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Abstract: Nitrogen uptake from various sources by plants capable of biological reduction of N2 in 

symbiotic systems with root nodule bacteria is influenced by many factors. The aim of the study 

was to examine the influence of the development stage and variety of pea (Pisum sativum L.) 

cultivated in years with different temperature and precipitation conditions on the dynamics of 

nitrogen uptake from the atmosphere (Ndfa), fertilizer (Ndff), and soil (Ndfs). Pre-sowing nitrogen 

fertilization with the 15N isotope and the isotope dilution method were used in the research. The 

highest rate of Ndfa uptake was noted between the three-internode stage and the stage of the first 

visible flower buds outside the leaves, while Ndff and Ndfs uptake was highest between the 4-leaf 

stage and the 3-internode stage. The lowest rate of Ndfa uptake was noted from sowing to the four-

leaf stage, while Ndff and Ndfs uptake was lowest between the stage when 50% of pods were of 

typical length and full maturity. Nitrogen uptake from all sources was similar for all pea cultivars, 

but significantly depended on the variable temperature and precipitation conditions (years of the 

study). 

Keywords: isotope 15N; legumes; nitrogen fertilization; nitrogen fixation; Pisum sativum; soil N 

reserves 

 

1. Introduction 

Leguminous plants are an extremely important element of crop rotations, leaving a 

valuable site for the succeeding plants: cereals, root crops, and industrial crops [1–3]. They 

can be important in addressing the need to reduce the negative effects of continual 

intensification of agricultural crop production by introducing sustainable production 

methods that maximize utilization of fertilizers and natural processes [2,4]. The most 

important benefit of leguminous plant cultivation is the enrichment of soil with nitrogen 

from the nitrogen fixation process (biological reduction of atmospheric nitrogen), which 

is also used by the succeeding crops [2,5]. It is estimated that assimilation of nitrogen 

through symbiosis of microorganisms with plants provides 90–170 million Mg of nitrogen 

to soils every year [6–8]. This represents 70–80% of the total amount of nitrogen 

accumulating in the soil in the nitrogen fixation process by all microorganisms (symbiotic 

and free living) [9,10]. The efficiency of atmospheric nitrogen reduction in symbiotic 

systems usually reaches up to 200 kg N·ha−1 (but sometimes even 500 kg N·ha−1) in one 

year [11,12]. The amount of biologically reduced nitrogen as well as the percentage of N 

from symbiosis depends in part on, the genetic properties of the leguminous plant and its 

symbiont, the growth phase, environmental factors, and agro-technical treatments that 

directly affect nitrogenase activity [4,13–16]. 

Temperature and water conditions have a particularly important effect on the 

efficiency of nitrogen fixation [17,18]. Differences in vegetative and generative growth and 

in the rate and efficiency of N2 fixation have also been noted between varieties of 
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individual legume species [18–20]. Research to date has involved older legume varieties 

whose morphological and utility characteristics have since been significantly changed 

through breeding. According to Abi-Ghanem and et al. [21], further research on a larger 

number of varieties is needed. 

Pea (Pisum sativum L.) is one of the most commonly cultivated plants in this family 

due to its high nutritional value and high yield potential. The multiple uses of its seeds, 

its beneficial effect on soil properties, and the possibility of obtaining a favorable site for 

succeeding crops were additional reasons for undertaking research on the amount of 

nitrogen taken up by peas from various sources, with particular focus on the possibility 

of soil enrichment with atmospheric nitrogen. The results of previous research on nitrogen 

uptake from the atmosphere by this species are quite inconsistent [11,12,22,23], and there 

is no precise data describing the uptake of this macronutrient from initial application of 

N and from soil reserves. 

The aim of the study was to determine the amount of nitrogen taken up from the 

atmosphere, mineral fertilizer, and soil reserves by two currently recommended pea 

cultivars, during six stages of growth, from the four-leaf stage to full maturity. Further, 

determined was the amount of nitrogen from each source removed from the field with the 

seed yield, as well as the amount of nitrogen introduced to the soil in the form of crop 

residues, which would be a source of this macronutrient for the succeeding crop. 

It was hypothesized that mineral fertilizer (applied at the low recommended starting 

rate of 30 kg N·ha−1) and soil reserves would be the dominant sources of nitrogen for pea 

in the four-leaf and three-internode stages, while the atmosphere would be the major 

source in subsequent growth stages. It was further hypothesized that the amount of 

nitrogen taken up by pea from different sources would vary depending on the cultivar. 

2. Materials and Methods  

2.1. Field Experiment 

In a field experiment conducted in Siedlce, Poland (52°10′12′′ N, 22°17′15′′ E) in 2015 

and 2016, pea (Pisum sativum L.) was grown in a traditional soil cultivation system. The 

soil was classified among Luvisols (LV), consisting of 81% sand, 17% silt, and 2% clay. 

Some properties of the soil are given in Table 1. The experiment was two-factorial, set up 

in a randomized block design in three replications. The first factor was two pea cultivars: 

‘Milwa’, a fodder cultivar, and ‘Batuta’, a multi-purpose cultivar. The second factor was 

the growth stage of pea (6 harvest dates according to the BBCH scale (Biologische 

Bundesantalt, Bundessortenamt und Chemische Industrie) [24]): (1) 4-leafstage, BBCH 14; 

(2) 3-internodestage, 33 BBCH; (3) stage of first visible single buds outside the leaves, 

BBCH 55; (4) full flowering stage, 65 BBCH; (5) stage when 50% of pods are of typical 

length, BBCH 75; and (6) full maturity, BBCH 90. 

To calculate the amount of nitrogen taken up by legumes from different sources by 

the isotope dilution method, a reference plant which lacks the capacity to live in symbiosis 

with root nodule bacteria must be grown in parallel. Cereals may be grown as reference 

plants [18,23,25]. In this study, the ‘Ella’ cultivar of spring barley (Hordeum vulgare L.) was 

grown in the same conditions as pea. The harvest dates for barley were also the same as 

for pea (6 dates). 

The experiment included 54 plots, 36 with pea and 18 with barley, each with an area 

of 1 m2. Winter rye was the forecrop for all test plants. 
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Table 1. Some properties of soil in the layer 0–0.25 m before foundation of experiment in 2015 and 

2016. 

Soil properties Unit 
Year 

2015 2016 

pH1 mol·dm-3 KCl - 6.6 6.5 

Ctotal 
g·kg−1 

34.2 23.5 

Ntotal 2.10 1.45 

PEgnera-Rhiema 

mg·kg−1 

309.0 301.0 

KEgnera-Rhiema 86.0 111.0 

Fe1 mol·dm-3 HCl 1327 1189 

Mo1 mol·dm-3 HCl 0.015 0.013 

B1 mol·dm-3 HCl 0.806 0.278 

Nitrogen was introduced into the soil before sowing of pea and spring barley, at 30 

kg N·ha−1 in the form of (NH4)2SO4 enriched with the 15N isotope. On the plots where pea 

and spring barley were harvested at BBCH stages 14-75 (5 harvest dates), 5% enrichment 

with 15N was applied. On the plots where the plants were harvested at full maturity, the 

level of enrichment with 15N was 10% (to test the effects for the succeeding crop). The 

phosphorus and potassium application rates were established after determining the 

available amounts of these elements in the soil (Table 1). Potassium was applied in an 

amount corresponding to 100 kg K·ha−1. Phosphorus was not applied, because the soil was 

shown to have very high content of this macronutrient in forms available to plants. 

Before sowing, the pea seeds were inoculated with Nitraginae, which contained 

symbiotic Rhizobium leguminosarum bacteria. Pea and spring barley were sown by hand 

on April 8 of both years in the amount of 110 germinating seeds per m2 and 500 

germinating grains per m2, respectively. No herbicides were used, and weeds were 

removed manually. 

Whole pea and spring barley plants were harvested by hand at the specified growth 

stages by digging them out of the soil with a spade to a depth of 0.25 m, separately from 

each plot. 

2.2. Laboratory Analyses 

All plants harvested at pea BBCH stages 14–75 were separated into roots and 

aboveground part, and at BBCH stage 90 pea seeds and barley grain were separated as 

well. The aboveground part included all the aboveground organs of peas and barley 

except the seeds or grain, which were separated at full maturity. Then the harvested 

separated parts were weighed, and representative samples were taken from each plot. The 

following were determined in all samples of the test plants: 

− dry matter (d.m.) content—70 °C 

− total nitrogen content—Kjeldahl method 

− enrichment with the 15N isotope—after wet mineralization by the Kiejdahl method 

and distillation to an acid solution (5% HCl), on the NOI-6e emission spectrometer 

(Leipzig, Germany). 

2.3. Weather Conditions 

Analysis of the weather during the growing season of pea and spring barley showed 

that the temperature and moisture conditions were varied in the years of the study (Tables 

2 and 3). 
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Table 2. Rainfall and air temperatures in 2015–2016, (Institute of Meteorology and Water Management, National Research 

Institute in Warsaw). 

Month 

Total Monthly Rainfall, mm Average Monthly Temperatures, °C 

Year Long-Term Mean 

1981–2014 

Year Long-Term Mean 

1981–2014 2015 2016 2015 2016 

III 53.1 46.4 29.6 4.8 3.3 2.0 

IV 30.0 50.2 33.4 8.2 8.9 8.1 

V 100.2 35.5 6.3 12.3 14.6 13.6 

VI 43.3 55.6 72.9 16.5 18.1 16.3 

VII 62.6 126.8 67.6 18.7 19.0 18.5 

Sum IV–VII 236.1 268.1 234.2 13.9 15.1 14.1 

Analysis of the precipitation needs of pea [26,27] and data on the amount of 

precipitation in its growing season (Table 2) shows that the total precipitation in 2015 was 

lower than optimal, while in 2016 it fully met the requirement. However, the distribution 

of rainfall in individual months of the growing season was unfavorable in both years of 

the experiment. Compared to 2016, in 2015 there was less rainfall in April, June, and July, 

and almost 3 times as much in May. Moreover, in the second year of pea cultivation, the 

air temperature during the entire growing season was higher than in 2015. Selyaninov’s 

hydrothermal index indicates that April and July of 2015 were moderately dry, May was 

very wet, and June was dry (Table 3). In 2016, April was moderately wet, May and June 

were dry, and July was wet. 

Table 3. Values of the Selyaninov hydrothermal index (k) during the vegetation periods 

of pea and spring barley and moisture characteristics (wm) of individual months. 

Month 

Year 

2015 2016 

k wm k wm 

IV 1.2 md 1.9 mw 

V 2.6 vw 0.8 d 

VI 0.9 d 1.0 d 

VII 1.1 md 2.2 w 

VIII 0.2 ed 1.1 md 

k ≤ 0.4—extremely dry (ed); 0.4 < k ≤ 0.7—very dry (vd); 0.7 < k ≤ 1.0—dry (d); 1.0 < k ≤ 1.3—

moderately dry (md); 1.3 < k ≤ 1.6—optimum (o); 1.6 < k ≤ 2.0—moderately wet (mw); 2.0 < k ≤ 

2.5—wet (w); 2.5 < k ≤ 3.0—very wet (vw); k > 3.0—extremely wet (ew). 

2.4. Calculations of Nitrogen Sources 

The percentages of nitrogen in the pea plants derived from different sources, i.e., 

from the atmosphere—(Ndfa), from mineral fertilizer—(Ndff), and from soil—(Ndfs), 

were calculated using formulas given by Rymuza et. al. [18], Kalembasa et al. [25], Azam 

and Farooq [28]: 

 the percentage of nitrogen derived from the atmosphere (%Ndfa): 

%Ndfa = 1 − (%15Nenrichment_fx/%15Nenrichemnt_nfx) (1)

 % 15N enrichment_fx-15N isotope enrichment in pea; 

 % 15N enrichment_nfx-15N isotope enrichment in the references plant—barley; 

 the percentage of nitrogen derived from the fertilizer (%Ndff): 

%Ndff = %15Nenrichment_fx/%15Nenrichment_fertilizer (2)
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 % 15N enrichment_fx-15N isotope enrichment in pea;
 
 

 % 15N enrichment_fertilizer-15N isotope enrichment of fertilizer; 

 the percentage of nitrogen derived from soil (%Ndfs): 

%Ndfs = 100 − (%Ndfa − %Ndff) (3)

 %Ndfa—% of nitrogen derived from the atmosphere; 

 %Ndff—% of nitrogen derived from the fertilizer. 

The amount of nitrogen referred to as "from soil (Ndfs)" included all sources except 

the atmosphere and mineral fertilizer (this was mainly nitrogen derived from soil 

reserves). 

The amount of nitrogen taken up from the atmosphere (Ndfa), fertilizer(Ndff) and 

soil reserves (Ndfs) was calculated by multiplying the percentage %Ndfa, %Ndff, and 

%Ndfs, respectively, by the total nitrogen uptake by pea. 

2.5. Statistical Analysis 

The results of the experiments were analysed by ANOVA. The dry weight of pea, 

nitrogen content (Figure 1), accumulation of N from different sources, total uptake and 

uptake per day in the period from sowing to harvest were analysed by three-way 

ANOVA: growth stages (1), cultivars (2) and years of research (3). The data representing 

means for cultivars and for years of research in only one growth stage—full maturity, 

were analysed by two-way ANOVA: cultivars (1), and years (2). The significance of 

sources of variation was checked by the Fisher–Snedecor test, and mean values were 

separated using the Tukey test at the significance level of p < 0.05. Statistica version 12 PL 

software (12 PL version, StatSoft Inc., Tulsa, OK, USA) was used for these calculations. 

 

Figure 1. Nitrogen content in dry weight of pea in following growth stages, g N·kg−1, (meanly from three replications, 

cultivars, and years), a, b, c, … —averages for the same separated part of the plant with different letters are significantly 

different, p < 0.05. 
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3. Results 

3.1. Dry Weight of Pea Plants 

The dry weight of the harvested pea plants was significantly dependent on the 

growth stage (Table 4) and years of research, but no significant effect of the cultivar was 

demonstrated (Table 5). 

Table 4. Dry weight of pea plants in following growth stages, g·m−2 (meanly from three replications, peas cultivars, and 

years of research ± SD). 

Part of Plant 
Growth stages (BBCH) 

14 33 55 65 75 90 

Seed  260.4 ± 79.1 

Above ground part 18.6 ± 3.7 a 74.1 ± 12.1 a 271.2 ± 62.3 b 491.5 ± 151.0 d 571.7 ± 129.3 e 407.2 ± 81.8 c 

Root 14.8 ± 2.7 a 20.9 ± 3.0 b 24.9 ± 4.7 cd 25.9 ± 4.3 d 21.7 ± 4.6 bc 13.3 ± 4.2 a 

Total mass 33.4 ± 2.4 a 95.0 ± 12.3 b 296.1 ± 65.7 c 517.4 ± 154.3 d 593.4 ± 133.2 e 680.8 ± 147.0 f 

a, b, c, ...—averages for the same separated part of the plant (in the rows) with different letters are significantly different, 

p < 0.05. 

Table 5. Dry weight of pea plants at BBCH stage 90, g·m−2 (means for cultivars and for years of research from three 

replications ± SD). 

Part of Plant 

Source of Variation 

Pea Cultivar Year of Research 

‘Milwa’ ‘Batuta’ 2015 2016 

Seed 259.5 ± 89.9 a 261.2 ± 65.5 a 334.5 ± 35.8 b 186.1 ± 14.5 a 

Aboveground part 409.1 ± 101.2 a 405.4 ± 55.9 a 461.3 ± 55.2 b 353.2 ± 67.0 a 

Root 13.9 ± 5.1 a 12.7 ± 3.1 a 016.6 ± 3.5 b  10.0 ± 1.5 a 

Total mass 682.5 ± 183.6 a 679.3 ± 97.5 a 812.4 ± 63.2 b 549.3 ± 67.8 a 

a, b—means for investigated factors with different letters in the rows are significantly different, p < 0.05. 

The weight of pea roots increased from the four-leaf stage to the stage of the first 

visible flower buds outside the leaves (Table 4). The root mass was similar at BBCH stages 

55 and 65. From the stage when 50% of the pods were of typical length to the stage of full 

maturity, a reduction in the weight of these organs was observed. The weight of the 

aboveground parts of the pea plants did not differ significantly between the 4-leaf stage 

and the 3-internode stage. An increase in the weight of the aboveground parts was noted 

from the stage of the first visible flower buds outside the leaves to the stage when 50% of 

the pods had reached typical length. The weight of the aboveground parts (without seeds) 

at full maturity was lower than at the stage when 50% of the pods were of typical length 

and at full flowering. The weight of the whole pea plants (the sum of weights of the 

separated parts) increased systematically from the four-leaf stage to full maturity. At full 

maturity, the average seed yield of 260.4 g·m−2 represented 38.2% of the total pea mass. 

The total weight of crop residues (sum of the aboveground parts and roots) was 420.5 

g·m−2. 

Under the conditions of the experiment conducted in 2016, the weight of the roots, 

aboveground parts, seeds and whole pea plants harvested at full maturity was 39.8%, 

23.4%, 44.4% and 32.4% lower, respectively, than in 2015 (Table 5). 

3.2. Nitrogen Content in Dry Wieght of Pea 

The nitrogen content in the roots, aboveground parts, and on average in the whole 

pea plants was significantly dependent on the growth stage (Figure 1). The roots 

contained the most nitrogen (40.4 g N·kg−1 d.m.) at the three-internode stage. From the 

stage of the first visible flower buds outside the leaves, the N content in the roots 

decreased up to the full maturity stage. The nitrogen content in the roots at the four-leaf 

stage and the stage of the first visible flower buds was similar. 



Agriculture 2021, 11, 81 7 of 14 
 

 

In the aboveground parts of the pea plants, the highest nitrogen content was obtained 

at BBCH stage 14 phase (49.4 g N·kg−1 d.m.). In subsequent growth stages, the content of 

this element in the aboveground parts decreased up to the full flowering stage. At BBCH 

stages 65 and 75 the concentration of nitrogen in the aboveground parts was similar. As 

in the case of the roots, the N content in the aboveground parts (without seeds) was also 

lowest on the last harvest date. The average nitrogen content in the whole plants was 

highest at the three-internode stage (44.8 g N·kg−1 d.m.) and lowest at full maturity (22.7 

g N·kg−1 d.m.). The changes in nitrogen content in the whole pea plants harvested at 

different BBCH growth stages can be presented in decreasing order as follows: BBCH 33 

> 14 > 55 > 65 > 90. The nitrogen content in the pea plants at BBCH stage 75 did not differ 

significantly compared to BBCH stages 65 and 90. 

The nitrogen content in the roots was 19.9% higher in pea grown in 2015 than in 2016 

(Table 6). The content of this macronutrient in the aboveground parts, seeds, and on 

average in the whole plants did not differ significantly between the two years of the study. 

The cultivar also did not significantly affect nitrogen content in any of the separated parts 

or an average in the whole plants. 

Table 6. Nitrogen content in dry weight of pea at BBCH stage 90, g N·kg−1 (means for cultivars, and for years of research 

from three replications ± SD). 

Part of Plant 

Source of Variation 

Pea Cultivar Year of Research 

‘Milwa’ ‘Batuta’ 2015 2016 

Seed 40.1 ± 1.8 a 38.3 ± 0.8 a 39.2 ± 1.9 a 39.2 ± 1.4 a 

Aboveground part 11.8 ± 1.4 a 13.5 ± 1.4 a 12.2 ± 1.6 a 13.1 ± 1.5 a 

Root 18.6 ± 1.6 a 19.0 ± 2.2 a 20.5 ± 1.0 b 17.1 ± 0.5 a 

Weighted average 22.6 ± 2.0 a 23.0 ± 2.1 a 23.5 ± 1.8 a 22.0 ± 2.0 a 

a, b—means for investigated factors with different letters in the rows are significantly different, p < 0.05. 

3.3. The Amount of Nitrogen Uptake from Different Sources 

The amount of nitrogen taken up from the atmosphere, mineral fertilizer, and soil 

reserves, as well as the total amount (sum from all sources) accumulated in the whole pea 

plants, differed significantly in successive growth stages (Table 7) and between years of 

the study (Table 8). 

The amount of nitrogen derived from the atmosphere in the whole mass of pea did 

not differ significantly between the 4-leaf stage and the 3-internode stage (Table 7). The 

amount of nitrogen taken up from this source increased successively in the stages of the 

first visible flower buds outside the leaves and full flowering. No significant differences 

were found in the amount of this macronutrient derived from the nitrogen fixation process 

in the whole pea plants harvested at BBCH stages 65, 75, and 90. 

The amount of nitrogen taken up from the mineral fertilizer by the whole pea plants 

increased between BBCH growth stages (14 and 33; 33 and 65; 55 and 90 (Table 7). The 

amount of nitrogen taken up from the mineral fertilizer did not increase significantly 

between BBCH stages 33 and 55; 55 and 65; 65 and 75; or 75 and 90. 

In the whole pea plants, the amount of nitrogen derived from soil reserves increased 

between BBCH growth stages 14 and 33; 33 and 65; 65 and 90 (Table 7). 

The total amount of nitrogen taken up by pea (sum of all sources) increased from the 

four-leaf stage through subsequent harvest stages up to full flowering. From the full 

flowering stage to full maturity, there was no significant increase in the total amount of 

nitrogen taken up by the plants (Table 7). 

On average for both cultivars and both years of the study, in pea harvested at full 

maturity the nitrogen uptake from the atmosphere, from soil reserves, and from mineral 

fertilizer was 92.1, 52.8, and 10.6 kg N·ha−1, respectively, which accounted for 59.2%, 

34.0%, and 6.8% of the total N uptake (Table 7). 
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Table 7. Amount of nitrogen taken up by pea from different sources in following growth stages, kg N·ha−1 (meanly from 

three replications, cultivars, and years ± SD). 

N Source Part of Plant 
Growth Stages (BBCH) 

14 33 55 65 75 90 

Ndfa  

(air) 

Seed  61.1 ± 24.0 

Aboveground part 0.9 ± 0.4 10.4 ± 4.1 52.1 ± 21.9 77.2 ± 30.5 85.3 ± 32.0 29.6 ± 8.3 

Root 0.5 ± 0.2 2.6 ± 0.7 4.5 ± 2.0 3.8 ± 1.8 2.8 ± 1.2 1.4 ± 0.6 

Sum 1.4 ± 0.8 a 13.0 ± 4.5 a 56.6 ± 23.6 b 81.0 ± 31.9 c 88.1 ± 32.9 c 92.1 ± 30.9 c 

Ndff 

(fertilizer) 

Seed  6.9 ± 2.8 

Aboveground part 1.3 ± 0.5 5.3 ± 0.9 7.7 ± 1.7 9.6 ± 2.5 9.9 ± 2.5 3.5 ± 0.5 

Root 0.6 ± 0.1 1.3 ± 0.3 0.6 ± 0.2 0.5 ± 0.1 0.4 ± 0.1 0.2 ± <0.1 

Sum 1.9 ± 0.6 a 6.6 ± 1.0 bc 8.3 ± 1.8 cd 10.1 ± 2.6 de 10.3 ± 2.6 de 10.6 ± 2.9 e 

Ndfs 

(soil) 

Seed  34.0 ± 9.7 

Aboveground part 6.8 ± 1.8 18.0 ± 4.0 30.0 ± 8.9 41.4 ± 13.3 48.8 ± 7.4 17.8 ± 3.9 

Root 3.4 ± 0.6 4.6 ± 1.1 2.9 ± 1.1 2.4 ± 0.8 1.8 ± 0.6 1.0 ± 0.3 

Sum 10.2 ± 2.1 a 22.6 ± 4.4 b 32.9 ± 9.7 bc 43.8 ± 13.9cd 50.6 ± 7.7 de 52.8 ± 9.4 e 

Total uptake 

(from all 

sources) 

Seed  102.0 ± 32.0 

Aboveground part 9.0 ± 1.2 33.7 ± 3.9 89.8 ± 30.1 128.2 ± 42.4 144.0 ± 36.4 50.9 ± 8.9 

Root 4.5 ± 0.5 8.5 ± 1.7 8.0 ± 3.2 6.7 ± 2.4 5.0 ± 1.8 2.6 ± 0.9 

Sum 13.5 ± 1.1 a 42.2 ± 4.6 b 97.8 ± 32.9 c 134.9 ± 44.4 d 149.0 ± 37.8d 155.5 ± 37.3 d 

a, b, ...—means for investigated factors with different letters in the rows are significantly different, p < 0.05. 

Table 8. Nitrogen uptake from different sources by pea at BBCH stage 90, kg N·ha−1 (means for cultivars, and for years of 

research from three replications ± SD). 

N source Part of Plant 

Source of Variation 

Pea Cultivars Year of Research 

‘Milwa’ ‘Batuta’ 2015 2016 

Ndfa 

(air) 

Seed 62.5 ± 28.5 59.6 ± 18.3 84.1 ± 7,6 38.0 ± 7.1 

Aboveground part 27.1 ± 8.5 32.2 ± 7.2 36.0 ± 3.6 23.3 ± 6.6 

Root 1.5 ± 0.8 1.4 ± 0.5 2.0 ± 0.4 0.8 ± 0.2 

Sum 91.1 ± 37.0 a 93.2 ± 23.1 a 122.1 ± 8.1 b 62.1 ± 8.5 a 

Ndff 

(fertilizer) 

Seed 7.0 ± 3.2 6.8 ± 2.2 8.8 ± 2.7 5.1 ± 0.8 

Aboveground part 3.3 ± 0.5 3.6 ± 0.5 3.7 ± 0.3 3.2 ± 0.6 

Root 0.2 ± <0.1 0.2 ± <01 0.2 ± <0.1 0.1 ± <0.1 

Sum 10.5 ± 3.3 a 10.6 ± 2.6 a 12.7 ± 2.6 b 8.4 ± 0.6 a 

Ndfs 

(soil) 

Seed 34.6 ± 11.2 33.4 ± 7.8 38.3 ± 10.9 29.8 ± 5.3 

Aboveground part 17.0 ± 4.8 18.7 ± 2.6 16.0 ± 1.5 19.6 ± 4.7 

Root 1.0 ± 0.3 0.9 ± 0.2 1.2 ± 0.2 0.7 ± 0.1 

Sum 52.6 ± 10.9 a 53.0 ± 7.6 a 55.5 ± 10.6 b 50.1 ± 6.9 a 

Total uptake  

(from all sources) 

Seed 104.1 ± 37.8 99.8 ± 24.7 131.2 ± 17.5 72.9 ± 5.4 

Aboveground part 47.4 ± 9.2 54.5 ± 7.1 55.7 ± 3.9 46.1 ± 9.8 

Root 2.7 ± 1.1 2.5 ± .0.8 3.4 ± 0.7 1.6 ± 0.3 

Sum 154.2 ± 44.0 a 156.8 ± 29.1 a 190.3 ± 15.7 b 120.6  ± 9.7 a 

a, b—means for investigated factors with different letters in the rows are significantly different, p < 0.05. 

The amount of nitrogen taken up from the atmosphere, mineral fertilizer, and soil 

reserves, as well as the total amount taken up from all sources by pea harvested at full 

maturity, was lower by 49.1%, 33.9%, 9.7%, and 36.6%, respectively, under the conditions 

of the experiment conducted in 2016 than in 2015 (Table 8). 

The total amount of nitrogen taken up by pea harvested at full maturity, as well as 

the amounts derived from the atmosphere, mineral fertilizer, and soil reserves, was not 

significantly influences by the cultivar (Table 8). 

The varied rates of nitrogen uptake can be seen in the amount of this element taken 

up per day of the growing season (Table 9). The lowest rate of nitrogen uptake by pea 
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from the atmosphere and in total from all sources was found in the period from sowing 

to the four-leaf stage and from the stage when 50% of the pods had reached typical length 

to full maturity, while the highest rate was found between the three-internode stage and 

the stage of the first visible flower buds outside the leaves. The lowest rate of nitrogen 

uptake from mineral fertilizer was noted between full flowering and full maturity, while 

the rate of intake from soil reserves was lowest between the stage when 50% of the pods 

were of typical length and full maturity. The highest rate of nitrogen uptake from mineral 

fertilizer and soil reserves per day was attained between the 4-leaf stage and the 3-

internode stage. The rate of nitrogen uptake per day from soil reserves did not differ 

significantly between BBCH stages 14 and 65. 

Table 9. Amount of nitrogen taken up by pea (whole plant) from various sources per day during the period from sowing 

to harvest, kg N·ha−1. 

N Source 

Intervals between Growth Stages, (BBCH) Meanly during  

the Period from Sowing to 

Harvesting 
Sowing-14 14–33 33–55 55–65 65–75 75–90 

Ndfa 

(air) 
0.046 a 0.833 b 3.253 d 1.895 c 0.794 b 0.128 a 1.158 

Ndff 

(fertilizer) 
0.062 b 0.333 d 0.130 c 0.134 c 0.019 a 0.011 a 0.115 

Ndfs 

(soil) 
0.335 b 0.882 d 0.760 dc 0.872 d 0.697 c 0.071 a 0.603 

Total uptake 0.443 a 2.048 c 4.143 e 2.901 d 1.510 b 0.210 a 1.876 

a, b—means for investigated factors with different letters in the rows are significantly different, p < 0.05. 

The rate of nitrogen accumulation per day during the whole period from sowing to 

harvesting of pea was the highest from the atmosphere—1.158 kg N·ha−1; lower from soil 

reserves—0.603 kg N·ha−1; and the lowest from mineral fertilizer—0.115 kg N·ha−1. The 

total uptake of nitrogen (as the sum from all sources) per day from sowing to full maturity 

was 1.876 kg N·ha−1 on average. 

At the full maturity stage of pea on average 102.0 kg·ha−1 of nitrogen was removed 

from the field with the seeds, including 61.1 kg N·ha−1 derived from the atmosphere, 6.9 

kg N·ha−1 from mineral fertilizer, and 34.0 kg N·ha−1 from soil reserves (Table 10). The pea 

seeds accumulated about two-thirds of the nitrogen derived from individual sources and 

all sources in total. 

Table 10. The amount of nitrogen removed from the field with seeds and introduced into the soil 

with crop residues of peas at BBCH stage 90, kg N·ha−1. 

Part of Plant 
N Sources 

Sum 
Ndfa (Air) Ndff (Fertilizer) Ndfs (Soil) 

Crop residues 31.0 3.7 18.8 53.5 

Seeds 61.1 6.9 34.0 102.0 

Sum 92.1 10.6 52.8 155.5 

At the full maturity stage of pea, the amount of nitrogen introduced into the soil with 

the roots and aboveground parts (without seeds) averaged 53.5 kg·ha−1, including 31.0 

kg·ha−1 derived from the atmosphere—(actual soil enrichment), 3.7 kg·ha−1 from mineral 

fertilizer, and 18.8 kg·ha−1 from soil reserves (Table 10). 

4. Discussion 

Pea can be grown for green fodder or protein-rich seeds. It has a very high crop yield 

potential, but in practice it has low and unstable yield due to its high sensitivity to agro-

technical and habitat factors, especially weather conditions during the growing season 

[29–33]. Precipitation totals and distribution are the factors determining the yield of pea 
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[29,34,35]. Excessively high temperature during the flowering period alters the course of 

some phenological stages of pea [36]. At higher temperatures, it finishes flowering earlier 

and also begins to bud and ripen a few days earlier than plants growing at optimum 

temperatures. The present study showed a strong reaction of pea to high temperature and 

uneven precipitation distribution. In the unfavourable weather conditions of May and 

June 2016 (a dry period with limited precipitation and high air temperatures), i.e., during 

the intensive vegetative growth and generative development of peas (from BBCH 14 to 

75), a smaller harvested mass of peas was obtained compared to 2015. A decrease in the 

weight of pea plants and seed yield are a consequence of water stress, which causes the 

stomata to close in order to reduce water loss, thus reducing the rate of photosynthesis 

[37]. In the present study, after the period of low precipitation in May and June 2016 (dry 

period), a large amount of rainfall was recorded in July (half of the species’ rainfall 

requirement, wet month). Analysis of the dry weight obtained and the yield of pea seeds 

in 2016 indicates that the heavy rainfall during this period did not compensate for the 

yield losses caused by the earlier long period of drought. In contrast, in the first year of 

the research the inadequate precipitation noted in June was compensated for by water 

reserves from the heavy rainfall in May (very wet month). 

Pea can take up nitrogen from various sources: from the atmosphere as a result of 

symbiosis with Rhizobium leguminosarum, from fertilizers, and from soil reserves. Our 

results partially confirm the research hypothesis that mineral fertilizer and soil reserves 

would be the main sources of nitrogen for pea at the four-leaf stage and three–internode 

stage, while the atmosphere would be the main source in subsequent stages of growth 

and development. The analysis of the percentage share of nitrogen taken up from various 

sources by pea indicates that in the four-leaf stage and three-internode stage, the 

dominant source of this macronutrient was soil reserves (Figure 2). In the total nitrogen 

uptake, the percentage of nitrogen originating in the soil reserves in these growth stages 

was 75.7% and 53.6%, respectively. The rate of nitrogen uptake from this source was also 

highest up to the stage of the first visible flower buds outside the leaves. The small 

percentage of nitrogen from the atmosphere in the four-leaf stage (10.4% on average) may 

be due to the formation of a symbiotic system with root nodule bacteria during this period. 

 

Figure 2. Percentage of nitrogen uptake by pea from different sources (Ndfa—from atmosphere, Ndff—from fertilizer, 

Ndfs—from soil) in following growth stages, % (meanly from three replications, pea cultivars and years of research), a, b, 

c, …—averages for the same sources of nitrogen with different letters are significantly different. 

Herdina and Silsbury [38] report that symbiosis and reduction of N2 nitrogen begin 

on about the 20th day and cease before seed filling begins. The process is most intensive 

immediately before and during flowering. In subsequent growth stages it is inhibited, 

which is associated with a decrease in the rate of carbon dioxide assimilation and a 
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reduction in the transport of assimilates to the root nodules. Lower demand for nitrogen 

results in an increase in the concentration of amino acids in the nodules and leads to their 

slow decomposition. Jensen [39] also found that symbiotic nitrogen fixation is not uniform 

throughout the growth and development of pea and decreases at the end of the growing 

season. Marrou et al. [40] report that this process slows down significantly at the 

beginning of the seed filling stage. Schiltz et al. [41] observed a decrease in the rate of 

atmospheric nitrogen reduction after the pea flowering period. In our research, the rate of 

nitrogen uptake from the atmosphere increased up to the stage of the first visible flower 

buds outside the leaves. The highest nitrogen uptake from this source per day of 

vegetation was recorded between the three-internode stage and the stage of the first 

visible flower buds outside the leaves. In subsequent development stages, the rate of 

reduction of atmospheric nitrogen decreased. Similar relationships were found for the 

total (rate of nitrogen uptake from all sources as for the rate of nitrogen uptake from the 

atmosphere. The highest rate of nitrogen uptake from easily available forms introduced 

into the soil in the form of mineral fertilizer () was obtained between the 4-leaf stage and 

the 3-internode stage. 

There is some difficulty in generalizing how much biologically reduced nitrogen can 

be taken up by different leguminous plant species in different regions and cultivation 

systems [42]. The process of symbiotic nitrogen fixation is strongly dependent on 

environmental factors, such as temperature, moisture, and soil type, reaction, and nutrient 

content [43–45]. Duzdemir et al. [11] state that the amount of nitrogen taken up by peas 

and derived from nitrogen fixation ranges from 50 to 150 kg N·ha−1. In a cold and wet 

climate, pea uptake can reach 286 kg N·ha−1 [22], while according to Armstrong et al. [46], 

it can exceed 100 kg N·ha−1. In our experiment, pea at full maturity took up an average of 

92.1 kg N·ha−1 from the atmosphere, with significant differentiation between the years of 

the research: 122.1 and 62.1 kg N·ha−1. The results indicate that temperature and 

precipitation conditions substantially influenced both the yield, which was presented at 

the beginning of this section, and the amount of nitrogen taken up from the atmosphere 

and from other sources (mineral fertilizer and soil reserves). The amount of nitrogen taken 

up by pea from the atmosphere, from mineral fertilizer, and from soil reserves varied 

between the two years of the research, as did the total weight of plants and the seed yield. 

The pea harvested in 2015 had a higher percentage of nitrogen derived from the 

atmosphere and a higher amount of N from this source than in 2016. Therefore, in terms 

of the efficiency of biological fixation of N2, the more beneficial year was the one with a 

lower average temperature and lower precipitation over the entire growing season, but 

with heavy rainfall in May (very wet month), which may also have affected water 

availability in June. Wysokinski et al. [23], examined the amounts of nitrogen taken up by 

peas from various sources in a pot experiment conducted in a greenhouse where the 

temperature was much higher than the outside temperature. They found that a small 

percentage of nitrogen was derived from the atmosphere in the whole pea plants: 9.6%, 

9.2%, and 15.0%, at the start of flowering, and full flowering and full maturity, 

respectively. These authors suggest that, apart from the higher temperature, the small 

percentage of nitrogen from the atmosphere in the total amount in the yield could also 

have been the effect of mineral nitrogen introduced into the soil before sowing in the 

amount of 0.05 kg−1 of soil (which, given the weight of the arable soil layer on 1 ha 

amounting 3·106 kg, comes to 150 kg N·ha−1). Researches’ opinions on initial nitrogen 

application rates are varied. Some recommend low pre-sowing application of nitrogen, at 

25–30 kg N·ha−1, for cultivation of leguminous plants [47]. Clayton et al. [48] demonstrated 

that tan initial nitrogen application rate above 40 kg·ha−1 in pea cultivation significantly 

inhibited the formation of root nodules. Some authors pay special attention to the content 

of mineral forms of nitrogen in soil and their inhibitory effect on the binding of 

atmospheric nitrogen [49]. According to Voisin et al. [50], in favorable conditions and with 

low soil nitrogen content, pea can take up to 80% of this element from the air. In present 

study, the percentage of nitrogen from the atmosphere (from the full flowering stage to 



Agriculture 2021, 11, 81 12 of 14 
 

 

full maturity ranged from 56.7% to 58.6%. The reason for the slightly lower percentage 

share of nitrogen derived from the air and the increase in the pool from soil reserves 

compared to the experiment by Voisin et al. [50] may have been high soil nitrogen content. 

High soil nitrogen content, caused by such factors as intensive agriculture and the 

application of high levels of mineral nitrogen, delays nodulation and the start of 

atmospheric nitrogen fixation, and also reduces the amount of this element taken up by 

leguminous plants from the air [51,52]. In our research, at full pea maturity the combined 

share of nitrogen from soil resources and mineral fertilizer was 42.4% of the total nitrogen 

accumulated in the whole mass of pea plants. A low level of mineral nitrogen (30 kg 

N·ha−1) was applied before sowing (methodological requirement of the research), and its 

average share from this source in peas harvested at full maturity was small (6.8%). 

Whole green pea plants can be introduced into the soil as green manure. Crop 

residues are also most often used in this way. Nitrogen introduced into the soil with this 

organic matter may be taken up by succeeding crop, and its amount largely determines 

the forecrop value of legumes [1,23,53]. The application of whole pea plants at BBCH 

stages 55, 65 and 75 and crop residues (roots and aboveground parts, without seeds) at 

BBCH stage 90 would introduce 97.8, 134.9, 149.0, and 53.5 kg N·ha−1, respectively, to the 

soil, of which 56.6, 81.0, 88.1, and 31.0 kg·ha−1 would be nitrogen from the atmosphere 

actual nitrogen enrichment of the soil. This pool may be a significant source of nitrogen 

for the succeeding plants. It is therefore necessary to continue research to determine the 

availability of nitrogen introduced into the soil with crop residues of pea for subsequent 

crops and to determine the utilization of this macronutrient from the atmosphere and 

from mineral fertilizer. 

5. Conclusions 

The main source of nitrogen for pea in the initial growth stages (BBCH 14, and 33) 

was soil reserves, while from BBCH stage 55 to 90 it was the atmosphere. Mineral fertilizer 

applied at rate of 30 kg N·ha−1 was not found to be significant source of nitrogen for pea. 

The rate of nitrogen uptake by pea from the atmosphere (3.253 kg N·ha−1 per day) and 

from all sources in total (4.143 kg N·ha−1 per day) was highest between the three-internode 

stage and the stage of the first visible flower buds outside the leaves, while the rate of 

uptake from mineral fertilizer (0.333 kg N·ha−1 per day) and from soil reserves (0.882 kg 

N·ha−1 per day) was highest between the 4-leaf stage and the 3-internode stage. The rate 

of nitrogen uptake from the atmosphere (0.046 kg N·ha−1 per day) was lowest from sowing 

to the 4-leaf stage, while from mineral fertilizer (0.011 kg N·ha−1 per day), from soil 

reserves (0.071 kg N·ha−1 per day), and in total from all sources (0.210 kg N·ha−1 per day) 

it was lowest between the stage 50% of pods were of typical length and the full maturity 

stage. The main site of nitrogen accumulation (from all sources) was the seeds with 65.6% 

of the total nitrogen taken up by pea. Of the 102.0 kg N·ha−1 accumulated in the seeds 61.1 

kg N·ha−1 was from the atmosphere 6.9 kg N·ha−1 from mineral fertilizer, and 34.0 kg N·ha−1 

from soil reserves. Soil enrichment with atmospheric nitrogen introduced with crop 

residues (roots, straw, and stripped pods) was minor, amounting to 31.0 kg N·ha−1. 
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