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Abstract: This study evaluated productivity dynamics and identified sources of productivity growth
in Italian tomato production and processing. We used a stochastic frontier input distance function
with four error components—heterogeneity, statistical noise, persistent and transient inefficiency—
and a four-step estimation procedure with a system generalized method of moments (GMM) estimator
in the first step to address the endogeneity problem. The results reveal significant differences in the
productivity and efficiency of tomato production and processing. Moreover, there are considerable
differences among the different sizes of tomato producers, with the main variations observed for
scale efficiency. While tomato processors operate at an optimal production size, tomato producers
are characterized by considerable economies of scale, especially small producers. These results thus
suggest that there is significant opportunity for technical efficiency improvements at both stages of
the value chain. Finally, due to improvements made to scale efficiency, extensive productivity growth
was observed for the group of small tomato producers.

Keywords: total factor productivity; technical efficiency; dynamics; tomato; Italy

1. Introduction

Tomatoes represent one of the most important crops worldwide [1–4], and tomato
production has increased by 300% over the last four decades [5]. Being rich in antioxidants,
tomatoes have been recognized to have positive health benefits [3,6]. Today the market is
oriented to two types of cultivated tomato: those used for fresh consumption and those
used for industrial processing that are usually grown in field conditions [3]. European
tomato production, according to FAOSTAT (Statistics Division of the Food and Agriculture
Organization of the United Nations) data [7], steadily represents around 13% of global
tomato production. In 2020, almost 17 million tons of tomatoes were harvested in the
European Union [8,9]. The most important EU producer was Italy, contributing 38% to
the total EU production. Italy’s total national production in 2020 was 6.248 million tons,
cultivated on a surface of 100,000 hectares (ha) [8]. Almost 75% of Italian tomato production
is oriented towards processing and the rest for fresh consumption [8]. Moreover, Italian
tomato production is highly geographically concentrated, with two major production
regions: Emilia-Romagna in the north and Apulia in the south. These two regions alone
produced 35% and 32%, respectively, of the country’s processing tomatoes in 2018 [4].

The tomato processing sector is the basis of the Italian food economy. Italy, with a 13%
share in global tomato processing [10], is one of the world’s leading producers of processing
tomatoes, being the largest in the Mediterranean region and the third largest worldwide
after California and China [4,6,11,12]. Among Italy’s processed tomato production, mashed
tomatoes represent about 50% of packaged tomato volume [12]. The processed tomato
sector is also important for Italy’s international trade [9] since 60% of Italian production
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is exported to foreign markets [6]. With 747,000 tons of exported pasta tomatoes and
1.432 million tons of canned tomatoes, Italy is the leading exporter of tomato products [7].

In the last decade, the entire Italian tomato processing supply chain has experienced
profound restructuring triggered by the reform of the Common Market Organisation, which
has also been accompanied by increasingly fierce price competition in foreign markets [13].
To cope with aggressive trade policies focused on low production costs, Italian tomato
producers and processors need to improve their productivity and efficiency.

Productivity is commonly defined as the ability of production factors to produce
outputs [14] and is measured as the ratio of a volume measure of output to a volume
measure of input use [15]. Since it reflects the overall efficiency of production through its
capacity to transform inputs into outputs (both in terms of quantity and quality), it is often
used as an indicator of competitiveness [16]. Productivity can be measured at different
levels, as a partial measure or as a multifactor measure. The most comprehensive measure is
total factor productivity (TFP), which refers to the ratio of aggregated output to a composite
index of all inputs [17].

Productivity and, consequently, competitiveness can be increased in different ways.
One way to increase competitiveness is to reduce average costs per unit of output by captur-
ing economies of scale [18]. Cost advantages can also be obtained through capital-intensive
technological development, in other words, through innovations. Generally, technologi-
cal change, which refers to changes in production technologies either via improving the
existing methods of input use (disembodied technological change) or through changes to
input quality (embodied technological change) [19], increases productivity and reduces the
input costs per unit of product [20]. Finally, productivity can also be increased by reducing
technical ineffectiveness of the product transformation process.

Technical efficiency was originally defined by Koopmans in 1951 [21] as a situation
whereby an increase in any output is impossible without a reduction in at least one other
output or an increase in at least one input (output-oriented technical efficiency) and
whereby a reduction in any input requires an increase in at least one other input or a
reduction in at least one output (input-oriented technical efficiency). Measuring technical
efficiency presupposes the existence of a production boundary that reflects an efficient
input–output subset. The formulation of such a theoretical framework allows us to consider
technical efficiency as the distance from the point of the current input–output combination
to the boundary [22]. Empirically speaking, technical efficiency represents the deviation of
productive performance from best practices. This deviation is usually assigned to either
differential management capabilities or to the external environment in which a producer
operates [23]. Deeper insights into overall technical inefficiency is provided when it is
broken down into transient and persistent parts. The transient component of technical
inefficiency relates to non-systematic management problems, shocks associated with new
production technologies and changes in human capital [24]. The persistent component of
technical inefficiency is related to structural problems in the organization of the production
process or to systematic shortfalls in managerial capabilities [25].

Previous research has deeply analyzed the productivity and efficiency of agriculture
and food processing (focusing on tomato production, see, e.g., [26–40]). Employing differ-
ent analytical approaches, researchers in this area have used total factor productivity or
partial (particularly labor) productivity measures, as well as data envelopment analysis
(DEA) and stochastic frontier analysis (SFA), among others. As examples, we can highlight
Badenetti et al. [26] who investigated the technical efficiency of tomato production in Italy
using SFA; Khan and Ali [27] who employed SFA to investigate the time-invariant technical
efficiency of tomato producers in Pakistan; Ogunniyi and Oladejo [28] who estimated
the technical efficiency for tomato farmers in the Oyo State of Nigeria using DEA; Tabe-
Ojong and Molua [29] who estimated the time-invariant technical efficiency of small-scale
tomato production in Cameroon employing SFA and Adenuga et al. [33] who assessed the
time-varying technical efficiency of dry season tomato production in Nigeria using SFA.
A common feature of these studies is an overall focus on the one stage of production along
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the agri-food chain (e.g., production or processing) with a predominance of production-
level analysis. Moreover, these studies usually do not take into account both components
(transient and persistent) of technical efficiency, as they do not employ the most advanced
approaches to technical efficiency analysis that emphasize the importance of considering
latent heterogeneity in generating an unbiased estimate of time-invariant technical inef-
ficiency, as well as the possibility of efficiency improvements [41] that represent a source
of productivity growth [30]. However, unbiased estimates and comprehensive informa-
tion are necessary for policymakers to formulate relevant policy measures that support
the competitiveness of the agri-food value chain in an effective, efficient and economical
way [42,43].

In this study, we aimed to evaluate technical efficiency and productivity dynamics
and to identify sources that induce productivity change across the tomato vertical chain.
In particular, the study addresses the following: the impacts and dynamics of the overall
technical efficiency at individual stages along Italy’s tomato supply chain, the dynamics
of productivity and its drivers at individual stages of the tomato supply chain and the
diffusion effects and the identification of sources that induce productivity changes across
the tomato supply chain.

This study contributes to the literature in several ways. First, to the best of our
knowledge, despite the numerous previous productivity and efficiency studies, there is a
considerable gap of comprehensive research of the whole tomato value chain that identi-
fies the factors that determine successful growth while also capturing the simultaneous
relations within the supply chain. Second, it investigated the basic prerequisites of compet-
itiveness, that is technical and scale efficiency and technological change, thus employing
new methodological advances in productivity and efficiency analysis.

The rest of this paper is structured as follows: Section 2 introduces the datasets, economic
model and estimation strategy, followed by Section 3, which presents the results of this study.
Section 4 summarizes and discusses our findings and provides concluding remarks.

2. Materials and Methods

This study used two unbalanced panel datasets of Italian tomato producing and
processing companies. The first dataset was drawn from the Farm Accountancy Data Net-
work (FADN) database, which provides harmonized microeconomic data of agricultural
holdings. The following variables for tomato producers were obtained from this database:
tomato output (yC), defined as the tomato production in tonnes; other farm output (yAOC),
measured as the difference between the value of total crop output minus value of tomato
output plus value of total livestock and other output; capital (xC), represented by the sum
of contract work and capital depreciation; land (xL), expressed in hectares of farm Utilized
Agricultural Area (UAA); labor (xW), measured in annual work units (AWU) and materials
(xM), defined as total intermediate consumption. Monetary variables were deflated using
the price indices from the EUROSTAT database (2010 = 100; apri_pi10). More specifically,
index for crop output and agricultural goods output were used to deflate the output of
other crops and farm output variables. The price index for machinery and other equipment
was used to adjust the capital inputs, and the price index for goods and services currently
consumed in agriculture was employed to deflate materials.

Not all of the tomato producers in the FADN database have complete information;
thus, observations for those companies with negative and zero values of the variables
of interest were excluded from our dataset. Moreover, to ensure a sufficient number of
lagged instruments for the econometric model estimation, companies with less than five
consecutive years of observations were excluded as well. These procedures constrained
the panel dataset to 680 observations of 149 tomato producers in the analyzed period of
2004–2017.

The second dataset represents the tomato processing industry and was obtained from
the Amadeus database collected by Bureau van Dijk, a Moody’s Analytics company. For this
dataset, desk research was used to identify and select tomato processors from the processors
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in the NACE-C10.3 category (processing and preserving of fruit and vegetables). In other
words, the panel dataset used in our analysis contains companies whose main activity is
tomato food processing according to the NACE classification and further investigation of
each company’s website. After the removal of companies with incomplete information
and fewer than five observations to comply with the requirements of the econometric
model estimator, our panel dataset, representing the period from 2006 to 2018, contains
93 companies processing only tomatoes or mainly tomatoes.

At the processing level, we used the following variables: output (y), represented by
operating revenue (turnover) and changes in a company’s stock deflated by the sectoral
index of food processing prices (NACE 10.3; 2010 = 100); labor (xW), expressed by the cost
of employees deflated by the index of producer prices in the industry (2010 = 100); capital
(xC), expressed by the book value of fixed assets deflated by the index of producer prices in
the industry (2010 = 100) and materials (xM), represented by the total cost of materials and
energy deflated by the index of producer prices in the industry (2010 = 100). The source of
the price indexes was the EUROSTAT database (sts_ind_pric).

Table 1 presents the structure of the data subsets according to size. At the agricultural
level, the group of small tomato producers represents one-third of companies in the sample
with the lowest economic size, defined according to Regulation (EC) No. 1242/2008;
the group of large producers represents one-third of our sample with the highest economic
size, and the rest is the group of medium tomato producers. At the processing level, the
group of large tomato processors contains companies that employ at least 150 employees
and/or have total assets of at least EUR 20 million and/or have operating revenues of at
least EUR 10 million. Companies that do not meet these criteria were classified as small
and medium-sized.

Table 1. Structure of the datasets. Source: FADN and Amadeus.

Tomato Producers

Data Small Medium Large Total
I 45 54 50 149

NO 223 226 231 680

Tomato processors

Data Small and medium Large processors Total
I 47 46 93

NO 366 380 746
Note: I denotes the number of companies; NO denotes the number of observations.

This analysis applies the micro-level dynamic framework of the total factor productiv-
ity (TFP) defined as a ratio that relates the aggregation of all outputs to the aggregation
of all inputs [14]. To analyze productivity dynamics and its drivers, we employed the
Törnqvist–Theil index (TTI), which is defined as the ratio of the revenue-share weighted
geometric mean of individual outputs to the cost share weighted geometric mean of in-
dividual inputs [44]. The logarithmic form of TTI between period t and t−1 for the i-th
producer can be expressed as [45]:

ln

(
TFPit

TFPi(t−1)

)
=

1
2

M

∑
m=1

(
Rm,it + Rm,i(t−1)

)(
ln ym,it − ln ym,i(t−1)

)
− 1

2

J

∑
j=1

(
Sj,it + Sj,i(t−1)

)(
ln xj,it − ln xj,i(t−1)

)
, (1)

where Rm = pmym

∑M
m=1 pmym

denotes output revenue share of mth output (y); Sj =
wjxj

∑J
j=1 wjxj

denotes input cost share of jth input (x); p denotes an output price and w denotes an
input price.

In this study, we applied the extended version of the TTI index by Caves et al. [46],
which allows for transitive multilateral comparisons. The basic idea of this extension is
to measure deviations from the sample means in the construction of the index, which is
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then calculated as the sum of three components: scale effect (SE = ln ιit), technical efficiency
effect (TEC = ln υit) and technological change effect (TC = ln τit). These components can be
derived from a transformation function. In this study, we supposed that the transformation
process of tomato production and processing is well approximated by an input distance
function, (IDF): DI(y, x, t) = max{ρ : x/ρ ∈ L(y)}, which measures the largest factor of
proportionality ρ by which the input vector x can be scaled down in order to produce a
given output vector y with the technology existing at a particular time t (L(y) represents
the input requirement set) [46].

The IDF exhibits several properties. For any input–output combination (x,y) be-
longing to the technology set, the input distance function takes a value no smaller than
unity. A value of unity indicates that the input–output combination (x,y) belongs to the
input isoquant, which represents the minimum input quantities that are necessary to pro-
duce a given output vector y. In other words, the IDF provides a measure of technical
efficiency [46]: TE(y, x, t) = min

{
θ : DI(y, x, t) ≥ 1

}
, where θ = 1

ρ , which is in an input-
conserving orientation defined as the maximum equi-proportionate reduction in all inputs
that is feasible with a given technology and outputs [47].

As Shephard [48] proved, the input distance function is dual to the cost function:
C(w, y, t) = min

x

{
wx : DI(y, x, t) ≥ 1

}
, which allows a derivative of the IDF to be inter-

preted with respect to a particular jth input as the cost share of this j-input and the derivate
of the IDF with respect to mth output as the negative of the cost elasticity of m-output that
informs of the importance of mth output in terms of cost. Further properties of the IDF are
symmetry, monotonicity, linear homogeneity and concavity in inputs and quasi-concavity
in outputs [49].

Since the TTI exactly determines changes in productivity when the underlying pro-
duction technology is described using translog functional form [50], we specify the IDF for
M-outputs (y) and J-inputs (x) as:

ln DI
it = α0 +

M
∑

m=1
αm ln ym,it +

1
2

M
∑

m=1

N
∑

n=1
αmn ln ym,it ln yn,it +

M
∑

m=1

J
∑

j=1
γmj ln ym,it ln xj,it +

J
∑

j=1
β j ln xj,it

+ 1
2

J
∑

j=1

K
∑

k=1
β jk ln xj,it ln xk,it + δtt + 1

2 δttt2 +
M
∑

m=1
δmt ln ym,itt +

J
∑

j=1
δjt ln xj,itt,

(2)

where α, β, γ and δ are vectors of the parameters to be estimated; subscript i with i = 1, 2, . . . , I
refers to a certain producer/processor and t, with t = 1, . . . , T refers to a certain time (year)
and can capture the joint effects of embedded knowledge, technology improvements and
learning-by-doing in input quality improvements [51]. Here, parameters δt and δtt capture
the global effect of technological change on the IDF, while δmt and δjt measure the bias of
technological change.

The symmetry restrictions imply that β jk = βkj and αmn = αnm. Moreover, the func-

tion specified in (2) satisfies the homogeneity of degree 1 in inputs if [45]: ∑J
j=1 β j =

1; ∑J
j=1 β jk = 0; ∑J

j=1 γmj = 0; ∑J
j=1 δtj = 0. To impose the homogeneity, the inputs are

normalized by one input, here input x1 [52]:

ln DI
it − ln x1,it = α0 +

M
∑

m=1
αm ln ym,it +

1
2

M
∑

m=1

N
∑

n=1
αmn ln ym,it ln yn,it +

M
∑

m=1

J
∑

j=2
γmj ln ym,it ln x̃j,it

+
J

∑
j=2

β j ln x̃j,it +
1
2

J
∑

j=2

K
∑

k=2
β jk ln x̃j,it ln x̃k,it + δtt + 1

2 δttt2 +
M
∑

m=1
δmt ln ym,itt

+
J

∑
j=2

δjt ln x̃j,itt,

(3)

where ln x̃j,it = ln xj,it − ln x1,it.
Moreover, we normalized all variables in the logarithm by their sample mean. In this

case, we may interpret the first-order parameters as output elasticities and input cost shares,
evaluated on the sample mean.



Agriculture 2021, 11, 996 6 of 17

The IDF specified in (3) can be extended to the stochastic frontier model by the in-
troduction of an error term, εit. In line with the latest approach to technical efficiency
investigation, the error term is composited from time-invariant (persistent) technical ineffi-
ciency (ηi); time-varying (transient) technical inefficiency (uit), for which ηi + uit = ln DI

it,
holds, and from latent heterogeneity (µi) and statistical error term (vit) [41]:

− ln x1,it = α0+
M
∑

m=1
αm ln ym,it +

1
2

M
∑

m=1

N
∑

n=1
αmn ln ym,it ln yn,it +

M
∑

m=1

J
∑

j=2
γmj ln ym,it ln x̃j,it +

J
∑

j=2
β j ln x̃j,it

+ 1
2

J
∑

j=2

K
∑

k=2
β jk ln x̃j,it ln x̃k,it + δtt + 1

2 δttt2 +
M
∑

m=1
δmt ln ym,itt +

J
∑

j=2
δjt ln x̃j,itt− ηi − uit + µi

+vit,

(4)

where vit ∼ N
(
0, σ2

v
)
, uit ∼ N+

(
0, σ2

u
)
, ηi ∼ N+

(
0, σ2

η

)
and µi ∼ N

(
0, σ2

µ

)
.

The IDF specified as (4) carries all the information necessary to derive the TTI components:

TFP_TTI = SEC + TEC + TC (5)

The scale effect (SEC) captures the productivity improvements achieved by improving
the scale efficiency that is characterized by a movement on the frontier to the point where
the elasticity of scale is one and the production is at an optimal scale [14]. Since produc-
ers/processors that are scale efficient operate under constant returns to scale and have a
scale elasticity of one, while scale inefficient firms could exploit economies or diseconomies
of scale, the scale effect can be measured as the difference between the output index under
the assumption of returns to scale and the output index under the assumption of varying
returns to scale. After accounting for deviations from the sample means, this is expressed
as [45]:

SEC = ln ιit =
1
2

M

∑
m=1

[(
ζm,it + ζm

)(
ln ym,it − ln xm

)
+ ζmln ym − ζm,it ln ym,it

]
, (6)

where ζm,it =
(
1− RTS−1) ∂ ln DI(x̃it ,yit ,t)

∂ ln ym,it
, RTS−1 = ∑M

m=1−
∂ ln DI(x̃it ,yit ,t)

∂ ln ym,it
is the inverse of

returns to scale.
The technical efficiency change captures the productivity change associated with

movements towards (away from) the frontier, representing a technically efficient input–
output combination (in other words, a situation when firms have no possibility of reducing
one input without increasing another input holding the output level unchanged [14]). This
productivity improvement (deterioration) resulting from more (less) efficient use of the
existing technology can simply be measured as deviations of a technical efficiency estimate
from the sample mean [45]:

TEC = ln υit = ln TEit − ln TEit, (7)

where TEit = exp(−ûit).
Finally, the productivity change resulted from the shift of frontier is represented

by the technological change component (TC) that captures improvements in the state of
technology (technological progress as a result of the introduction of higher-performing
technology). On the other hand, it can also capture technological regression, for example,
due to a deterioration of worker qualifications [14]. This component is measured as a
deviation of the negative derivative of the IDF with respect to time from the sample
mean [45]:

TC = ln υit = ϕit − ϕit, (8)

where ϕit = −
∂ ln DI(x̃it ,yit ,t)

∂ ln t .
To obtain parameter estimates of the input distance function and technical efficiency

estimates, both specified in (4), a multistep estimation procedure, introduced by Kumba-
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hakar et al. [53] and extended by Bokusheva and Čechura [45] to deal with endogeneity
bias, was employed. In step 1, the two-step system generalized method of moments (GMM)
estimator was used to control for the potential endogeneity of netputs [54,55] and thereby
to obtain consistent estimates of technology as well as efficiency measures. This type of
instrumental variable estimator is based on a system of two equations: the original equation
(in levels) and the transformed one (in differences), and on two types of instruments: the
level instruments for the differenced equation and the lagged differences for the equation
in levels. This makes it more powerful for solving the problem of weak instruments. To
validate the instrument exogeneity assumption, two tests were employed: the Hansen J-test,
which analyzes the joint validity of the instruments, and the Arellano–Bond test [56], which
analyzes the autocorrelation in the idiosyncratic disturbance term (vit), which could render
some lags invalid as instruments. In step 2, residuals were used from the system GMM level
equation to estimate a random effects panel model employing the generalized least squares
(GLS) estimator with the aim of obtaining theoretical values of αi = µi − (ηi − E(ηi)) and
εit = vit − (uit − E(uit)), denoted by α̂i and ε̂it. In step 3, the transient technical inefficiency,
uit, was estimated using ε̂it and the standard stochastic frontier technique with the fol-
lowing assumptions: vit ∼ N(0, σ2

v ), uit ∼ N+(0, σ2
u). In step 4, the persistent technical

inefficiency, ηi, was estimated using α̂i and the stochastic frontier model with the following
assumptions: ηi ∼ N+(0, σ2

η), µi ∼ N(0, σ2
µ). The overall technical efficiency (OTE) is

quantified based on Kumbhakar et al. [53] as: OTEit = exp(−η̂i)× exp(−ûit). All of these
estimates were done using SW STATA 14.0.

3. Results
3.1. Technology and Production Structure

Tables A1 and A2 in Appendix A provide the full parameter estimate of the IDF models
for tomato producers and processors. The estimate shows the overall good econometric
as well as statistical qualities. In particular, the majority of the first order parameters are
significant at the 5% significance level. This is not the case for the second order parameters.
However, we reject the null hypotheses of the zero value for the second order parameters,
that is the Cobb–Douglas model specification, in both cases even at the 1% significance
level. Thus, the AR(2) test and Hansen test of over-identifying restrictions show the validity
of model estimates.

Table 2 summarizes the IDF estimates in the form of shadow shares. Shadow shares
allow for the evaluation of the producers’ and processors’ structure of technology, as-
suming that both optimize their production and input use with respect to the shadow
prices, which may be different from market prices. That is, the IDF elasticity of output
(calculated as a negative value of the first derivative of the IDF with respect to a particular
output) represents the shadow share of the particular output and the IDF elasticity of input
(calculated as the first derivative of the IDF with respect to an input) is interpreted as a
shadow share of an input in a producer’s or processor’s total input. Moreover, the values
in parentheses for producers represent shadow shares for the case of constant returns to
scale; that is, the shadow shares are normalized by economies of scale.

Evaluated by the sample means and using the normalization for the situation with
constant returns-to-scale production, the results show that the share of tomato output
in the total farm output is 40.7%. This is a considerably high ratio, suggesting a high
specialization in tomato production, even evaluated by the sample mean.

The shadow share for inputs show that the tomato processing is characterized by a
high share of materials in the total input (77%). This is almost twice as much as compared
to the tomato producers, with a material shadow share of 41%, suggesting an important
role of the raw material inputs in the processors’ total input. The labor and capital cost
share indicate opposite patterns: The labor cost share is about 28% in production and 19.4%
in processing. The capital cost share is considerably low in processing (3.8%) compared to
production (14.6%). However, these figures correspond with the information we have from
the dataset. Finally, the land cost share is about 16%.
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Table 2. Shadow shares. Source: authors’ estimates.

Producers Processors

Output Output
Tomatoes 0.317 (0.407) Processed tomatoes 0.993

Other output 0.462 (0.593)
Input Input

Land 0.162
Labor 0.283 Labor 0.194

Capital 0.146 Capital 0.038
Materials 0.409 Materials 0.768

Economies of scale 1.284 Economies of scale 1.007

The sample average estimate of the economies of scale suggest that the producers
exhibit considerable economies of scale, whereas tomato processors are characterized
by constant returns to scale. That is, while the processors operate with the optimal size
of production, at the sample average, the producers could considerably improve their
productivity by increasing their scale of operations.

The estimate of technological change is not statistically significant for processing.
That is, evaluated at the sample mean, we do not observe any technological improvements
to tomato processing (the F-test rejects a statistically significant impact of technological
change even at the 10% significance level).

We obtained significant technological change estimate for tomato production. The re-
sults indicate that the technological change is negative; however, the technological regres-
sion decelerates over time. In particular, Figure 1 shows that the negative technological
change turns out to be positive at the end of the analyzed period. This may imply increased
investment activities in the second half of the analyzed period. Moreover, we do not
reject Hicks’ neutral technological change; in other words, technological change is not
factor biased.
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Table 3 provides the distribution of the technological change, showing that the tech-
nological regression is, to a certain extent, characteristic of three-quarters of the tomato
producers. Figure 2 provides the distribution according to size. We can observe that
medium and large producers seem to be characterized by higher technological regres-
sion, although the differences are not statistically significant. The same holds for tomato
processors, as we do not observe any significant differences among the processors’ size
groups. In particular, the figures show that the majority of the tomato processors have not
experienced any technological changes.

Table 3. The distribution of technological change. Source: authors’ calculations.

Level Min. First Q Median Mean Third Q Max. Std. D.

Tomato producers −0.090 −0.029 −0.014 −0.014 0.001 0.063 0.022
Tomato processors −0.041 −0.012 −0.006 −0.006 −0.001 0.024 0.010
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3.2. Distribution of Scale Efficiency and Efficiency of Input Use

Table 4 presents the distribution of tomato producers’ and processors’ returns to scale.
As already stated, the producers are characterized by considerably high increasing returns
to scale, which holds for the whole sample. Moreover, the figures of the third quartile show
that this group of farmers is considerably scale inefficient. We thus can observe that the
producer sample is characterized by higher heterogeneity in scale efficiency compared to
processors. The majority of the processors operate with almost constant returns to scale.

Figure 3 provides the dynamics of the scale efficiency. We can observe considerable
improvements to the producers’ scale efficiency; that is, unexploited economies of scale
reduced substantially in tomato production over the 2006–2017 period. In the case of tomato
processors, we do not observe any significant change, which is an expected outcome when
the processors operate with optimal size of production.

Table 4. Scale efficiency. Source: authors’ calculations.

Level Min. First Q Median Mean Third
Q Max. Std. D. t-Test (H0: RTS=1)

Tomato producers 0.814 1.099 1.281 1.387 1.591 2.611 0.389 25.929 (Pr(|T| > |t|) = 0.0000)
Tomato processors 0.866 0.978 1.011 1.009 1.040 1.170 0.045 5.656 (Pr(|T| > |t|) = 0.0000)
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The distribution of economies of scale according to size (Figure 4) provides the ex-
pected results for the tomato producers and confirms our findings for the tomato processors.
In particular, we observe a positive association between improvements in economies of
scale and the size of the tomato producer. Whereas small producers exhibit high increasing
returns to scale, large producers are close to a constant return to scale, i.e., an optimal scale
of operations. Small, medium as well as large tomato processors operate at the optimal size.
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Overall technical efficiency is of a similar level in tomato production and processing
and indicates considerable space for improvements. The mean of overall technical efficiency
in production is 81.2% and 77.6% in processing (Table 5). That is, the tomato producers and
processors operating on the technological frontier have significantly lower costs, by approx-
imately 19% and 22%, as compared to the sample average, respectively. This represents a
considerable competitive advantage for efficient producers and processors.
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Table 5. Technical efficiency. Source: authors’ calculations.

Tomato Producers

Min. First Q Median Mean Third Q Max. Std. D.
Overall 0.644 0.790 0.817 0.812 0.839 0.903 0.040

Transient 0.700 0.896 0.913 0.909 0.926 0.965 0.028
Persistent 0.750 0.876 0.899 0.893 0.915 0.951 0.032

Tomato Processors

Min. First Q Median Mean Third Q Max. Std. D.
Overall 0.600 0.716 0.782 0.776 0.837 0.962 0.081

Transient 0.605 0.723 0.789 0.785 0.845 0.975 0.081
Persistent 0.954 0.986 0.990 0.988 0.992 0.997 0.006

The persistent technical inefficiency estimates indicate that, compared to tomato
processors, tomato producers are characterized by considerably high levels of farm man-
agement systematic failures due to optimal resource use. On the other hand, transient
inefficiency is substantially low in tomato production compared to tomato processing.
In particular, the technical inefficiencies in tomato processing are due to transient com-
ponents, and we do not observe significant systematic failures in optimal resource use in
tomato processing. Moreover, Figure 5 does not suggest any significant change in efficiency
of input use during the study period.
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Finally, we do not observe significant differences among size groups of tomato produc-
ers and processors in overall technical efficiency (Figure 6). The same holds for persistent
technical efficiency (Figure 7).

3.3. Productivity Dynamics

Figure 8 shows that we can observe significant productivity improvements in tomato
production, although the opposite is true for tomato processing. Whereas the productivity
increased by more than 20% in tomato production as compared to the initial year of 2006,
the productivity of tomato processors slightly decreased, by 3%.

Figure 9 indicates that the productivity growth in tomato production was driven by
the group of small producers. With respect to our forgoing analysis, it is not surprising
that the breakdown of TFP revealed that the main source of productivity increases in this
group was a scale component. That is, the improvements in the scale of operations (scale
efficiency) were the driver of TFP growth for the group of small tomato producers. Middle
and large producers experienced similar development as the small producers, that is,
a slight decrease in productivity.
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4. Discussion and Conclusions

This study evaluates productivity dynamics and identifies sources that induce produc-
tivity changes in Italian tomato production and processing. The use of the latest advances
in stochastic frontier analysis can obtain unbiased estimates of production and processing
technology as well as efficiency and productivity measures. As opposed to other studies,
this study contributes to the literature by providing a productivity and efficiency compari-
son of two stages of the tomato value chain. Moreover, the research provides a breakdown
of technical efficiency and divides it into transient and persistent components, which differs
from most of the other similar research to date.

The current study results provide a comprehensive agro-food chain perspective en-
compassing actors at the agricultural and processing level. They point out the differences
and the similarities that each actor reports over time. This overarching and food system per-
spective contributes to the definition of evidence-based results. This study may contribute
to the definition of technical and policy interventions aimed at targeting the productivity
change drivers in the tomato food value chain.

Results show that technological change is not a significant source of productivity
growth in tomato processing. On the other hand, however, tomato production is character-
ized by negative, decelerating technological change that reversed to become positive at the
end of the analyzed period. Moreover, we do not observe significant differences among
producers across the different size groups.

The estimates suggest that the producers exhibit considerable economies of scale,
whereas the tomato processors are characterized by constant returns to scale. That is,
whereas tomato processors have optimal production sizes, tomato producers experience
considerably high scale inefficiencies, with these inefficiencies being more pronounced
in the group of smaller tomato producers. In particular, the smaller producers exhibit
high increasing returns to scale compared to the larger producers, which display near
constant returns to scale, i.e., an optimal scale of operations. Producer dimensions have
an impact on the efficiency level. Results suggest there may be greater room for efficiency
improvements among smaller compared to larger producers. However, larger farmers may
still benefit from investments in education and training, advice and information as well
as increased sensitivity and knowledge regarding environmental and social sustainability.
These may complete the set of sustainability dimensions agriculture will increasingly have
to ensure. The use of different technologies and improved efficiency means aiming for
increasing production, productivity and profits in a sustainable way. This is particularly
relevant to tomato production as it is a high water consuming agricultural sector. Techno-
logical developments are rapidly evolving and require new managerial practices, able to
manage multidisciplinary technologies. Results show that producers would benefit from
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technological advancements, yet there may be some reluctance as information on the costs
and benefits of adopting technologies in agriculture is often imperfect. This would lead to
optimization of resource utilization by tomato farmers.

Overall, the technical efficiency estimates indicate considerable room for improve-
ments to be made. The mean of the overall technical efficiency for production is 81.2% and
77.6% for processing, which provides significant room for cost reductions if the producers
and processors were to operate with frontier technologies. Moreover, persistent technical
inefficiency is more pronounced in tomato production as compared to tomato processing,
suggesting the presence of high levels of systematic farm management failures. These
results reflect the continuous investments in innovation and technology that processors
have carried out over time. Innovative technologies have been tested over time and in
various geographical contexts providing benefits for processors at the global level. Then
again, the global competition has pushed the need to increase commercial competitiveness.
Thus, the Italian processing industry has increased production efficiency and widened
the adoption of the processing technologies available. Nevertheless, these research results
support that there is room for improvement.

Finally, the current study observed significant productivity improvements for tomato
production. This is, however, not the case for tomato processing, which experienced
minor productivity changes over the analyzed period. Moreover, the results reveal that the
productivity growth in tomato production was driven by a group of small producers and,
in particular, by considerable improvements in scale efficiency.
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Appendix A

Table A1. IDF—agriculture. Source: authors’ estimates.

Variable Parameter Std. Err. p-Value

ln_yC −0.317 0.050 0.000
ln_yAOC −0.462 0.054 0.000

ln_xL 0.162 0.072 0.028
ln_xW 0.283 0.039 0.000
ln_xK 0.146 0.052 0.006

ln_yC_2 0.276 0.235 0.243
ln_yAOC_2 0.054 0.272 0.844
ln_yCyAOC −0.150 0.231 0.519

ln_xL_2 0.045 0.115 0.697
ln_xW_2 0.062 0.075 0.408
ln_xK_2 0.036 0.083 0.661

https://valumics.eu/
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Table A1. Cont.

Variable Parameter Std. Err. p-Value

ln_xLxW −0.029 0.115 0.800
ln_xLxK 0.004 0.101 0.965
ln_xWxK 0.110 0.068 0.107

t 0.014 0.008 0.092
t_2 −0.006 0.003 0.057

ln_yCt 0.025 0.012 0.042
ln_yAOCt −0.022 0.014 0.123

ln_xLt 0.000 0.013 0.993
ln_xWt 0.004 0.010 0.661
ln_xKt −0.008 0.010 0.411

ln_yCxL 0.180 0.134 0.182
ln_yAOCxL −0.103 0.166 0.534

ln_yCxW −0.073 0.105 0.490
ln_yAOCxW 0.047 0.120 0.698

ln_yCxK −0.043 0.078 0.582
ln_yAOCxK 0.156 0.094 0.100

Constant −0.132 0.057 0.021

Test statistic p-value

AR(2) −1.770 0.076
Hansen test 95.33 (347) 1.000

Table A2. IDF—tomato processing. Source: authors’ estimates.

Variable Parameter Std. Err. p-Value

ln_y −0.993 0.011 0.000
ln_xW 0.194 0.027 0.000
ln_xM 0.768 0.029 0.000

t 0.006 0.006 0.282
ln_y_2 −0.001 0.007 0.942

ln_xW_2 0.087 0.035 0.015
ln_xM_2 0.156 0.068 0.023

ln_xWxM −0.123 0.045 0.008
t_2 −0.001 0.003 0.762

ln_yt 0.006 0.003 0.028
ln_xWt 0.003 0.006 0.669
ln_xMt −0.001 0.008 0.867
ln_yxW 0.000 0.016 0.993
ln_yxM −0.040 0.018 0.027

Constant −0.031 0.025 0.225

Test statistic p-value

AR(2) −1.200 0.228
Hansen test 79.58 (332) 1.000
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45. Bokusheva, B.; Čechura, L. Evaluating Dynamics, Sources and Drivers of Productivity Growth at the Farm Level; OECD Food,

Agriculture and Fisheries Papers, No. 106; OECD Publishing: Paris, France, 2017.
46. Caves, D.W.; Christensen, L.R.; Diewert, W.E. Multilateral comparisons of output, input and productivity using superlative index

numbers. Econ. J. 1982, 92, 73–86. [CrossRef]
47. Fried, H.O.; Knox Lovell, C.A.; Schmidt, S.S. The Measurement of Productive Efficiency and Productivity Growth, 1st ed.; Oxford

University Press: New York, NY, USA, 2008.
48. Shephard, R.W. Cost and Production Functions, 1st ed.; Princeton University Press: Princeton, NJ, USA, 1953.
49. Chambers, R.G.; Chung, Y.; Färe, R. Profit, Directional Distance Functions, and Nerlovian Efficiency. J. Optim. Theory Appl. 1998,

98, 351–364. [CrossRef]
50. Diewert, W. Exact and Superlative Index Numbers. J. Econom. 1976, 4, 115–145. [CrossRef]
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