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Abstract: Accurate fruit segmentation in images is the prerequisite and key step for precision
agriculture. In this article, aiming at the segmentation of grape cluster with different varieties,
3 state-of-the-art semantic segmentation networks, i.e., Fully Convolutional Network (FCN), U-
Net, and DeepLabv3+ applied on six different datasets were studied. We investigated: (1) the
segmentation performance difference of the 3 studied networks; (2) The impact of different input
representations on segmentation performance; (3) The effect of image enhancement method to
improve the poor illumination of images and further improve the segmentation performance; (4) The
impact of the distance between grape clusters and camera on segmentation performance. The
experiment results show that compared with FCN and U-Net the DeepLabv3+ combined with
transfer learning is more suitable for the task with an intersection over union (IoU) of 84.26%. Five
different input representations, namely RGB, HSV, L*a*b, HHH, and YCrCb obtained different IoU,
ranging from 81.5% to 88.44%. Among them, the L*a*b got the highest IoU. Besides, the adopted
Histogram Equalization (HE) image enhancement method could improve the model’s robustness
against poor illumination conditions. Through the HE preprocessing, the IoU of the enhanced dataset
increased by 3.88%, from 84.26% to 88.14%. The distance between the target and camera also affects
the segmentation performance, no matter in which dataset, the closer the distance, the better the
segmentation performance was. In a word, the conclusion of this research provides some meaningful
suggestions for the study of grape or other fruit segmentation.

Keywords: precision agriculture; deep learning; semantic segmentation; grape segmentation

1. Introduction

Grapes are one of the most favorite fruits in the world. The grape industry of China
has the characteristics of a wide planting area, high yield, and large demand for freshness.
Statistics show that China’s table grape production has steadily ranked the first in the world
since 2011. By 2016, the area of viticulture has also become the world’s first, with a total
table grape production of 9 million tons, accounting for 50% of the world’s production [1].

Usually, the harvested grapes are used for winemaking or fresh food. For grapes
used for winemaking, there is no need to consider the shedding of grape berries and the
damage to the clusters during the picking process, which is more suitable for non-selective
mechanized picking methods. Among them, the most mature application is to use the
principle of vibration to transmit vibration to the grape berries through the vines, so that
the berries can undergo multiple instantaneous changes in direction and overcome the
connection with the fruit stem to achieve separation [2,3]. For the picking of table grapes, it
is necessary to consider that there may be fruit loss and berries damaged during the picking
process while completing the harvest of all mature grapes in the vineyard. Therefore, the
large-scale non-selective mechanical picking method is not suitable for the harvest of
table grapes. Usually, the harvesting of table grapes is often done manually, which is a
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labor-intensive and time-consuming work [4]. However, the shortage of labor, the aging
of the population, and the declining birthrate are not only the bottleneck encountered in
the development of agriculture but also one of the difficulties faced by the development
of all labor-intensive industries in the world. With the development of robot technology,
the best strategy to solve this problem is to use robots instead of farmers to harvest table
grapes manually.

For harvesting robots, fast accurate identification and positioning of the target fruit is
the prerequisite and key technical step for successfully picking the fruit. Machine vision is
one of the most effective methods and has been investigated extensively for fruit detection.
In recent decades, many scholars from all over the world have proposed a large number
of detection algorithms for different types of fruits, such as citrus [5,6], apples [7,8], and
kiwifruit [9,10], and achieved remarkable results.

At present, the research on grape recognition mainly focuses on two aspects: (1) to
classify and identify the grape varieties; (2) to segment and locate the grape in the image. EI-
Mashharawi et al. [11] carried out the research on grape variety recognition, and a machine
learning-based method was proposed by them. A total of 6 varieties (each variety has
different colors: black, crimson, yellow, dark blue, green, and pink), 4565 images (70% of
the image for training and 30% for validation) were used for the AlexNet network. In order
to reduce the degree of overfitting, image preprocessing technology and data enlargement
technology were used. Finally, the trained model could achieve 100% accuracy for the
classification of grape varieties. Bogdan Franczyk et al. [12] developed a model which is
a combination of deep learning ResNet classifier model with multi-layer perceptron for
grape varieties identification. A well-known benchmark dataset named WGISD which
provided the instances from five different grape varieties taken from the field was used for
training and testing on the developed model. The test results showed that the classification
accuracy of the model for different grape varieties can reach 99%. M. Türkoğlu et al. [13]
proposed a multi-class support vector machine classifier based on 9 different characteristics
of grape leaves with a classification accuracy of 90.7% to classify grape tree species. In
order to improve the classification performance, the preprocessing stage involves gray tone
dial, median filtering, threshold holding, and morphological logical processes.

Compared with the identification of grape varieties, the accurate segmentation of
grape clusters has also attracted the attention of many scholars and has been widely studied.
Zernike moments and color information were applied by Chamelat et al. [14] to develop
an SVM classifier for detecting red grapes successfully but got a disappointing result
for white grapes with less than 50% of correct classification. Reis et al. [15] proposed a
system for detecting bunches of grapes in color images, which could achieve 97% and
91% correct classifications for red and white grapes, respectively. The system mainly
includes the following three steps to realize the detecting and locating of grape: color
mapping, morphological dilation, black areas, and stem detection. In [16] a detector named
DeepGrapes was proposed to detect white grapes for low-resolution color photos. In
order to greatly reduce the final number of weights of the detector, weave layers were
used to replace the generally used combined layers in the classifier. The detector could
reach an accuracy of 96.53% on the dataset created by the author. Liu et al. [17] proposed
an algorithm that utilized color and texture information as the feature to train an SVM
classifier. The algorithm mainly includes three steps: image preprocessing, SVM classifier
training, and image segmentation in the test set. Image preprocessing includes Otsu
threshold segmentation, denoising, shape filtering, and further methods, which are not
only used for the training set but also applied to the test set images. Experiments results
demonstrate that the classifier could reach an accuracy of 88% and recall of 91.6% on two
red grape datasets (Shiraz and Cabernet Sauvignon). In 2015, a Fuzzy C-Means Clustering
method with an accuracy of 90.33% was proposed by [18]. The H-channel of the HSV image
is clustered by the Fuzzy C-Means Clustering algorithm to segment grape objects. The
initial clustering center of the Fuzzy C-Means Clustering was optimized by the artificial
bee colony algorithm to accelerate clustering speed and reduce iteration steps. In the



Agriculture 2021, 11, 997 3 of 16

next year, another paper by the same research team applied the AdaBoost framework
to construct four weaker classifiers into a strong classifier to significantly improve the
detection performance. In the test stage, after the test image was processed by the classifier,
the region threshold method and morphology filtering were used to eliminate noise, and
the final average detection accuracy was 96.56%.

As mentioned above, significant progress has been made in the research related to the
identification of grape varieties and the segmentation of the grape cluster. However, for a
grape picking robot, its work scenario is often as: the farmer places it in a vineyard, and
then the robot picks the grapes in the area by itself. Generally, grape varieties in a single
region are often the same, and varieties in different regions may be different. Therefore, if
the vision system of the robot could work like human eyes, then it could segment grape
clusters easily no matter what varieties (with different colors or shapes) it is. Consequently,
the robot operator does not need to switch different recognition algorithms for different
varieties of grapes, which will greatly enhance the robot’s intelligence and simplify its use.
However, it is a pity that there is no relevant research on the above-mentioned issues has
been found.

Faced with such a thorny problem that an algorithm could segment the cluster region
of different varieties of grapes. Generally, two methods are mainly considered, i.e., conven-
tional methods and deep learning-related methods. Conventional procedures for machine
vision usually include image pre-processing, segmentation, feature extraction, and classifi-
cation. The selection of handcrafted features has a crucial impact on the performance of
conventional methods. However, handcrafted features are usually extracted from color,
shape, spectrum, and texture which may be influenced by varying lighting conditions,
occlusion or overlapping, and different growth stages of plants. The unstable handcrafted
features may lead to poor robustness and low generalization capabilities of conventional
methods. To be more important, there are hundreds of different varieties of grapes and
usually have different colors, shapes, and textures. It is almost impossible to extract ideal
handcrafted features based on color, shape, and texture to segment cluster accurately with
different grapes varieties. Besides, the extraction of handcrafted features for so many differ-
ent varieties of grapes is time-consuming work. Therefore, it seems that the conventional
methods are not suited for the segmentation of grapes with different varieties.

Compared with conventional machine learning methods, deep learning can automati-
cally learn the hierarchical features expressed hidden deep into the images, avoiding the
tedious procedures to extract and optimize handcrafted features [19,20]. Deep learning has
been investigated extensively for image processing and applied in agriculture. Networks
such as AlexNet and Inception (GoogLeNet) are often used for classification applications
such as plant diseases and fruit varieties. Networks such as Mask R-CNN and YOLO are
mainly used for target detection and have achieved good effect in the detection applications
of mango [21,22], strawberry [23], and apple [24]. Compared with classification and target
detection, semantic segmentation can achieve pixel-level segmentation of targets, which is
more suitable for our research goals. Commonly used semantic segmentation networks
include the DeepLab series, U-Net, FCN, etc.

Given that the deep learning networks could extract and make use of hierarchical
features. Moreover, some mature deep learning models could achieve pixel-level segmen-
tation. Therefore, in this article, we will study the effect of pixel-level segmentation of
different grape varieties by using 3 state-of-the-art semantic segmentation models and the
factors that affect the performance. Specifically, (1) According to the constructed dataset
(with different grape varieties), the segmentation performance was compared and ana-
lyzed with 3 art-of-the-state semantic segment models, i.e., FCN, U-Net, and DeepLabv3+;
(2) Different input representations including different color space transformations and a
constructed input representation, were compared to analyze the effect of input represen-
tations on the performance of the adopted network; (3) Model robustness with respect to
lighting conditions was improved by image enhancement; (4) The influence of the distance
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between grapes clusters and camera on segmentation performance was also analyzed
and discussed.

The remainder of this article is structured as follows. We start with a description of
the materials and methods of the experiments in Section 2. In Section 3, experiment results
with a detailed discussion about the experiment are given. Finally, the conclusions and
future work are presented in Section 4.

2. Materials and Methods
2.1. Image Dataset

For the purpose of this research, a dataset of 300 images with different varieties of
grapes was collected and established. All the images were captured by a Nikon (Tokyo,
Japan) Coolpix S 4200 digital camera with the resolution of 4608 × 3456 pixels in 2019. The
distribution of grape characteristics in the dataset is shown in Table 1. In terms of color,
there are red, green, purple, and black. Additionally, their shapes are also different both
spherical grapes and non-spherical grapes are included. In addition, some of the images
were captured in good lighting conditions while another part was captured in poor lighting
conditions, resulting in poor brightness and contrast of the images. All the captured images
were adjusted to the size of 224 × 224, then Photoshop CS6 was used to label the grape
clusters in the image, which is exhaustive and time-consuming work. In the experiment,
the dataset was split into 70:30 for training and testing. The detailed number of each kind
of grapes used for training and testing was also listed in Table 1.

Table 1. Distribution of grape characteristics in dataset.

Characteristics Attribute
Value

Number of
Images

Number of Images for
Training

Number of Images for
Testing

Color

Red 22 16 6
Green 29 20 9
Purple 54 38 16
Black 195 136 59

Shape Spherical 290 203 87
Non-spherical 10 7 3

2.2. Image Preprocessing

The generalization ability of the model could be improved by aligning the data distri-
bution of datasets (training set and test set) and improving image quality [19]. Therefore,
two kinds of image preprocessing technology were adopted to the datasets: image en-
hancement and input image representation transformation. The illumination condition
has a great influence on the robustness of the classification model. In practical application,
there is a big difference in the light intensity of different grape clusters on the same column
vine even at the same time due to the occlusion of branches, leaves, and other obstacles.
Therefore, this study will investigate the effect of the image enhancement method to im-
prove image contrast on the model segmentation effect. For the input of the deep network,
in [25] 14 different input representations were deployed to improve the performance of the
classification model. Additionally, in [26], different input representations were adopted to
reduce the amounts of images for training. Table 2 lists the preprocessed datasets which
would be evaluated in this paper.

Table 2. Different dataset types generated by image preprocessing.

Preprocessing Method Dataset Number of Images

Image Enhancement HE-RGB 300

Input representations
transformation

L*a*b 300
HSV 300

YCrCb 300
HHH 300
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2.2.1. Image Enhancement

Some images in the datasets have low contrast and brightness. To study the impact of
this situation on the robustness of the model classification effect, one image enhancement
method-Histogram Equalization (HE) was applied to the images. The principle and
implementation steps of the histogram equalization (HE) method are to be found in [27]. It
is an effective method to adjust image intensity to enhance contrast. For the gray image, the
gray value histogram of the new image is similar to the uniform histogram by rearranging
the gray value. However, for multi-channel color images, if the same technology is used in
each channel, the unequal offset will be produced on each channel, which will eventually
lead to the change of pixel hue. In this paper, in order to solve the problem, firstly, the
RGB image is converted into the HSI image, then, histogram equalization was used only in
I channel, and then the balanced HSI image was transferred back to the RGB image.

2.2.2. Input Representations Transformation

To evaluate the effect of different input representations on the segmentation perfor-
mance, several common image representation models (RGB, L*a*b*, HSV, HHH, YCrCb)
and a constructed representation (HHH) model were examined. RGB is the most common
color model, and the image source collected by a camera is usually represented by the
RGB model. L*a*b* can provide a wider range of colors as compared to RGB, and YCrCb
is a common representation in video compression and digital image processing, which is
commonly used in face detection. In the research of [17,28], the image is first converted
to the HSV space and then the identification operations are processed on the HSV image.
This is because the difference between the background and the grape cluster is significantly
obvious in this color space. The HHH model was formed by the superposition and combi-
nation of H-channel in HSV. This is due to the fact that only H-channel is used to process
and detect grape clusters in [18], and a good segmentation effect is achieved. Therefore,
we hope to study the effect of images containing only Hue component on the model’s
segmentation performance.

2.3. Semantic Segmentation Network

In this study, 3 state-of-the-art semantic segmentation networks, i.e., DeepLabv3+,
FCN, and U-Net were investigated. DeepLab is a series of networks, in which DeepLabv3+
was developed based on DeepLabv1. Compared to the DeepLabv1, DeepLabv2, and
DeepLabv3, DeepLabv3+ [29] has a better segmentation performance (the architecture of
DeepLabv3+ as shown in Figure 1). The effectiveness of this network has been tested on
the benchmarks of Pascal VOC 2012 and Cityscapes datasets with an accuracy of 89.0%
and 82.1% respectively without any pre-processing and post-processing. DeepLabv3+ is
consists of two parts, i.e., encoder module and decoder module. For the encoder module,
the input image first passes through the atrous convolution which is a powerful tool that
allows extracting the features computed by deep convolutional neural networks at an
arbitrary resolution. Also, the atrous convolution greatly reduces the complexity and
obtain similar (or better) performance. A simple yet effective decoder concatenated the
low-level features from the network backbone with the upsample encoder features, then
several 3 × 3 convolutions and upsampling by a factor of 4 were applied to refine the
segmentation results along object boundaries.

The Fully Convolutional Networks (FCN) [30], as shown in Figure 2, was proposed
by Long et al. The main innovation of FCN is replacing Fully Connected layers of the CNN
model with the Convolution layers to achieve image semantic segmentation (pixel-level
classification). The commonly used CNN networks such as VGG, ResNet, and AlexNet
could be used as the “basis network” to construct a FCN model. Literature [31] shows that
based on VGG16, replace the Fully Connected layers with 1 × 1 Convolution layers, and
the FCN-8s structure was adopted in Deconvolution stage, which could obtain a relative
better segmentation performance. Then, in this study, the VGG16-based FCN network
was adopted.
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U-Net [32] is an end-to-end semantic segmentation network initially proposed for the
segmentation of neuronal structures. The architecture of U-Net is as shown in Figure 3,
which like the alphabet of “U”. The U-Net consists of two paths, i.e., contracting path and
expansive path. The contracting path lead a downsampling to the input image while the
expansive path makes upsampling operation. Compared with other networks, by applying
the overlap-tile strategy, U-Net could achieve seamless segmentation of arbitrarily larger
images of with small dataset (<30 images).
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2.4. Distance Calculation of Grapes Clusters

Generally, for the same object, the closer the distance is, the more pixels are occupied
in the image, and vice versa. Ignoring the difference brought by grapes varieties, namely,
some varieties have larger fruit berries, while others have smaller ones. In each image, a
grape without occlusion is selected for each bunch of grapes. After manual labeling, the
number of pixels was calculated by MATLAB, and the distance of the bunch of grapes is
judged based on this. There are totally three levels of each bunch of grapes: far, medium,
and near. If the grape berry size is more than 200 pixels, the cluster distance is considered
as “near”, if less than 30, it is judged as “far”, or between 30 and 200, as “medium”. Since
some pictures contain multiple clusters of grapes, all images are divided into four levels:
far, medium, near, far-near. Far means that all the clusters in the image are far away, which
is the same for “medium” and “near”. In addition, “far-near” means the grape clusters in
the image, some of which are in the “far” distance, and some of which are in the “medium”
or “near” distance. The distance distribution of the dataset is shown in Table 3.

Table 3. Distance distribution of the dataset.

Distance Number of Images

far 39
medium 76

near 108
far-near 77

2.5. Training the Deep Network with Transfer Learning

To train a deep learning model from scratch often requires a lot of labeled images and
is computationally expensive. In the field of deep learning, there are several well-known
public datasets, among them, MS COCO contains about 330,000 images, Pascal VOC 2012
contains about 11,530 images, while ImageNet has more than 14 million images. Therefore,
in this work, it is almost impossible to train the model from scratch and obtain good
performance only through hundreds of images. To solve the above issue, the strategy of
transfer learning was adopted [30].

Figure 4 shows the idea for implementing transfer learning. The so-called transfer
learning is to use the knowledge gained in other fields to solve new problems. Then, we
can obtain a better segmentation accuracy with only a small dataset. In order to realize the
transfer learning of the DeepLabv3+, the network was trained on the basis of a pre-trained
model on Pascal VOC 2012. Furthermore, the parameters of encoder module were frozen,
and our own datasets was applied to adjust the remaining parameters.

Agriculture 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

Large 
Public Dataset

Ground
Truth

Parameters-
Preserved

Part

Other Part of
the Network

Semantic 
Segemtation Network

Semantic 
Segemtation Network

Parameters-
Preserved

Part

Other Part of
the Network

Transfer Learning

 
Figure 4. Network training with transfer learning strategy. 

In addition, since the contracting path of the U-Net is mainly response for low-level 
features-learning, which could use the transfer learning strategy to obtain the parameters. 
Hence, we pre-trained the network with ImageNet, and the parameters of contracting 
path were preserved, and then trained the network of our dataset to train the parameters 
of expansive path. Also, due to the VGG16 was adopted as the “basis network” of the 
FCN, then the parameters of the “basis network” were obtained by trained with 
ImageNet, and the remaining parameters were fine-tuned by our dataset. 

2.6. Experiment Platform and Evaluation Metrics 
All the datasets were processed on a computer with Intel i7 CPU, NVIDIA 1060 

graphics card (6G), and 8G memory. Photoshop CS6 software (San Jose, CA, USA) was used 
for ground-truth labeling, and MATLAB (version: r2016a, Netik, MA, USA) for image en-
hancement, distance calculation of grapes clusters, and transformation between different 
representations. The training and testing of the datasets were completed by using an Intel 
i7 CPU (256 GB RAM) and NVIDIA gtx1080ti GPU (88 GB GPU memory) workstation. 

In this work, the pixels were classified into grapes cluster and background. In order 
to evaluate the performance of the model, intersection over union (IoU), precision and 
recall, which are important and widely used index has been applied to evaluate the per-
formance of model. The equations are as follows:  

TPIoU = ,
FP+TP+FN

 (1) 

,TPPrecison =
TP+ FP

 (2) 

,TPRecall =
TP+ FN

 (3) 

where TP is true positive, FP is false positive, and FN is false negative. 
  

Figure 4. Network training with transfer learning strategy.



Agriculture 2021, 11, 997 8 of 16

In addition, since the contracting path of the U-Net is mainly response for low-level
features-learning, which could use the transfer learning strategy to obtain the parameters.
Hence, we pre-trained the network with ImageNet, and the parameters of contracting path
were preserved, and then trained the network of our dataset to train the parameters of
expansive path. Also, due to the VGG16 was adopted as the “basis network” of the FCN,
then the parameters of the “basis network” were obtained by trained with ImageNet, and
the remaining parameters were fine-tuned by our dataset.

2.6. Experiment Platform and Evaluation Metrics

All the datasets were processed on a computer with Intel i7 CPU, NVIDIA 1060 graph-
ics card (6G), and 8G memory. Photoshop CS6 software (San Jose, CA, USA) was used
for ground-truth labeling, and MATLAB (version: r2016a, Netik, MA, USA) for image
enhancement, distance calculation of grapes clusters, and transformation between different
representations. The training and testing of the datasets were completed by using an Intel
i7 CPU (256 GB RAM) and NVIDIA gtx1080ti GPU (88 GB GPU memory) workstation.

In this work, the pixels were classified into grapes cluster and background. In order to
evaluate the performance of the model, intersection over union (IoU), precision and recall,
which are important and widely used index has been applied to evaluate the performance
of model. The equations are as follows:

IoU =
TP

FP + TP + FN
, (1)

Precison =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

where TP is true positive, FP is false positive, and FN is false negative.

3. Results and Discussion
3.1. Image Preprocessing

Figure 5 shows the visual effect of images in datasets of different grapes varieties
represented as RGB, HSV, HHH, L*a*b*, and YCrCb. Additionally, Figure 6 shows the
visual effect of some images in the datasets enhanced by the HE method. The upper parts
of Figure 6 are the raw RGB images and the lower parts are the enhanced images. Some of
the raw images themselves have strong brightness and contrast, as shown in Figure 6a1,a2.
Therefore, the brightness and contrast of the images do not change significantly. Whiling
the brightness and contrast of (c1) and (d1) are insufficient, and significantly improved by
HE enhancement as shown in Figure 6. However, the color of the images looks distorted
and unnatural. This may be due to the irreducible singularity of the transformation
between RGB and HSI space, and the fact that in this work HE was only implemented on
the intensity channel.
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3.2. The Segmentation Performance of Different Networks

Table 4 shows the results obtained by the evaluated networks with the RGB dataset.
The IoU of U-Net, FCN, and DeepLabv3+ were 77.53%, 75.61, and 84.26%, respectively. The
DeepLabv3+ obtained the best performance compared with U-Net, and FCN, with an IoU
higher with 6.73% and 8.65%, respectively. In addition, the precision and recall show the
same rule, that is DeepLabv3+ > U-Net > FCN. It could observe that the precision and recall
of each model are larger than IoU, this is because the numerator for calculating these metrics
is the same, but the denominator for calculating IoU requires an extra FP of FN. Although
none of the IoU exceeded 85%, which does not seem to be an ideal result. However, there are
significant differences in the grapes varieties contained in our dataset. As shown in Table 1,
from the color perspective, there are purple, green, red, etc., also the shapes are different,
such as spherical and non-spherical shapes, and the background also varies greatly. If
conventional methods are used for, whether it is clustering-, threshold segmentation-, and
even machine learning-related methods, it is almost impossible to implement an algorithm
that can obtain such an IoU. This is because no matter which conventional method is used,
the selection of manual features such as colors, textures, or shapes is inevitable. However,
there are obvious differences of these features between different varieties of grapes in the
dataset. The performance obtained in our experiment indicate the deep learning related
method shows huge potential for grape cluster segmentation especially for grapes with
different varieties.

Table 4. The segmentation performance of different networks.

Network Dataset Type IoU (%) Precision (%) Recall (%)

U-Net
RGB

77.53 87.73 86.94
FCN 75.61 83.54 81.12

DeepLabv3+ 84.26 93.78 89.25

In addition, the results indicate that for the segmentation of grape clusters of different
varieties DeepLabv3+ seems more suitable, due to the fact that the DeepLabv3+ could obtain
the best segmentation result in our experiment. Moreover, [33,34] also obtained the best per-
formance in the their respective applications by DeepLabv3+. Hence, in the following sections,
only the Deeplabv3+ would be considered to evaluation the effect of image enhancement,
different representations, and target distance on the segmentation performance.

3.3. The Effect of Different Input Representations

Table 5 shows the segmentation IoU, precision, and recall of DeepLabev3+ model
with different representations. Additionally, the visualization of pixel-wise segmentation
results of different datasets could be observed in Figure 7. The IoU of different datasets
varied from 81.50% to 88.44%. The L*a*b obtained the best performance (88.44%), while
the HHH got the worst (81.50%) IoU. Furthermore, from the view of precision and recall,
the L*a*b also could achieve outperform performance, which indicate that compared with
the representations of RGB, HSV, and YCrCb that the representation of L*a*b is more
suitable for the segmentation of grapes. Although RGB is the most commonly used image
representations style, it is not always the best choice for image segmentation. In specific
applications, we can also improve the segmentation performance by exploring and selecting
the best input representation, rather than blindly modifying the architecture of the network.

Table 5. Performance of different input representations.

No. Representations IoU (%) Precision (%) Recall (%)

1 RGB 84.26 93.78 89.25
2 HSV 86.31 94.31 91.05
3 L*a*b* 88.44 95.61 92.46
4 HHH 81.50 93.14 87.00
5 YCrCb 87.95 95.52 91.72
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In addition, both works of literature [17] and [28] adopt HSV images to realize the
segmentation of grapes cluster. The test results show that the model trained with the HSV
input representation has a IoU of 86.31% on the corresponding test set, which is 2.05%
higher than the IoU obtained by using the RGB input representation. Further analysis
found that the model trained with the HSV input representation on the corresponding
88 test sets, compared with the RGB input representation, the performance of 72 images
has been improved, accounting for 81.8%, of which the performance of 28 images is
obtained significant improvement (IoU improved by more than 5%), accounting for 31.8%,
Which indicate that the HSV color model does indeed has a positive effect to improve the
segmentation performance.

Furthermore, since [35] only adopt the characteristics of the large difference between
the cluster and background in the H channel to obtain the grapes cluster area. For this
reason, the experiment tried to construct a new input representation-HHH for model
training and testing. Although the precision dropped slightly, the IoU and recall dropped
from 86.31% and 91.05 of HSV input representation to 81.50% and 87.00% by a large margin.
This seems to show that for grape segmentation, although the separate processing of H
component is more suitable for conventional image processing methods. When using deep
learning, the absence of S and V components makes the model lose more opportunities for
feature learning which lead a degradation of the network performance.

Therefore, in practical applications, it is not recommended to use the HHH model as
an input representation method for the segmentation of grape clusters. Also, it does not
recommend that training various types of deep models using this strategy that uses the
same channel to construct a multi-channel input representation. We should try to train the
network with richer information and features rather than reducing the amount of input
information. The information other than color, such as NIR, depth, or spectrum, could be
adopted to further improve the performance of the model [10,36].

3.4. The Effect of Image Enhancement

Table 6 shows the segmentation performance of DeepLabev3+ model with RGB and
HE-RGB. Also, the visualization of pixel-wise segmentation results could also be observed
in Figure 7. All the three metrics of the enhanced dataset have been improved, the IoU,
precision, and recall are improved by 3.88%, 1.38%, and 3.03%, respectively.

Table 6. The effect of image enhancement.

No. Enhancement Representation IoU (%) Precision (%) Recall (%)

1 - RGB 84.26 93.78 89.25
2 HE RGB 88.14 95.16 92.28
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Specifically, the IoU of 82 images (total 88) processed with HE enhancement was higher
than that without HE enhancement, the ratio was about 93.2%. For those samples whose
contrast were not significant due to poor lighting conditions, after the HE enhancement,
IoU has been significantly improved (IoU increased by 5%). Although the IoU of 6 images
has decreased after HE enhancement, the decrease is small. It can be seen from Figure 8,
that the maximum decrease is 6.2% (No.47 sample in test datasets), and the others are
within 2.5%. The results indicate that the HE image enhancement method could effectively
improve the segmentation ability of the model. In addition, in [25], the image enhancement
method was used for two datasets (one with better lighting conditions and the other with
worse lighting conditions). The results showed that the segmentation performance of the
dataset with poor lighting conditions was significantly improved. Moreover, although
the segmentation performance of the dataset with better lighting conditions has not been
significantly improved, there is no negative effect.
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To sum up, we suggest that when using deep learning related methods for image
segmentation, the image enhancement preprocessing should be considered, although this
does not guarantee that the performance can be improved, there will be no negative effect.
What we need to pay attention to is in addition to HE, image enhancement methods
commonly used include deep photo encoder, Laplacian-based methods, and logarithmic
Log transform methods. These required to carry out further research to ascertain its
actual effect.

3.5. The Effect of Different Distance

The performance of samples at different distances in each dataset were as shown in
Table 7. It can be observed that there is a certain relationship between the grapes cluster
distance in the image and the segmentation performance of the model, that is, the closer
the distance, the better the segmentation performance. This is in line with our intuition.
After all, the closer the distance, the clearer the target and easier for feature extraction. On
the contrary, the farther the distance, the smaller the target. The more fuzzy the features
were, the more difficult the extraction and recognition were. Especially for grapes in trellis
cultivation mode, if the camera places in the horizontal direction to capture the image,
then a large number of distant grapes will inevitably appear in the camera’s field of view.
These grapes are often outside the working range of the robot end effector. The existence of
such grapes clusters not only affects the model segmentation performance but also has no
practical application value even if it can be accurately detected and segmented. Therefore,
if such distant and small grapes can be removed, not only the segmentation ability of
the model can be improved, but also improve the processing speed of the network by
reducing the number of pixels to be processed. Nowadays, the commercial RGBD cameras,
such as Intel’s RealSense and Asus’s Kinect have the ability to obtain target distances
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with high precision and widely used in many studies [34,35]. It is believed that with
distance threshold segmentation of the collected images, those objects that are far, small,
and not in the working range of the robot arm are removed, and then fed into the model
for recognition. Through such preprocessing, the segmentation performance of the model
can be improved.

Table 7. The performance of samples at different distances in each testing dataset.

Dataset Distance IoU (%) Precision (%) Recall (%)

RGB

far 64.0 84.2 72.6
medium 80.5 89.9 88.5

near 88.3 96.0 91.71
far-near 83.2 93.2 88.5

HSV

far 62.4 83.5 71.1
medium 84.1 91.7 91.0

near 90.2 96.0 93.7
far-near 85.6 94.2 90.3

L*a*b*

far 70.0 86.2 78.8
medium 85.7 92.1 92.5

near 92.2 96.8 95.0
far-near 87.0 95.6 90.68

YCrCb

far 66.9 87.1 74.3
medium 85.9 92.8 92.0

near 91.6 96.1 94.3
far-near 86.9 95.5 90.6

RGB-HE

far 69.1 85.9 77.9
medium 84.6 92.2 91.1

near 91.7 96.8 94.5
far-near 87.6 95.1 91.6

3.6. Identification Performance of Different Grape Varieties

As the dataset contains different varieties of grapes, the segmentation performance of
different varieties of grapes under different conditions is also worthy of attention. Table 8
shows the performance of different varieties of grapes on each dataset. As the differences
of grapes in the datasets are mainly reflected in the color differences, then in this section,
only the performance differences of different colors of grapes are discussed.

Table 8. The performance of different grape varieties on different datasets.

Grape
Varieties Metrics RGB HSV L*a*b YCrCb RGB-HE HHH

Black
IoU (%) 85.9 87.7 90.1 89.5 90.0 85.2

Precision (%) 95.2 95.8 96.7 96.6 96.6 95.0
Recall (%) 89.8 91.2 93.0 92.4 92.1 89.1

Purple
IoU (%) 83.6 86.6 87.1 86.7 88.0 81.9

Precision (%) 92.5 93.1 93.7 93.9 93.3 90.3
Recall (%) 89.7 92.5 92.5 91.8 93.8 89.7

Green
IoU (%) 79.5 79.5 84.9 84.7 83.8 66.1

Precision (%) 91.2 90.3 93.6 94.6 93.9 93.5
Recall (%) 86.1 86.9 90.1 88.9 88.6 69.3

Red
IoU (%) 83 86.1 88.3 87.7 88.0 81.2

Precision (%) 93.5 96.2 95.8 96.1 95.7 92.6
Recall (%) 88.0 89.1 91.7 90.9 91.6 86.8

It could be observed that the black grapes always achieve the best performance on
any dataset, while the green grapes always obtain the worst performance. For the black
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grapes, the best performance was obtained on the L*a*b dataset with IoU, precision, and
recall of 90.1%, 96.7%, and 93.0%, respectively. From Table 1, we can see that the training
dataset contains the most black grapes and the least green grapes, which is the reason
for their performance difference. Therefore, we believe that in practical application, the
performance could be improved by enlarge the dataset, and this is the most direct and
effective method.

3.7. Runtime

Based on the pre-trained model, the training time for every dataset for 40,000 iterations
was about 3 h on the workstation mentioned in 2.6. When the trained model was used
for pixel-wise segmentation of grapes image, the processing time of each image is shown
in Table 9. The processing time for every classifier was different, varied from 29 ms to
68 ms. The most time-consuming classifier is HE plus DeepLabv3+, which cost 68 ms to
process a 224 × 224 image. Of course, the higher the image pixel, the more processing
time it takes. In actual production, the resolution of images captured by the vision sensor
of the harvesting robot is often much greater than 224 × 224, which will consume more
time. When the system is strict with the segmentation time, the captured images could be
downsampling and then input into the classifier.

Table 9. Run time of the classifiers.

Preprocessing Network Total

— DeepLabv3+ 60 ms
60

HE 8 ms 68
—

U-Net 38 ms
38

HE 8 ms 46
—

FCN 29 ms
29

HE 8 ms 37

4. Conclusions

In this research, for the semantic segmentation of different varieties of grapes, 3 state-
of-the-art semantic segmentation networks, i.e., Fully Convolutional Networks (FCN), U-
Net, and DeepLabv3+ applied to six different datasets were studied. The effect of different
semantic networks, different input representations, image enhancement, and the distance
between grape clusters and camera on the segmentation performance were evaluated.

The experiment results show that the invested semantic segmentation models com-
bined with transfer learning could identification grapes with different varieties and com-
pared with U-Net and FCN, the DeepLabv3+ is more suitable. In addition, different input
representations also affect the segmentation performance of the model, and the L*a*b
dataset could obtain a more satisfactory performance. However, in actual applications,
it is necessary to conduct in-depth research and select appropriate input representations
for different fruits. Furthermore, the application of image enhancement methods can
improve the influence of illumination, strengthen the contrast of the image, and have a
positive effect on the segmentation performance of the studied model. Last but not least,
the target distance also affects the performance of the studied model. Therefore, when
collecting images, the camera should be as close to the target as possible to improve the
segmentation performance.

In the future, we will deploy the model to a grape harvesting robot developed by
our team to realize grapes robotic harvesting in real agricultural environment. Besides,
the research on the performance improvement will continue, such as network architecture
modification or dataset enhancement, i.e., collect more images from different vineyards
with various condition, to further improve the identification performance.
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