (%) 17.46 0.41 0.63
Organic matter (%) 30.01 0.71 1.09

N Kjeldahl (%) 1.29 0.06 0.07
Ratio C/N 13.48 11.80 9.90

N-NH4
+ (mg/kg) 3174.5 3.64 2.73

N-NO3
− (mg/kg) 208.32 11.13 0.55

P2O5 total (g/kg) 2.1 0.7 0.6
K2O total (g/kg) 10.9 3.3 4.6
CaO total (g/kg) 68.6 33.1 23.3
MgO total (g/kg) 69.7 3 3.1
Na total (g/kg) 7.8 0.2 0.2

Al (mg/kg) 2600.00 − −
Fe (mg/kg) 5010.00 2544.00 1222.00
Co (mg/kg) <1.00 − −
Mn (mg/kg) 92.40 81.00 155.8
Zn (mg/kg) 140.00 15.00 19.32
As (mg/kg) 1.70 − −
S (mg/kg) 6822.80 − −

Cu (mg/kg) 92.40 11.00 13.9
Cr (mg/kg) 31.90 5.60 5.95
Ni (mg/kg) 5.40 4.05 4.63
Mo (mg/kg) <1.00 − −

Pb, Cd (mg/kg) 26.00 <0.20 <0.20

A Spanish variety with early maturity and good resistance to cold conditions (Claro
de Luna) was used in these experiments. The faba beans were sown at the end of October
2019, four seeds per pot. Throughout the experiment, plants were watered, maintaining a
humidity of approximately 60% of the soil’s water-holding capacity, and kept weed-free.
Crop growth was monitored from November until faba bean seeds were collected at the
end of May.

2.2. Soil and Plant Physical and Chemical Analyses

Soil samples from each pot were passed through a 2 mm sieve before the analysis,
homogenized, and kept in the laboratory at 4 ◦C before analyzing. Standard methods were
used for carrying out the physical and chemical analyses. A glass electrode (pHmeter
BASIC20, Crison, Barcelona, Spain) using a soil water suspension of 1:2.5 (w/v), was
used for measuring the pH. The electrical conductivity (E.C.) was determined with a
conductometer (soil/water ratio, 1:5.0: conductometer CDM3 Radiometer, Copenhagen,
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Denmark) at 25 ◦C [35]. The total Kjeldahl Nitrogen (N) [36] was determined following the
Kjeldahl method and inorganic nitrogen (NH4

+-N and NO3−-N) was determined by the
Bremner method, using airstreams distillation [37]. The Walkley and Black method [38]
was applied to obtain the organic carbon. The elements P, K, Ca, Mg, and heavy metals
Fe, Mn, Cu, Zn, Pb, Ni, Cr, and Cd were extracted with acids and determined using an
inductively coupled argon plasma emission spectrometry (CPOES, Perkin Elmer, Waltham,
MA, USA) [39].

At the end of May, all faba bean plants were collected to analyze the main yield and
yield components. Fresh faba bean seeds and pods were counted to obtain the number of
seeds per pod, pods per plant, and seeds per plant. Faba bean seeds and biomass were
dried in an oven until 12% moisture and weighted for dry matter yield determinations. For
nitrogen and protein content, the seeds were ground into a fine powder with a laboratory
mill. The total nitrogen was determined by the Kjeldahl method and converted to protein
by multiplying the total nitrogen concentration by 6.25 [40]. To measure the chlorophyll,
flavonols, and anthocyanins content of each faba bean plant, the non-destructive Dualex
leaf clip sensor was used [41]. For nutrient accumulation in faba bean seeds, the milled
seeds were analyzed to determine the macronutrients Ca, P, K, Mg, and the micronutrients
Fe, Mn, Zn, Cu by acid digestion and determined using an inductively coupled argon
plasma optical emission spectrometry (CPOES) [39].

2.3. Nematodes Analysis

Nematodes were extracted from 200 g of fresh soil through a modification of the
Baermann funnel method [42]. All nematodes in each sample were then counted under a
dissecting microscope, and at least 150 nematodes in each sample were identified to the
genus or family level at 400–1000× in a light microscope following [43]. A soil subsample
of 25 g was oven-dried at 70 ◦C to calculate soil moisture, and nematode abundances were
expressed as the No. of individuals per 100 g of dry soil.

The nematode taxa were classified into five trophic groups: bacterivores, fungivores,
herbivores, omnivores, and predators. Besides, they were classified into five colonizer-
persister (c-p) groups [44]. The c-p scale classifies nematode families into five groups from
c-p 1–c-p 5, representing a scale from r to K strategists. C-p 1 nematodes are enrichment
opportunistic, present high reproduction rates, lay large numbers of eggs, and rapidly
increase their populations following the bacterial blooms that occur in soils after organic
enrichment. Nematodes in groups c-p 2–c-p 5 progressively show longer generation times,
lower numbers of eggs, and higher sensitivity to soil disturbance and pollution. The joint
classification of trophic and c-p groups classifies nematodes into functional groups [45].

Based on the abundance of nematode taxa, four ecological indices were calculated [45,46].
The Enrichment Index (EI) is based on the relative abundances of enrichment-opportunistic
nematodes, and is used as an indicator of the activity of the bacterial-mediated decomposi-
tion channel and thus soil fertility. The Structure Index (SI) is based on the abundances of
sensitive predator and omnivore nematodes and is an indicator of soil food web structure
and complexity. The graphical representation of the EI vs. the SI values provides a soil
food web diagnosis tool, by which the soil food web can be classified as disturbed (poor
complexity and highly enriched, quadrat (A)), maturing (high complexity and highly
enriched, quadrat (B)), structured (high complexity and low fertility, quadrat (C)), and
degraded (low structure and fertility, quadrat (D)) [45]. The enrichment and the structure
metabolic footprints, based on the biomass of the enrichment-opportunistic nematodes
(enrichment metabolic footprint, (EMF)) and of omnivore and predator nematodes in
high soil food web levels (structure metabolic footprint, (SMF)) are plotted as rhombus
around the position of the EI, and SI in the biplot. The width and height of the rhombus
are indicators of the biomass of nematodes in such functional groups (enrichment and
complexity indicators, respectively).
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2.4. Statistical Analysis

Data were submitted to a statistical analysis by using the IBM SPSS software (ver-
sion 25) [47]. A one-way analysis of variance (ANOVA) was performed to compare the
effects of fertilization on the measured variables. Significant differences were determined
using the Tukey HSD test at p = 0.05.

Factorial ANOVAs were used to assess the effects of soil treatments and soil type on
nematode taxa abundances and ecological indicators. Data were log-transformed before
the analysis to achieve normality. The statistical analyses for nematodes were performed
on the R statistical software (version 4.0.5) [48].

3. Results and Discussion
3.1. Faba Bean Growth and Biomass Production

The bio-stabilized MSW amendment showed a positive effect on the biomass produc-
tion of faba bean plants with respect to the control treatments (Table 2). Although values
showed that plant biomass production increased 38% in the sandy soil and 21% in the
clay soil with the bio-stabilized MSW amendment compared with mineral fertilization,
these results were not significant. Both types of fertilization, mineral and organic, resulted
in higher biomass production than the unfertilized treatment (control). The significant
influence of fertilization conditions on biomass production was in agreement with other
authors. In previous investigations it was observed that the unfertilized plants (control)
exhibited significantly lower biomass production than plants with organic fertilization with
bio-stabilized amendments, evidencing the benefit of applying a nutrient source [30,32].

Table 2. Effect of organic (bio-stabilized MSW amendment) and mineral fertilization on faba bean
biomass yield in sandy soil and clay soil (mean ± SD).

Soil Type Fertilization Biomass Production (g/Plant)

Sandy Control 6.52 ± 0.24 a
Mineral 10.30 ± 0.32 ab
Organic 14.23 ± 0.39 b

Clay Control 10.31 ± 0.29 a
Mineral 13.04 ± 0.18 ab
Organic 15.84 ± 0.10 b

Mean values with different letters in the same row vary significantly (p < 0.05, Tukey HSD test).

With respect to plant growth, for faba bean plants grown in sandy soil (Figure 1),
the highest height at the end of the trials was achieved with the mineral fertilization, but
the differences with respect to the organic fertilization were not significant. A common
aspect found in both soils was that the control treatments exhibited lower heights than
the fertilized treatments. In the sandy soil, the control was 21% shorter than the mineral
treatment, and in the clay soil, plants were 12% shorter than the organic treatment with the
bio-stabilized MSW amendment. For faba bean plants grown in the clay soil (Figure 1), the
organic treatment with the bio-stabilized MSW amendment resulted in the highest height
at the end of the trials. The growth differences between mineral and organic treatments
in the clay soil were not significant, the organic fertilization’s height was 7% higher than
the mineral. Plant heights for both soils at the end of the experiment were in accordance
with that reported for faba beans [49,50]. Fertilization plays an important role in increasing
plants’ growth [51] and in this investigation, both fertilizers resulted in a similar plant
length. A similar result was obtained by Cucci et al. [26], where the application of mineral
fertilization obtained slightly higher heights than plants with organic fertilization, but
without a significant difference.
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In this experiment, the organic treatment with the bio-stabilized MSW amendment
in the sandy soil achieved the highest number of seeds per plant (Table 3). Significant
differences were observed between the organic treatment with the bio-stabilized MSW
amendment and the control, while these differences with respect to the mineral fertilization
were not significant. A similar effect was obtained for the seed yield in the sandy soil.
The use of fertilizers led to an increase in the seed yield with respect to the control, but
there were no significant differences between the treatment with mineral fertilization and
the organic treatment with bio-stabilized MSW amendment. For the clay soil, similar
results were obtained. Significant differences were observed for the number of seeds
per plant and the seed yield. These two parameters were significantly affected by the
organic treatment with the bio-stabilized MSW amendment with respect to the control,
but no differences were observed between the organic treatment with bio-stabilized MSW
amendment and the mineral fertilization. Cucci et al. [26] reported similar findings for the
faba bean mineral and organic fertilization to the results obtained in our research, where
organic and mineral fertilization exhibited a similar number of pods per plant, and seeds
per pod, thus not presenting significant differences. In another study with different rates
of the bio-stabilized product of compost on faba bean plants, it was seen that there were
no significant differences in the number of pods per plant, seeds per plant, and seeds per
pod between treatments carried out in a sandy loam soil and clay loam soil for the cultivar
variety Ryousaiissun [31]. In contrast, in the same study, for the cultivar Assiut 8, the soil
type significantly affected the number of seeds per plant, which coincides with our findings
showing significant differences for the type of fertilization. Faba bean yield components
obtained in our study were in line with previous investigations regarding the number of
seeds per pods [52,53], highlighting higher values depending on the genotype [54], number
of pods per plant [31], reporting up to 12.5 pods per plant when applying the wet olive
pomace organic amendment [30], and the number of seeds per plant [31]. Additionally,
positive effects have been seen with phosphorous and zinc fertilization [51], as well as,
spraying faba bean plants with a combination of iron, boron, and zinc fertilizer [55].
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Table 3. Effect of organic (bio-stabilized MSW amendment) and mineral fertilization on faba bean
seed yield and yield components in sandy soil and clay soil (mean ± SD).

Soil Type Fertilization Nº
Pods/Plant

Nº
Seeds/Plant

Nº
Seeds/Pod

Seed Yield
(g/Plant)

Sandy Control 2.67 ± 2.89 a 6.33 ± 4.93 a 2.52 ± 1.19 a 2.385 ± 1.92 a
Mineral 3.67 ± 0.58 a 10 ± 2.00 ab 3.00 ± 1.00 a 3.90 ± 0.92 ab
Organic 6.33 ± 2.08 a 14.33 ± 3.06 b 2.72 ± 0.25 a 4.37 ± 1.76 b

Clay Control 4.67 ± 1.53 a 12.67 ± 4.93 a 2.67 ± 0.34 a 3.60 ±2.30 a
Mineral 6.67 ± 2.08 a 13.00 ± 4.58 ab 2.20 ± 0.67 a 4.04 ± 1.47 ab
Organic 6.00 ± 2.65 a 18.67 ± 4.62 b 3.29 ± 0.89 a 6.59 ± 0.57 b

Mean values with different letters in the same row vary significantly (p < 0.05, Tukey HSD test).

3.2. Faba Bean Nutritional Status

Statistically significant effects were observed for fertilization in seed nitrogen and
protein content (Table 4). Fertilized seeds showed higher nitrogen and protein content
than the control in both soils. Higher nitrogen and protein content in faba bean seeds
with fertilization were expected and in agreement with other investigations [56]. Contrary
to previous results, which detected the highest protein content in faba bean seeds with
mineral fertilization [30], the highest values in nitrogen and protein content were found in
the organic treatment with the bio-stabilized MSW amendment and the clay soil, which
was 3.71% higher for nitrogen content and 23.17% for protein content. The differences with
the mineral treatment in both soils were small and not statistically significant, meaning
that both types of fertilization can achieve the objective of increasing the nitrogen and
protein content in the seeds, which are desired qualities in order to make faba bean more
valuable for human consumption and animal consumption as feed [56]. With regards to
nutrient accumulation in faba bean seeds, fertilization had no significant effects on the
nutrients analyzed, with the exception of Mn and Zn (Table 4). The micronutrients Mn
and Zn presented significant differences between the control and the fertilized treatments.
This significant accumulation of Mn and Zn in faba bean seeds was achieved due to the
high content of these micronutrients in the bio-stabilized MSW amendment. Additionally,
by applying organic sources of Mn and Zn, high biomass production can be obtained in
cultivars [57]. In particular, these micronutrients have been found to enhance bean crop’s
biomass production and yield components [58], which can also explain the higher biomass
production obtained in the organic treatments in this study.

Table 4. Effect of organic (bio-stabilized MSW amendment) and mineral fertilization on faba bean seed nitrogen, protein,
and seed nutrient accumulation in sandy soil and clay soil (mean ± SD).

Treatments
Sandy Clay

Control Mineral Organic Control Mineral Organic

Nitrogen (%) 3.25 ± 0.24 a 3.64 ± 0.21 b 3.66 ± 0.19 b 3.36 ± 0.06 a 3.54 ± 0.12 b 3.71 ± 0.21 b
Protein (%) 20.34 ± 1.50 a 22.73 ± 1.30 b 22.88± 1.17 b 21.02 ± 0.35 a 22.12 ± 0.74 b 23.17 ± 1.29 b
Ca (mg/kg) 1052.2 ± 49.6 a 945.2 ± 139.9 a 958.1 ± 70.1 a 957.0 ± 37.8 a 983.6 ± 91.7 a 1025.2 ± 113.7 a
P (mg/kg) 3463 ± 314 a 4710 ± 856 a 2895 ± 758 a 3539 ± 548 a 3206 ± 171 a 3334 ± 348 a
K (mg/kg) 11,558 ± 735 a 12,897 ± 899 a 11,367 ± 511 a 13,141 ± 446 a 12,357 ± 893 a 12,824 ± 355 a

Mn (mg/kg) 1.77 ± 0.54 a 2.07 ± 1.67 b 3.93 ± 1.53 b 1.60 ± 1.04 a 2.30 ± 0.50 b 3.43 ± 0.45 b
Fe (mg/kg) 54.53 ± 3.58 a 50.80 ± 2.69 a 56.77 ± 2.66 a 75.43 ± 1.62 a 79.47 ± 7.53 a 61.63 ± 4.92 a
Mg (mg/kg) 976.2 ± 30.2 a 1042.8 ± 93.2 a 947.1 ± 49.0 a 1062.6 ± 87.7 a 1034.1 ± 37.4 a 1073.8 ± 8.2 a
Zn (mg/kg) 22.07 ± 2.34 a 28.9 ± 4.42 ab 35.70 ± 5.31 b 15.13 ± 1.07 a 15.23 ± 0.87 ab 16.47 ± 1.44 b
Cu (mg/kg) 8.53 ± 0.45 a 10.13 ± 2.62 a 9.56 ± 1.79 a 14.57 ± 3.5 a 14.80 ± 3.23 a 16.93 ± 3.59 a

Mean values with different letters in the same row vary significantly (p < 0.05, Tukey HSD test).

The measurement of chlorophyll, flavonols, and anthocyanins in leaves also provided
information regarding the effect of the environment on the faba bean plants (Figure 2). Leaf
nutrient content is affected by fertilization and is expressed by leaf pigment contents [59,60].
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Regarding the chlorophyll content throughout the treatments, higher values for chlorophyll
were detected for fertilized treatments with respect to the control, which enhanced pho-
tosynthetic activities and increased faba bean biomass production [31]. This is explained
because chlorophyll synthesis is enhanced by providing micronutrients, such as Fe, Mn,
and Zn, through fertilization [61], and the omission of these micronutrients can reduce the
formation of chlorophyll rings [62]. The opposite effect was observed with flavonols and
anthocyanins. These pigments appear under various biotic and abiotic stresses [63], which
may explain the higher values obtained in the control treatments without fertilization.
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Figure 2. Effect of organic (bio-stabilized MSW amendment), mineral fertilization and soil on faba bean chlorophyll,
flavonols and anthocyanins content. Different letters at each date indicate significant differences according to the Tukey
HSD test at p ≤ 0.05, lower case letters define sandy soil and capital letters define clay soil.

3.3. Soil Fertility

Regarding soil properties, results showed that the soil pH was significantly affected by
fertilization (Table 5). In contrast with other investigations resulting in soil acidification after
organic amendments [64], our findings showed a pH increase due to organic fertilization
by the bio-stabilized MSW amendment [65]. A possible explanation is the addition of basic
cations with the organic amendments [66], and other chemical mechanisms occurring in
the soil [67]. It must be noted that the soil nature can affect the resulting pH after organic
fertilization. Melero et al. [68] observed a slight increase in the soil pH due to organic
fertilization, similar to our case. In the case of Melero et al. [68], the high carbonate content
in the soil presented a high buffering capacity resulting in a maximum pH increase of 3%.
In our research, the increase in pH with the bio-stabilized MSW amendment addition was
slightly lower in the clay soil than in the sandy soil with respect to the control, being a 3%
increase for clay soil and a 4% increase for sandy soil. This is due to the higher buffering
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capacity of soils with clay content, which increases the resistance to pH changes [69].
Nevertheless, the soil pH of the control and fertilized treatments were within the pH range
of 6.5–9 to achieve the best production of faba bean [70]. Values of the E.C. were the same
for both soils and fertilization, mineral and organic, and were significantly higher than the
control. The increase in E.C. was also reported in other organic amendment investigations
attributing the E.C. increase to the number of dissolved salts in organic fertilizers [67]. As
expected, in both soils, organic fertilization exhibited the highest increase in organic carbon.
The addition of bio-stabilized fertilizers increases soils’ organic matter content and favors
organic carbon sequestration [68,71].

Table 5. Effect of organic (bio-stabilized MSW amendment) and mineral fertilization on sandy soil and clay soil physico-
chemical properties, soil nutrients, and heavy metals (mean ± SD).

Treatments
Sandy Clay

Control Mineral Organic Control Mineral Organic

pH 7.71 ± 0.01 a 7.91 ± 0.1 b 8.03 ± 0.03 c 7.82 ± 0.02 a 7.91 ± 0.01 b 8.06 ± 0.05 c
E.C. (dS/m) 0.07 ± 0.01 a 0.11 ± 0.01 b 0.11 ± 0.01 b 0.09 ± 0.02 a 0.11 ± 0.01 b 0.11 ± 0.01 b

Organic carbon (%) 0.67 ± 0.03 a 0.69 ± 0.01 a 0.72 ± 0.02 b 0.67 ± 0.012 a 0.69 ± 0.02 a 0.73 ± 0.02 b
Kjeldahl N (%) 0.08 ± 0.01 a 0.09 ± 0.01 b 0.10 ± 0.01 b 0.07 ± 0.01 a 0.09 ± 0.01 b 0.10 ± 0.02 b

K2O (%) 0.51 ± 0.01 a 0.43 ± 0.04 b 0.61 ± 0.01 c 0.45 ± 0.02 a 0.47 ± 0.02 b 0.53 ± 0.03 c
P2O5 (%) 0.06 ± 0.02 a 0.08 ± 0.01 b 0.09 ± 0.01 b 0.05 ± 0.01 a 0.07 ± 0.01 b 0.07 ± 0.01 b
CaO (%) 3.10 ± 0.01 a 3.60 ± 0.01 b 3.69 ± 0.01 c 3.58 ± 0.01 a 3.61 ± 0.01 b 3.73 ± 0.02 c
MgO (%) 0.35 ± 0.02 a 0.41 ± 0.02 b 0.44 ± 0.01 b 0.35 ± 0.01 a 0.42 ± 0.03 b 0.41 ± 0.05 b

Zn (mg/kg) 15.77 ± 2.85 a 28.33 ± 0.57 b 35.57 ± 1.20 c 19.36 ± 0.47 a 27.10 ± 1.71 b 36.53 ± 1.55 c
Cu (mg/kg) 18.63 ± 1.04 a 23.10 ± 0.72 b 32.4 ± 1.01 c 16.90 ± 2.08 a 22.73 ± 0.58 b 30.13 ± 2.83 c
Cr (mg/kg) 5.41 ± 0.17 a 16.58 ± 1.76 b 21.43 ± 1.32 c 7.26 ± 0.59 a 12.97 ± 1.55 b 24.93 ± 0.21 c
Ni (mg/kg) 4.85 ± 0.04 a 5.96 ± 0.8 b 16.30 ± 0.30 c 4.68 ± 0.17 a 5.76 ± 0.28 b 16.49 ± 0.70 c

Pb, Cd (mg/kg) <0.2 ± 0.01 a <0.2 ± 0.01 a <0.2 ± 0.01 a <0.2 ± 0.01 a <0.2 ± 0.01 a <0.2 ± 0.01 a

Mean values with different letters in the same row vary significantly (p < 0.05, Tukey HSD test).

The soil organic carbon was significantly increased in the organic treatment, presenting
approximately 4% more soil organic carbon in the organic treatment than in the mineral
treatment in both soils. Regarding Kjeldahl N, differences were significant between the
fertilized treatments with respect to the control, meaning that the organic treatments
achieved similar nitrogen content in both soils compared with the mineral treatment. The
organic treatment with bio-stabilized MSW amendment presented the highest content of
nutrients for both soils, the increase in sandy soil with respect to control was 19, 50, 19, and
25%, and in the clay soil 15, 40, 4, and 17%, for K2O, P2O5, CaO, and MgO, respectively. An
increase in the nutrient values was expected, as bio-stabilized amendments applications
supply these nutrients into the soil [72,73]. Regarding the type of soil, a significant influence
was observed in K2O and CaO. Higher clay content in soils favors the adsorption of
nutrients. However, the lower values of K2O in the clay soil with respect to the sandy soil
can be due to nutrient fixation presenting a low capacity to return them to the soil [68].

An important aspect to consider in organic fertilization is the addition of heavy metals
to the soils. A significant effect was observed in the different fertilization treatments. For
all the heavy metals and in both types of soils, the organic treatment exhibited the highest
values. The bio-stabilized MSW amendment contained heavy metals, such as Zn, Cu, Cr,
Ni, Pb, and Cd, so it was expected that both soils amended with this organic fertilizer
presented the highest content of heavy metals. The increase in sandy soil with respect to the
mineral treatment was 25, 40, 29, and 173%, and in the clay soil of 34, 32, 92, and 186%, for
Zn, Cu, Cr, and Ni, respectively. Heavy metals in soils can cause detrimental effects on the
environment. For that reason, the concentration of heavy metals in soils for the application
of bio-stabilized amendments is regulated by the Spanish government establishing heavy
metal limits [74]. In our case, the concentrations of heavy metals obtained in the organic
fertilization treatment for both soils were below the regulated limits, making this bio-
stabilized MSW amendment a viable organic fertilizer. Besides agricultural purposes,
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organic fertilizers, such as those studied in this research, can be used on marginal land.
Marginal land has nutrient-poor and undesirable soil characteristics for profitable crops.
Valorization of MSW can be carried out by applying the bio-stabilized MSW amendment
on this soil to improve soil’s nutrient content and chemical characteristics as observed in
the application of other organic fertilizers [75].

3.4. Nematode Community

Twelve nematode taxa appeared in the experimental samples. Five of them were
bacterivores, while three taxa were fungivores, two were herbivores, and two were om-
nivores (Table 6). No predators were found. The most abundant taxa in the clay soil
were the bacterivore Acrobeloides and the fungivore Aphelenchus, while only Aphelenchus
clearly dominated in sandy soil. Eight nematodes taxa were significantly affected by soil
type, all of them (except Eudorylaimus) being more abundant in the clay soil than in the
sandy soil. The fungivore Aphelenchus was more abundant in the organic treatment than
in the other two treatments irrespectively of the soil type (Table 6). The effect of the in-
teraction Soil x Treatment significantly affected the abundance of Acrobeloides, with the
highest abundances in the organic treatment with the bio-stabilized MSW amendment
in the clay soil and lowest in the non-amended control, and a similar pattern was found
for Aphelenchus (Table 6). The omnivore Eudorylaimus was the only nematode showing
the opposite pattern, with high abundances in the non-amended control and low in the
organic treatment in clay soil. The total nematode abundances were affected by soil type
and soil treatments, and were in general high, with average abundances ranging between
517–7989 nematodes/100 g of dry soil (Table 6). The nematode analysis in this study
determined that nematode abundances were quite large compared with typical values in
semiarid areas [76]. In agreement with previous studies, no negative effects of mineral
and organic fertilization on total nematode abundances were detected [77]. Indeed, the
addition of this bio-stabilized MSW amendment clearly stimulated the abundance of the
nematode community, inducing relevant changes in its structure. Although both sandy
and clay soils presented similar properties, the positive effects of soil fertilization on the
total nematode abundance were particularly evident in the sandy soils, since the sandy
control pots were found to present much lower nematode abundances than the other soil
treatments, probably resulting from low resources availability.

The contribution of bacterivores to the nematode community was significantly higher
in the clay soil than in the sandy one (Figure 3) and was highest in the organic treatment
in the clay soil and lowest in all sandy soils, respectively (Figure 3). The interaction soil
× treatment marginally affected the soil fungivores (p = 0.05), with high abundances in
amended sandy soils. The soil type also affected the proportion of herbivores and omni-
vores, which presented higher relative abundances in the clay and sandy soils, respectively
(Figure 3). The increased abundances of generalist fungivore nematodes in the soils fertil-
ized with the bio-stabilized MSW amendment in the sandy soil trials, with almost three
times more fungivores than the unamended soils and a strong reduction in bacterivores,
indicated increased availability of fungal populations in the soil. In this soil, mineral and
organic fertilization strongly reduced the complexity of the nematode community, as has
been reported in previous field experiments [78]. In clay soils, however, the addition of
bio-stabilized MSW amendment induced an increase in bacterivores, a pattern previously
detected [79], and a reduction in fungivores.
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Table 6. Number of nematodes (mean ± SD) per 100g of dry soil in two types of soil and three soil treatments (control,
mineral, and organic (bio-stabilized MSW amendment)). Trophic (Ba: bacterivores, Fu: fungivores, Herb: herbivores, On:
omnivores) and c–p groups are shown. The F-values and the significance of the effects (*** p < 0.01; ** p < 0.05) of type of
soil and soil treatments are indicated.

Taxa TG C–P Clay Sand Soil Treat Soil x Treat

Control Mineral Organic Control Mineral Organic F p F p F p

Panagrolaimus Ba 1 0.00 0.00 0.00 0.00 0.00 8.28
±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±14.33

Acrobeles Ba 2 20.07 77.13 259.88 14.58 0.00 0.00 13.63 ***
±17.80 ±79.63 ±294.11 ±14.29 ±0.00 ±0.00

Acrobeloides Ba 2 1307.08 876.07 4495.04 83.49 177.17 75.36 202.6 *** 11.32 ***
±325.16 ±255.26 ±3603.62 ±23.43 ±75.35 ±1.46

Heterocephalus Ba 2 110.72 64.61 43.87 83.63 8.84 42.23
±56.35 ±39.41 ±41.68 ±75.16 ±8.13 ±39.05

Cervidellus Ba 2 20.87 0.00 0.00 0.00 0.00 0.00 3.99 ** 3.99 **
±18.27 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

Aphelenchus Fu 2 1602.55 1347.42 2314.56 133.19 1059.61 2334.73 17.01 *** 13.08 *** 9.77 ***
±413.58 ±650.96 ±150.57 ±37.04 ±233.59 ±1750.30

Aphelenchoides Fu 2 78.39 26.92 100.04 16.72 0.00 0.00 20.95 ***
±32.40 ±46.63 ±18.62 ±28.96 ±0.00 ±0.00

Tylenchidae Fu 2 76.79 93.06 467.19 2.62 14.79 2.26 12.57 ***
±25.10 ±24.66 ±738.54 ±2.28 ±14.23 ±3.91

Tylenchorhynchus Herb 3 193.29 300.56 262.27 6.17 0.00 4.52 61.64 ***
±155.59 ±302.64 ±296.58 ±6.12 ±0.00 ±7.83

Helicotylenchus Herb 3 9.56 0.00 0.00 0.00 0.00 0.00
±16.56 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

Eudorylaimus Omn 4 0.00 49.11 46.26 170.42 80.68 71.56 7.99 ** 5.34 **
±0.00 ±22.92 ±48.83 ±89.74 ±88.79 ±31.68

Mesodorylaimus Omn 4 0.00 0.00 0.00 6.27 0.00 0.00
±0.00 ±0.00 ±0.00 ±10.86 ±0.00 ±0.00

Total./100g ds 3419.32 2834.88 7989.11 517.09 1341.10 2538.94 30.54 *** 7.04 ***
±624.03 ±961.94 ±4925.29 ±158.40 ±352.74 ±1749.63
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The soil food web diagnosis showed that the Enrichment and Structure indices and
footprints varied across soil types and were affected by the interaction soil × treatment
(Table 7), although all soils fell within the disturbed category except non-amended sandy soils
that were degraded (Figure 4). In clay soil, mineral fertilization increased the enrichment
footprint, an indicator of the magnitude of ecosystem function performed by microbivore
nematodes, but reduced the Enrichment Index, while the structure indicators were eliminated
(Figure 3). In sandy soil, the non-amended treatment clearly differed from amended ones,
with a low Enrichment Index and footprint but large structure ones (Figure 4).

Table 7. Values (mean ± SD) of the Structure Index (SI), the Enrichment Index (EI), the structure footprint (SF), and the
enrichment footprint (EF) in two types of soil and three soil treatments (control, mineral and organic (bio-stabilized MSW
amendment)). The F-values and the significance of the effects (*** p < 0.01; ** p < 0.05) of type of soil and soil treatments
are indicated.

Clay Sand Soil Treat Soil x Treat

Control Mineral Organic Control Mineral Organic F p F p F p

SI 0.00 7.73 3.46 65.58 17.47 18.22 15.40 *** 6.46 **
±0.00 ±3.08 ±3.48 ±9.03 ±15.94 ±19.86

EI 34.86 36.08 27.47 31.20 45.98 48.48 9.56 *** 6.91 **
±2.12 ±4.50 ±8.81 ±5.09 ±1.29 ±1.64

SF 0.00 35.03 33.00 123.88 57.56 51.05 7.17 ** 5.29 **
±0.00 ±16.35 ±34.84 ±67.84 ±63.35 ±22.60

EF 169.69 139.89 244.14 14.83 108.50 241.12 16.96 *** 12.31 *** 9.11 ***
±40.61 ±64.89 ±15.61 ±2.98 ±23.92 ±179.51
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4. Conclusions

This research aimed to evaluate the valorization of a bio-stabilized MSW amendment
for the production of the faba bean crop. The valorization of this organic amendment
reduces solid waste accumulation in the environment, and provides a source of organic
agricultural fertilizer. Results obtained in this study revealed the potential use of the bio-
stabilized MSW amendment to achieve the same faba bean biomass production, growth,
and seed yield as with mineral fertilization in the sandy and clay soils. In addition, the
application of the bio-stabilized MSW amendment was found to significantly increase the
seed quality in terms of nitrogen and protein content, and favor Mn and Zn accumulation
in seeds. Moreover, the application of this bio-stabilized MSW amendment showed positive
effects on soil properties. The findings from this investigation showed that the organic
fertilization with the bio-stabilized MSW amendment was more effective than the mineral
fertilization in increasing soil’s organic carbon, and achieved the same nitrogen content
for sandy and clay soils as the mineral treatments. As heavy metals accumulation in the
bio-stabilized MSW amendment treatments did not exceed the regulated limits, results
indicate it can be used in short-term fertilizations. Additionally, to improve faba bean and
soil properties, the bio-stabilized MSW amendment improved the nematode community.
This organic fertilizer increased the enrichment footprint in both types of soil, sandy and
clay soils, while the application of mineral fertilizers only enhanced such function in sandy
soils. This study highlighted the potential use of the bio-stabilized MSW amendment as
organic fertilizer for agriculture, such as faba bean cultivation, as an alternative to the use
of chemical fertilizers. Substituting or combining mineral fertilizers with organic fertilizers,
such as this bio-stabilized MSW amendment, promotes a circular economy, and a more
environmentally sustainable fertilization, while guaranteeing food security.
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52. Reyhan, K.; Topal, N.; Bozoğlu, H. Bakla (Vicia faba L.)’da Farklı Ekim Sıklıklarının Yaprak Alanı ve Verim Unsurlarına Etkisi.
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