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Abstract: The deep neural network-based method requires a lot of data for training. Aiming at
the problem of a lack of training images in tomato leaf disease identification, an Adversarial-VAE
network model for generating images of 10 tomato leaf diseases is proposed, which is used to expand
the training set for training an identification model. First, an Adversarial-VAE model is designed
to generate tomato leaf disease images. Then, a multi-scale residual learning module is used to
replace single-size convolution kernels to enrich extracted features, and a dense connection strategy
is integrated into the Adversarial-VAE networks to further enhance the image generation ability.
The training set is expanded by the proposed model, which generates the same number of images
by training 10,892 images of 10 leaves. The generated images are superior to those of InfoGAN,
WAE, VAE, and VAE-GAN measured by the Frechet Inception Distance (FID). The experimental
results show that using the extension dataset that is generated by the Adversarial-VAE model to train
the Resnet identification model could improve the accuracy of identification effectively. The model
proposed in this paper could generate enough images of tomato leaf diseases and provide a feasible
solution for data expansion of tomato leaf disease images.

Keywords: Adversarial-VAE; tomato leaf disease identification; image generation; convolutional
neural network

1. Introduction

Leaf disease identification is crucial to control the spread of diseases and advance
healthy development of the tomato industry. Well-timed and accurate identification of
diseases is the key to early treatment, and an important prerequisite for reducing crop loss
and pesticide use. Unlike traditional machine learning classification methods that manually
select features, deep neural networks provide an end-to-end pipeline to automatically
extract robust features, which significantly improve the availability of leaf identification.
In recent years, neural network technology has been widely applied in the field of plant
leaf disease identification [1–9], which indicates that deep learning-based approaches have
become popular. However, because the deep convolutional neural network (DCNN) has a
lot of adjustable parameters, a large amount of labeled data is needed to train the model to
improve its generalization ability of the model. Sufficient training images are an important
requirement for models based on convolutional neural networks (CNNs) to improve
generalization capability. There are little data about agriculture, especially in the field of
leaf disease identification. Collecting large numbers of disease data is a waste of manpower
and time, and labeling training data requires specialized domain knowledge, which makes
the quantity and variety of labeled samples relatively small. Moreover, manual labeling is a
very subjective task, and it is difficult to ensure the accuracy of the labeled data. Therefore,
the lack of training samples is the main impediment for further improvement of leaf disease
identification accuracy. How to train the deep learning model with a small amount of
existing labeled data to improve the identification accuracy is a problem worth studying.
In general, researchers usually solve this challenge by using traditional data augmentation
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methods [10]. In computer vision, it makes perfect sense to employ data augmentation,
which can change the characteristics of a sample based on prior knowledge so that the
newly generated sample also conforms to, or nearly conforms to, the true distribution
of the data, while maintaining the sample label. Due to the particularity of image data,
additional training data can be obtained from the original image through simple geometric
transformation. Common data enhancement methods include rotation, scaling, translation,
cropping, noise addition, and so on. However, little additional information can be obtained
from these methods.

In recent years, data expansion methods based on generative models have become a
research hotspot and have been applied in various fields [11–15]. For example, in [11], the
author presents an approach for learning to translate an image from a source domain X to
a target domain Y in the absence of paired examples to learn a mapping G: X→Y, such that
the distribution of images from G(X) is indistinguishable from the distribution Y using an
adversarial loss. Usually, the two most common techniques for training generative models
are the generative adversarial network (GAN) [16] and variational auto-encoder (VAE) [17],
both of which have advantages and disadvantages. Goodfellow et al. proposed the GAN
model [16] for latent representation learning based on unsupervised learning. Through
the adversarial learning of the generator and discriminator, fake data consistent with the
distribution of real data can be obtained. It can overcome many difficulties, which appear
in many tricky probability calculations of maximum likelihood estimation and related
strategies. However, because the input z of the generator is a continuous noise signal and
there are no constraints, GAN cannot use this z, which is not an interpretable representation.
Radford et al. [18] proposed DCGAN, which adds a deep convolutional network based
on GAN to generate samples, and uses deep neural networks to extract hidden features
and generate data. The model learns the representation from the object to the scene in the
generator and discriminator. InfoGAN [19] tried to use z to find an interpretable expression,
where z is broken into incompressible noise z and interpretable implicit variable c. In
order to make the correlation between x and c, it is necessary to maximize the mutual
information. Based on this, the value function of the original GAN model is modified.
By constraining the relationship between c and the generated data, c contains interpreted
information about the data. In [20], Arjovsky et al. proposed Wasserstein GAN (WGAN),
which uses the Wasserstein distance instead of Kullback-Leibler divergence to measure
the probability distribution, to solve the problem of gradient disappearance, ensure the
diversity of generated samples, and balance sensitive gradient loss between the generator
and discriminator. Therefore, WGAN does not need to carefully design the network
architecture, and the simplest multi-layer fully connected network can do it. In [17], Kingma
et al. proposed a deep learning technique called VAE for learning latent expressions. VAE
provides a meaningful lower bound for the log likelihood that is stable during training
and during the process of encoding the data into the distribution of the hidden space.
However, because the structure of VAE does not clearly learn the goal of generating real
samples, it just hopes to generate data that is closest to the real samples, so the generated
samples are more ambiguous. In [21], the researchers proposed a new generative model
algorithm named WAE, which minimizes the penalty form of the Wasserstein distance
between the model distribution and the target distribution, and derives the regularization
matrix different from that of VAE. Experiments show that WAE has many characteristics of
VAE, and it generates samples of better quality as measured by FID scores at the same time.
Dai et al. [22] analyzed the reasons for the poor quality of VAE generation and concluded
that although it could learn data manifold, the specific distribution in the manifold it learns
is different from the real distribution. In the experiment, it shows that VAE can reconstruct
training data well, but it cannot generate new samples well. Therefore, a two-stage VAE is
proposed, where the first one is used to learn the position of the manifold, and the second is
used to learn the specific distribution within the manifold, which improves the generation
effect significantly.
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In order to meet the requirements of the training model for the large amount of image
data, this paper proposes an image data generation method based on the Adversarial-VAE
network model, which expands the image of tomato leaf diseases to generate images
of 10 different tomato leaves, overcomes the overfitting problem caused by insufficient
training data faced by the identification model. First, the Adversarial-VAE model is
designed to generate images of 10 tomato leaves. Then, in view of the obvious differences
in the area occupied by the leaves in the dataset and the insufficient accuracy of the feature
expression of the diseased leaves using a single-size convolution kernel, the multi-scale
residual learning module is used to replace the single-size convolution kernels to enhance
the feature extraction ability, and the dense connection strategy is integrated into the
Adversarial-VAE model to further enhance the image generative ability. The experimental
results show that the tomato leaf disease images generated by Adversarial-VAE have higher
quality than InfoGAN, WAE, VAE, and VAE-GAN on the FID. This method provides a
solution for data enhancement of tomato leaf disease images and sufficient and high-quality
tomato leaf images for different training models, improves the identification accuracy of
tomato leaf disease images, and can be used in identifying similar crop leaf diseases.

The rest of the paper is organized as follows: Section 2 introduces the related work.
Section 3 introduces the data enhancement methods based on Adversarial-VAE in detail
and the detailed structure of the model. In Section 4, the experiment result is described,
and the results are analyzed. Finally, Section 5 summarizes the article.

2. Related Work
2.1. Generative Adversarial Network (GAN)

The basic principle of GAN [16] is to obtain the probability distribution of the gen-
erator, making the probability distribution of the generator as similar as possible to the
probability distribution of the initial dataset, including the generator and discriminator.
The generator maps random data to the target probability distribution. In order to simulate
the original data distribution as realistically as possible, the target generator should mini-
mize the divergence between the generated data and the real data. Under real conditions,
since the data set cannot contain all the information, GAN’s generator model cannot fit
the probability distribution of the dataset well in practice, and the noise close to the real
data is always introduced, so that new information will be generated. In reality, because
the dataset cannot contain all the information, the GAN generator model cannot fit the
probability distribution of the dataset well in practice, and it will always introduce noise
close to the real data, which will generate new information. Therefore, the generated
images are allowed to be used as data enhancement for further improving the accuracy of
identification. The disadvantage of using GAN to generate images is it uses the random
Gaussian noise to generate images, which means that it is not possible to generate any
specified type of image. There is no way to decide which random noise can be used to
generate the desired image, unless all the initial distribution can be tried. The generator
network distinguishes between “real” and “fake” images through a confrontation process.
However, the images obtained in this way are only as real as possible, but this does not
guarantee that the content of the images is desired. In other words, it is possible that the
generator network generates background images to make it as true as possible, but in fact,
there is no real target in it.

2.2. Variational Auto-Encoder (VAE)

Variational auto-encoder (VAE) is an important generative model, which was proposed
by Diederik P. Kingma and Max Welling [17], including two parts: encoder and decoder.

Figure 1 is the composition model of VAE. The data we can observe is X, and X is
generated by the latent variable z; and z→ X is the generator model from the perspective
of the auto-encoder. It is the decoder, and X → z is the recognition model, which is
similar to the encoder of the auto-encoder. VAE is now widely used to generate images.
When the generation model is trained, we can use it to generate images. Unlike GAN,
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the probability density function (PDF) of the image is known, while GAN does not know
the image distribution. Using the auto-encoder can obtain the encoding distribution of
such images through the encoding process of the output images, which is equivalent to
knowing the corresponding noise distribution to each image, and then the desired image
can be generated by selecting specific noise. When generating a new image, you only need
to give the model a random implicit vector with a standard normal distribution, so that
the desired image can be generated through the decoder, without the need to encode an
original image first. In practice, it is necessary to make a trade-off between the accuracy of
the model and the factor that the implicit vector obeys the standard normal distribution.
The accuracy of the model refers to the degree of similarity between the image generated
by the decoder and the original image.
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2.3. VAE-GAN

VAE-GAN [23] adds a discriminator to the original VAE. If you just operate VAE, the
image will be very blurred. After adding the discriminator, the output is forced to be as real
as possible. From the perspective of GAN, when training GAN, the generator has never
seen what the real image looks like. From the auto-encoder, the generator does not have to
cheat the discriminator and has seen what the real image looks like. If you first pass the
auto-encoder architecture and the generator has seen a real image, the VAE-GAN will be
more stable to learn. VAE-GAN consists of the encoder, generator, and discriminator. The
encoder is used to encode, that is, to convert the input image into a vector. The generator
is the decoder in VAE, which converts the vector into an output image. Since it is hoped
that the output after encoding and decoding is still itself, the input image and output
image should be the same as much as possible. The discriminator is used to judge whether
the image is realistic or fake (generated by the generator), and gives a scalar (score or
probability or binary classification result). The goal of the combination of the encoder and
generator is to keep an image as it is after encoding and decoding. Therefore, the updating
criterion of the encoder is to minimize the variance of the image before the encoder and
after the decoder, and to make the distribution of the image before the encoder and after
the decoder as consistent as possible (the distribution is described by KL divergence).
The updating criterion of the generator is to minimize the variance of images before the
encoder and after the decoder, and the scores of generated and reconstructed images after
the discriminator are also as high as possible. The updating criterion of the discriminator
is to try to distinguish between the generated, reconstructed, and realistic images, so the
scores for the original images are as high as possible, and the scores for the generated and
reconstructed images should be as low as possible.



Agriculture 2021, 11, 981 5 of 18

2.4. Two-Stage VAE

VAE is one of the most popular generation models, but the quality of the generation is
relatively poor. The gaussian hypothesis of encoders and decoders is generally considered
to be one of the reasons for the poor quality of the generation. The authors of [22] carefully
analyzed the properties of the VAE objective function, and came to the conclusion that the
encoder and decoder gaussian hypothesis of VAE does not affect the global optimal solution.
The use of other more complex forms does not obtain a better global optimal solution.

According to [22], VAE can reconstruct training data well but cannot generate new
samples well. VAE can learn the manifold where the data is, but the specific distribution
in the manifold it learned is different from the real distribution. In other words, every
data from the manifold will be perfectly reconstructed after VAE. For this reason, the first
VAE is used to learn the position of the manifold, and the second VAE is used to learn the
specific distribution within the manifold. Specifically, the first VAE transforms the training
data into a certain distribution in the hidden space, which occupies the entire hidden
space instead of on the low-dimensional manifold. The second VAE is used to learn the
distribution in the hidden space since the latent variable occupies the entire hidden space
dimension. Therefore, according to the theory, the second VAE can learn the distribution in
the hidden space of the first VAE.

3. Materials and Methods
3.1. Dataset

PlantVillage [24] is an internet public image library of plant leaf diseases initiated and
established by David, an epidemiologist at the University of Pennsylvania. This dataset
collects more than 50,000 images of 14 species of plants with 38 category labels. Among
them, 18,162 tomato leaves of 10 categories, which are respectively healthy leaves and
9 kinds of diseased leaves, were used as the basic data set of crop disease images for the
experiment. Figure 2 shows an example of 10 tomato leaves. In the practical application,
the image size was changed to 128 × 128 pixels during preprocessing in order to reduce
both the calculation and training time of model.
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Figure 2. Examples of tomato leaf diseases: healthy, Tomato bacterial spot (TBS), Tomato early blight
(TEB), Tomato late blight (TLB), Tomato leaf mold (TLM), Tomato mosaic virus (TMV), Tomato
septoria leaf spot (TSLS), Tomato target spot (TTS), Tomato two-spotted spider mite (TTSSM), and
Tomato yellow leaf curl virus (TYLCV), respectively.

3.2. Adversarial-VAE Model for Generating Tomato Leaf Disease Images

The deep neural network has a large number of adjustable parameters, so it needs a
large amount of labeled data to improve the generalization ability of the model. However,
there has always been a data vacuum in agriculture, making it difficult to collect a lot of
data. At the same time, it is also difficult to label all collected data accurately. Due to a lack
of experience, it is difficult to judge whether the identification is accurate, so experienced
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experts are needed to accurately label the data. In order to meet the requirements of the
training model for the large amount of image data, this paper proposes an image data
generation method based on the Adversarial-VAE network model, which expands the
tomato leaf disease images in the PlantVillage dataset, and overcomes the problem of
over-fitting caused by insufficient training data faced by the identification model.

3.2.1. Adversarial-VAE Model

The Adversarial-VAE model of tomato leaf disease images consists of stage 1 and
stage 2. Stage 1 is a VAE-GAN network, consisting of an encoder (E), generator (G), and
discriminator (D). Stage 2 is a VAE network, consisting of an encoder (E) and decoder (D).

The detailed model of Adversarial-VAE is shown in Figure 3. In stage 1, the input
images are encoded and decoded, and the discriminator is used to determine whether
the images are real or fake to improve the model’s generation ability. The input to the
model is an image X of size 128 × 128 × 3, which is compressed into two vectors µ and
σ with a size of 256 after passing through the encoder network, and then combined into
a latent vector z with a size of 256. After passing through the generator network, size
expansion is realized to generate an image X with a size of 128 × 128 × 3. The input of the
discriminator network is the original image X, generated image X̂, and reconstructed image
X to determine whether the image is real or fake. Stage 2 encodes and decodes the latent
variable z. Specifically, stage 1 transforms the training data X into some distribution z in
the latent space, which occupies the whole latent space rather than on the low-dimensional
manifold of the latent space. Stage 2 is used to learn the distribution in the latent space.
Since latent variables occupy the whole dimension, according to the theory [22], stage 2
can learn the distribution in the latent space of stage 1. After the Adversarial-VAE model
is trained, z is sampled from the gaussian model and z is obtained through stage 2. z is
obtained through the generator network of stage 1 to obtain X̂, which is the generated
sample and is used to expand the training set in the subsequent identification model.
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3.2.2. Components of Stage 1

Stage 1 is a VAE-GAN network composed of an encoder (E), generator (G), and
discriminator (D). It is used to transform training data into a certain distribution in the
hidden space, which occupies the entire hidden space rather than on the low-dimensional
manifold. The encoder converts an input image X of size 128 × 128 × 3 into two vectors of
mean and variance of size 256. The detailed encoder network of stage 1 is shown in Figure 4
and the output sizes of every layer are shown in Table 1. The encoder network consists of a
series of convolution layers. It is composed of Conv, 4 layers, Scale, Reducemean, Scale_fc
and FC. The 4 layers is made up of four alternating Scale and Downsample, and Scale is
the ResNet module, which is used to extract features. Downsample is used to decrease the
size of each feather map and increase the number of channels. After each layer, the number
of channels is doubled and the size is halved. The input of the model is a 128 × 128 × 3
image, the size of the input vector is changed to 128 × 128 × 16 after Conv layer, while
after 4 layers, the size is 8 × 8 × 256. Reducemean is global pooling, and the structure of
Scale_fc is shown in Figure 4 for better access to global information.
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Table 1. Output size of the layer in the encoder network.

Layer Input Conv Scale 0 Downsample 0 Scale 1 Downsample 1

Size 128 × 128 × 3 128 × 128 × 16 128 × 128 × 16 64 × 64 × 32 64 × 64 × 32 32 × 32 × 64

Layer . . . . . . Downsample 3 Scale 4 Reducemean Scale_fc FC

Size . . . . . . 8 × 8 × 256 8 × 8 × 256 256 256 256

The generator is both VAE’s decoder and GAN’s generator, and they have the same
function: converting vector to X. The decoder is used to decode, restoring the latent vector
z of size 256 to an image of size 128 × 128 × 3. The goal of the combination of the encoder
and generator is to keep an image as original as possible after the encoder and generator.
The detailed generator network of stage 1 is shown in Figure 5 and related parameters are
shown in Table 2. The generator network consists of a series of deconvolution layers, which
is composed of FC, 6 layers, and Conv. FC means fully connected. The input of the model
is a vector with 256, which is drawn from a gaussian distribution or reparameterization
from the output of the encoder network. The size is changed to 4096 after FC and to
2 × 2 × 1024 after Reshape further. Six layers are made up of six alternating Upsample
and Scale. Upsample is deconvolution layer, which is used to expand the size of the feature
map and reduce the number of channels. After each Upsample, the length and width of the
feature map are doubled, and the number of channels is halved. Scale is the Resnet module,
which is used to extract features. After 6 layers, the size is changed to 128 × 128 × 3.
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Additionally, after Conv, the size is changed to 128 × 128 × 3, which is the same size as the
input image.
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Table 2. Output size of the layer in the generator network.

Layer Input FC Reshape Upsample 0 Scale 0 Upsample 1

Size 256 4096 2 × 2 × 1024 4 × 4 × 512 4 × 4 × 512 8 × 8 × 256

Layer . . . . . . Upsample 4 Scale 4 Upsample 5 Scale 5 Conv

Size . . . . . . 64 × 64 × 32 64 × 64 × 32 128 × 128 × 16 128 × 128 × 16 128 × 128 × 3

The discriminator will be able to differentiate the generated, reconstructed, and
realistic images as much as possible. Therefore, the score for the original image should
be as high as possible, and the scores for the generated and reconstructed images should
be as low as possible. Its structure is similar to that of the encoder, except that the final
two FCs with a size of 256 are generated at the end and replaced with FC with a size of 1.
The output is true or false, which is used to enhance the image generation ability of the
network, making the generated image more like the real image. The details are shown in
Figure 6 and related parameters are shown in Table 3.
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Table 3. Output size of the layer in the discriminator network.

Layer Input Conv Scale 0 Downsample 0 Scale 1 Downsample 1

Size 128 × 128 × 3 128 × 128 × 16 128 × 128 × 16 64 × 64 × 32 64 × 64 × 32 32 × 32 × 64

Layer . . . . . . Downsample 3 Scale 4 Reducemean Scale_fc FC

Size . . . . . . 8 × 8 × 256 8 × 8 × 256 256 256 1

3.2.3. Components of Stage 2

Stage 2 is a VAE network consisting of the encoder (E) and decoder (D), which is used
to learn the distribution of hidden space in stage 1 since the latent variables occupy the
entire latent space dimension. Both the encoder (E) and decoder (D) are composed of a
fully connected layer. The structure is shown in Figure 7. The input of the model is a latent
vector with size 256, which is drawn from a gaussian distribution.
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3.3. Improved Adversarial-VAE Model
3.3.1. Multi-Scale Convolution

In the PlantVillage dataset, there are obvious differences in the area occupied by the
leaves in the image, so the single-size convolution kernel is not accurate enough to check the
feature expression of disease leaves. Therefore, in order to make the extracted features more
abundant, a multi-scale convolution kernel is applied instead of a single-size convolution
kernel to construct the residual learning module so that tomato disease identification can
achieve a higher accuracy rate, as shown in Figure 8.
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In order to utilize the multi-scale convolution kernel, the convolutional layer in the
original residual learning module designed according to the Inception [25] structure, and
the computational amount required for the 5 × 5 convolution kernel is relatively large
to reduce the number of parameters and increase the calculation speed. During practical
application, the 5 × 5 convolution kernel is replaced by two 3 × 3 convolution kernels,
which does not allow the convolution layer to be extracted to different levels with different
receptive fields.

Specifically, a single 3 × 3 convolution kernel (Conv (3 × 3)) in ResNet is replaced
by multiple convolution kernels to expand the convolution width, and the information
obtained from each convolution kernel is added up through Concat. After BatchNorm and
Relu, the mixed feature of Conv (1 × 1) is used as the input of the next operation. Multiple
convolution cores here refer to 1 × 1 convolution kernel (Conv (1 × 1)), 1 × 1 convolution
(Conv (1 × 1)) followed by separable convolution (SepConv), and 1 × 1 convolution (Conv
(1 × 1)) followed by separable convolution (SepConv) followed by separable convolution
(SepConv). Depthwise convolutions are also used to construct a lightweight deep neural
network. In this case, the standard convolution is decomposed into depthwise convolution
and pointwise convolution. Each channel is convolution individually, which is used to
combine the information of each channel to reduce model parameters and computation.

3.3.2. Dense Connection Strategy

As another CNN with a deeper number of layers, Densenet has fewer parameters than
Resnet. Its bypass enhances the reuse of features, and the network is easier to train and has
a certain regularization effect, and alleviates the problems of gradient vanishing and model
degradation. The problem of gradient disappearance is more likely to occur when the
network depth is deeper. The reason is that the input information and gradient information
are transmitted between many layers. Now, dense connection is equivalent to each layer
directly connecting input and loss, so the phenomenon of gradient disappearance can be
reduced and the network depth can be increased. Therefore, the dense connection strategy
from DenseNet [26] is applied to the encoder network and generator network in stage 1.
Each layer uses the feature map as the input of the latter layer, which can effectively extract
the features of the lesion and alleviate the disappearing gradient. As shown in Figure 9,
due to the inconsistency of the feature scales of the front and back layers, 1 × 1 convolution
is used to achieve the consistency of feature scales. The dense connection strategy shares
the weights of the prior layers and improves the feature extraction capabilities.

3.4. Loss Function

Stage 1 is VAE-GAN network. In stage 1, the goal of the encoder and generator is to
keep an image as original as possible after code. The goal of the discriminator is to try to
differentiate the generated, reconstructed, and realistic images. The training pipeline of the
stage 1 Algorithm 1 is as follows:

Algorithm 1: The training pipeline of the stage 1.

Initial parameters of the models: θe, θg, θd
while training do

xreal ← batch of images sampled from the dataset.
zµ

real , zσ
real ← Eθe (xreal)

zreal ← zµ
real + εzσ

real with ε ∼ N(0, Id)
xreal ← Gθg (z

real)

z f ake ←prior P(z)
x f ake ← Gθg (z

f ake)

{Compute losses gradients and update parameters.}

θe←‖xreal − xreal‖+ KL(P( zreal
∣∣∣xreal)‖P(z))

θg←‖xreal − xreal‖ − Dθd
(xreal)− Dθd

(x f ake)

θd←Dθd
(xreal) + Dθd

(x f ake)− Dθd
(xreal)

end while



Agriculture 2021, 11, 981 11 of 18

Stage 2 is the VAE network. In stage 2, the goal of the encoder and decoder is to
keep an image as original as possible after codec. Therefore, the updating criterion of the
encoder is to minimize the variance of the image before the encoder and after the decoder,
and to make the distribution of the image as consistent as possible before the encoder
and after the decoder. The updated criterion of the decoder is to minimize the variance
of images before the encoder and after the decoder. The training pipeline of the stage 2
Algorithm 2 is as shown below:

Algorithm 2: The training pipeline of the stage 2.

Initial parameters of the models: θe, θd.
while training do

zreal ← Gaussian distribution.
uµ

real , uσ
real ← Eθe (z

real) .
ureal ← uµ

real + εuσ
real with ε ∼ N(0, Id).

zreal ← Dθd
(ureal) .

u f ake ←prior P(u).
z f ake ← Dθd

(u f ake) .
{Compute losses gradients and update parameters.}

θe←‖zreal − zreal‖+ KL(P(ureal
∣∣∣zreal)‖P(u)).

θd←‖zreal − zreal‖.
end while
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3.5. Experimental Setup

The experimental configuration environment of this paper is as follows: Ubuntu16.04
LST 64-bit system, processor Intel Core i5-8400 (2.80 GHz), memory is 8 GB, graphics card
is GeForce GTX1060 (6G), and using the Tensorflow-GPU1.4 deep learning framework with
python programming language.
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3.6. Performance Evaluation Metrics

The FID evaluation model is introduced to evaluate the performance of the image
generation task. The FID score was proposed by Martin Heusel [27] in 2017. It is a metric
for evaluating the quality of the generated image and is specifically used to evaluate the
performance of GAN. It is a measure of the distance between the feature vector of the real
image and the generated image. This score is proposed as an improvement on the existing
inception score (IS) [28,29]. It calculates the similarity of the generated image to the real
image, which is better than the IS. The disadvantage of IS is that it does not use statistics
from the true sample and compare them to statistics from the generated sample.

As with the IS, the FID score uses the Inception V3 model. Specifically, the coding
layer of the model (the last pooled layer before the classified output of the image) is used
to extract the features specified by computer vision techniques for the input image. These
activation functions are calculated for a set of real and generated images. By calculating the
mean value and covariance of the image, the output of the activation function is reduced to
a multivariable gaussian distribution. These statistics are then used to calculate the real
image and generate activation functions in the image collection. The FID is then used to
calculate the distance between the two distributions. The lower the FID score, the better
the image quality. On the contrary, the higher the score, the worse the quality.

4. Results and Discussion

In order to verify the effectiveness of the leaf disease identification model proposed in
this paper, a total of 18,162 images of the tomato disease from PlantVillage are randomly
divided into a training set, verification set, and test set, of which the training set accounts for
about 60%, which means 10,892 images, as shown in Table 4. The verification set accounts
for about 20% or 3632 images, and the test set accounts for about 20% or 3636 images.
They are used to train the model, select the model, and evaluate the performance of the
proposed model.

Table 4. Detailed information of the tomato leaf disease dataset.

Class All Sample Numbers 60% of Sample Numbers

healthy 1592 954
TBS 2127 1276
TEB 1000 600
TLB 1910 1145
TLM 952 571
TMV 373 223
TSLS 1771 1062
TTS 1404 842

TTSSM 1676 1005
TYLCV 5357 3214

ALL 18,162 10,892

The Adversarial-VAE model is used to generate training samples, and the number of
generated samples is consistent with the number of samples corresponding to the original
training set, so the sample size is doubled, and the generated data is added to the training
set. For these datasets with generated images, all the generated images are placed in the
training set, and all the images in the test set are from the initial dataset. The test set
is completely derived from the initial dataset. The flowchart of the data augmentation
method is shown in Figure 10. In the figure, generative model refers to the generation part
of the Adversarial-VAE model, which is composed of stage 2 and the generator network
in stage 1. After the Adversarial-VAE model is trained, z is sampled from the Gaussian
model, and z is obtained through stage 2, and X is obtained through the generator network
of stage 1, which is the generated sample. For 10 kinds of tomato leaf images, we train
10 Adversarial-VAE models. For each class, we generate samples by sampling vectors
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corresponding to the number of categories from the gaussian model in order to generate a
different number of samples.
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4.1. Generation Results and Analysis

The proposed Adversarial-VAE networks are compared with several advanced gener-
ation methods, including InfoGAN, WAE, VAE, VAE-GAN, and 2VAE, which are used to
generate tomato diseased leaf images. We compare the reconstructed image quality and
the generated image quality through the FID score as shown in Tables 5 and 6. Table 5 lists
the FID of the reconstruction images under the different neural network models. Table 6
shows the FID comparison between different generative methods. Reconstruction-FID
demonstrates the ability of this method to reconstruct the original input image. The lower
the value is, the better the reconstruction capability is. Generation-FID demonstrates the
ability of this method to generate new images. The lower the value is, the better the
reconstruction capability is.

Tables 5 and 6 show Reconstruction-FID and Generation-FID of 10 kinds of tomato
leaf images, respectively. From the tables, we can see that WAE is better at reconstruction
of the images than other methods. The average FID score is 105.74, which is the lowest
score, and it also obtained the lowest score in most categories except TBS and TYLCV,
which means WAE has excellent ability in reconstruction. Adversarial-VAE is the best in
the generation of the images. The average FID score is 161.77, which is the lowest score,
and it also obtained the lowest score in most categories, which means Adversarial-VAE has
more advantages in generation than the others.

Table 5. Reconstruction-FID comparison between different generative methods.

Reconstruction-
FID

InfoGAN
[19]

WAE
[21]

VAE
[17]

VAE-GAN
[23]

2VAE
[22]

Adversarial-
VAE

healthy 172.61 129.47 155.64 130.08 155.64 130.08
TBS 135.29 103.11 148.07 114.24 148.07 114.24
TEB 126.96 106.69 138.87 100.59 138.87 100.59
TLB 180.10 111.81 169.80 119.23 169.80 119.23
TLM 160.93 133.79 161.37 147.08 161.37 147.08
TMV 144.71 125.86 157.20 140.23 157.20 140.23
TSLS 120.24 90.43 139.41 108.57 139.41 108.57
TTS 107.88 81.74 137.89 99.67 137.89 99.67

TTSSM 114.22 91.23 141.42 106.89 141.42 106.89
TYLCV 140.11 83.23 133.05 79.76 133.05 79.76

AVERAGE 140.31 105.74 148.27 114.63 148.27 114.63

Generation-FID of Adversarial-VAE alone, Adversarial-VAE + multi-scale convolution,
Adversarial-VAE + dense connection strategy, and the improved Adversarial-VAE, which
used multi-scale convolution and the dense connection strategy, are compared in Table 7.
The average FID score is 156.96, which is the lowest score, and it also obtained the lowest
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score in most categories. As can be seen from the table, the improved model reduced the
FID score for most types of disease, with an average FID score reduction of 4.81. It shows
that the improved model has a better generative ability. The generated images are shown
in Figure 11 based on Adversarial-VAE. And Figure 12 shows the generated images based
on VAE networks.

Table 6. Generation-FID comparison between different generative methods.

Generation-
FID

InfoGAN
[19]

WAE
[21]

VAE
[17]

VAE-GAN
[23]

2VAE
[22]

Adversarial-
VAE

healthy 221.86 202.06 186.37 167.46 179.83 162.57
TBS 232.88 221.85 190.71 178.75 187.09 179.96
TEB 183.09 169.42 158.43 132.42 153.65 133.65
TLB 277.65 227.51 192.38 184.64 199.17 180.71
TLM 235.07 219.42 200.15 200.90 196.47 197.45
TMV 210.91 211.38 191.24 214.60 196.78 210.54
TSLS 199.31 182.59 156.61 148.31 152.93 146.11
TTS 199.87 208.23 191.90 163.99 185.01 161.07

TTSSM 195.08 210.70 175.97 147.95 173.95 146.83
TYLCV 182.74 172.82 151.22 99.60 146.89 98.76

AVERAGE 213.85 202.60 179.50 163.86 177.18 161.77

Table 7. Generation-FID comparison of the proposed generative method.

Generation-FID
Adversarial-

VAE
Alone

Adversarial-
VAE +

Multi-Scale
Convolution

Adversarial-
VAE + Dense
Connection

Strategy

Improved
Adversarial-

VAE

healthy 162.57 162.64 167.63 171.63
TBS 179.96 170.29 176.3 167.53
TEB 133.65 128.28 130.81 126.84
TLB 180.71 175.15 170.42 166.92
TLM 197.45 194.81 191.42 187.79
TMV 210.54 202.39 198.28 189.09
TSLS 146.11 151.91 147.11 151.8
TTS 161.07 155.89 166.72 165.84

TTSSM 146.83 144.54 143.74 142.32
TYLCV 98.76 98.31 98.64 99.79

AVERAGE 161.77 158.42 159.11 156.96
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4.2. Identification Results and Analysis

The original training set contains 10,892 images. After using improved Adversarial-
VAE, the training set is expanded to 21,784 images. For comparative experiments, the
original data set is expanded twice by replication, namely 21,784 images. Three experiments
are carried out to train the classification network as shown in Figure 13 to identify tomato
leaf diseases. During the operation, the training set and the test set are divided into batches
by batch training. The batch training method is used to divide the training set and the test
set into multiple batches. Each batch trains 32 images, that is, the minibatch is set to 32.
After training 4096 images, the verification set is used to determine the retained model.
After training all the training set images, the test set is tested. Each test batch is set to 32.
All the images in a training set are iterated through as an iteration (epoch) for a total of
10 iterations. The model is optimized in using the momentum optimization algorithm and
the learning rate is set at 0.001.
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Table 8 shows the classification accuracy of the classification network trained with
the expanded training set generated by different generative methods. After training the
classification network with the original training set, the identification accuracy on the test
set is 82.87%; With the double original training set, the identification accuracy on the test
set is 82.95%, and after training the classification network with the training set expanded
by improved Adversarial-VAE, the identification accuracy reaches 88.43%, an increase
of 5.56%. Compared with the double original training set, it also improved by 5.48%,
which proves the effectiveness of the data expansion. The InfoGAN and WAE generative
models were used to generate samples for the training the classification network, but
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the classification accuracy was not improved, which can be understood as poor sample
generation and no effect was mentioned for training, as shown in Table 8.

Table 8. Classification accuracy of the classification network trained with the expanded training set generated by different
generative methods.

Classification
Alone

InfoGAN +
Classifica-

tion

WAE + Clas-
sification

VAE +
Classifica-

tion

VAE-GAN +
Classifica-

tion

2VAE + Clas-
sification

Improved
Adversarial-VAE +

Classification

Accuracy 82.87% 82.42% 82.16% 84.65% 86.86% 85.43% 88.43%

5. Conclusions

Leaf disease identification is the key to control the spread of disease and ensure healthy
development of the tomato industry. The deep neural network-based method requires
a lot of data for training. However, there is little data in many agricultural fields. In the
field of tomato leaf disease identification, it is a waste of manpower and time to collect
large-scale labeled data. Labeling of training data requires very professional knowledge.
All these factors lead to either the number and category of labeling being relatively small,
or the labeling data for a certain category being very small, and manual labeling is very
subjective work, which makes it difficult to ensure high accuracy of the labeled data.

To solve the problem of a lack of training images of tomato leaf diseases, an Adversarial-
VAE network model was proposed to generate images of 10 different tomato leaf diseases
to train the recognition model. Firstly, an Adversarial-VAE model was designed to generate
tomato leaf disease images. Then, the multi-scale residuals learning module was used to
replace the single-size convolution kernel to enhance the ability of feature extraction, and
the dense connection strategy was integrated into the Adversarial-VAE model to further
enhance the ability of image generation. The Adversarial-VAE model was only used to
generate training data for the recognition model. During the training and testing phase
of the recognition model, no computation and storage costs were introduced in the actual
model deployment and production environment. A total of 10,892 tomato leaf disease
images were used in the Adversarial-VAE model, and 21,784 tomato leaf disease images
were finally generated. The image of tomato leaf diseases based on the Adversarial-VAE
model was superior to the InfoGAN, WAE, VAE, and VAE-GAN methods in FID. The ex-
perimental results show that the proposed Adversarial-VAE model can generate enough of
the tomato plant disease image, and image data for tomato leaf disease extension provides
a feasible solution. Using the Adversarial-VAE extension data sets is better than using
other data expansion methods, and it can effectively improve the identification accuracy,
and can be generalized in identifying similar crop leaf diseases. In future work, in order to
improve the robustness and accuracy of identification, we will continue to find better data
enhancement methods to solve the problem of tomato leaf disease identification, which
can be applied to the detection networks.

This method was proposed based on improving the classification accuracy on the
basis of many labeled samples. At the beginning of this study, the most direct way was to
expand each class with one network, so that when new categories need to be added, only
one network needs to be trained with the samples of the new category, instead of retraining
with all samples. We also considered training only one network to generate data samples
of different categories by adding an input as a category control, but this has the side effect
of requiring several networks to be retrained if new categories need to be generated. If
there is no large amount of annotated data as training samples for training the generative
model, for example, disease leaves for another plant cannot cover the sample space, the
generative model cannot be directly trained in this way, and the number of samples needs
to be expanded first. In practice, it is difficult to collect disease leaf images, so the problem
of few-shot learning needs to be solved urgently. In summary, we will strive to achieve
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continuous improvement of the performance and try to apply it to practical agricultural
production.
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