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Abstract: Food security is considered as the most important global challenge. Therefore, identifying
long-term drivers of food security and their connections is essential to steer policymakers determining
policies for future food security and sustainable development. Given the complexity and uncertainty
of multidimensional food security, quantifying the extent of uncertainty is vital. In this study, we
investigated the uncertainty of a coupled hydrologic food security model to examine the impacts
of climatic warming on food production (rice, cereal and wheat) in a mild temperature study site
in China. In addition to varying temperature, our study also investigated the impacts of three CO2

emission scenarios—the Representative Concentration Pathway, RCP 4.5, RCP 6.0, RCP 8.5—on
food production. Our ultimate objective was to quantify the uncertainty in a coupled hydrologic
food security model and report the sources and timing of uncertainty under a warming climate
using a coupled hydrologic food security model tested against observed food production years.
Our study shows an overall increasing trend in rice, cereal and wheat production under a warming
climate. Crop yield data from China are used to demonstrate the extent of uncertainty in food security
modeling. An innovative and systemic approach is developed to quantify the uncertainty in food
security modeling. Crop yield variability with the rising trend of temperature also demonstrates a
new insight in quantifying uncertainty in food security modeling.

Keywords: food security; modeling; uncertainty; metric; new insights; climate change

1. Introduction

Food security is an integral part of sustainable development. Many factors like
climate change, COVID-19, lack of proper planning, aging farmers, massive bee die-off,
soil erosion, genetic engineering, land development and uncertainty in future modeling
make it a complex challenge. Understanding long-term drivers of food security and
their interactions is needed to guide policymakers deciding on policies for future food
security. Given the complexity and uncertainty of multidimensional food security, model-
based scenario analysis is widely considered as a useful tool [1] for future projections
and decision-making. A systemic approach is needed; instead of looking at individual
indicators, their interlinkages must be considered. Efforts have also been made to improve
the understanding of undernourishment drivers from a conceptual and an empirical
perspective. Hasegawa et al. (2015) referred to the central drivers of future risk of food
security and summarized that population growth and equality are essential elements
in its long-term assessment [2]. However, to date, the empirical innovations have not
been largely incorporated into quantitative perspective work. Scenario studies with a
particular focus on food security frequently use a set of three indicators: food availability
(kilocalories per person per day), hunger indicators (pervasiveness of undernourishment)
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and food prices (mostly for cereals) [2–4]. While the Agricultural Model Intercomparison
and Improvement Project (AgMIP) [5] has examined and narrowed the differences between
models (in estimating long-term run impacts of climate change on agriculture: production,
prices) through systematic model intercomparison [6–11], less progress has been made on
the other dimensions (e.g., time-varying parameter) of food security.

Moreover, the key food security uncertainties identified by stakeholders are (i) equality,
(ii) lifestyle and (iii) natural resources (sustainability), recognizing that the distribution of
growth is crucial next to the sustainability of choices [11]. As the extent of uncertainty is
wide and needs to quantify for the welfare of uncertain people living without food, this
study developed an innovative approach that includes cross-correlation of crop yields
with the future time domain, including different emission scenarios—the Representative
Concentration Pathway, RCP 4.5, RCP 6.0, RCP 8.5—to quantify the uncertainty in food
security modeling.

A first key contribution of this paper is to develop a methodological framework to
quantify the spectrum of time-varying uncertainty in food security modeling, considering
the variability in crop yield. Then, a second key contribution of this paper is accounting for
the comprehensive dynamic character (variability in the future domain-changing correla-
tions with different emission scenarios—the Representative Concentration Pathway, RCP
4.5, RCP 6.0, RCP 8.5) of the uncertainty in food security modeling.

This paper is organized as follows: Section 1.1 presents the uncertainty in the model-
ing process, and the following subsection describes the uncertainty in the food security
model and the climate change impacts in different types of food security models used;
Sections 2 and 3 describe the data and explain the methods of model simulation, and pro-
vide an evaluation of the proposed scheme, focusing on the extent of the uncertainty
analyses; Section 4 discusses the results obtained with reference to crop yield with the
selection of the different types of crops; and finally, Section 5 summarizes the key findings
and outlines the scope of future work.

1.1. Uncertainty in Modeling Process

Uncertainty is an inherent feature of any modeling implementation, irrespective of
the model requirements, context, features or agility [12]. This is particularly true in the
modeling of food security systems, which are subject to a lack of perfect knowledge of
economic processes and limited or imperfect observations. One of the preliminary steps
in a modeling exercise is to identify the system of interest, subject to the model scope and
limited knowledge of the system, to ultimately reduce uncertainty.

The sources of uncertainty are generally well-defined in modeling (Figure 1), even if
they may not be easily quantified in any specific modeling task. First, there are errors in
the measurements of meteorological or any climate-related forcing (mainly rainfall) due to
many reasons [13–18], in particular, including the errors of interpolation from measurement
points to the point of interest [17]. The errors of interpolation frequently come from sparse
rainfall samples to capture the real rainfall variability and related interpolation model
errors [19,20]. Measurement errors also exist in the discharge data [21] to which we train
our model during calibration processes.

In fact, there are uncertainties in measurement/estimation of every component of
a system balance to varying degrees, depending on the component [22–25], for instance,
inadequate spatiotemporal resolution of snowpack data, river discharge, groundwater
flow, land use change and human water abstraction/return flows. Considering catchment
topography and vegetation patterns, the largest uncertainty in estimation could be within
evapotranspiration, especially in the agroeconomic zone [26].
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Second, every component of a complex model is subject to uncertainties, even those
that we usually would consider as accurate [27–32]. These structural uncertainties might
differ depending on the type of model, distributed or lumped, size of subunits, etc. Uncer-
tainty also varies depending on what models are used and where they are applied (e.g., in
a natural, urbanized or rural catchment) [33]. In addition, the bases of all mathematical
models are extracted from an equation, and frequently the equation solution will require
simplifications, causing uncertainty. Oversimplification of the modeled system [16,34,35],
or numerical error such as truncation error, might enhance with time-inducing, misleading
results. Moreover, the numerical algorithm used for solving the equations could be sensi-
tive to some conditions [36–38]. Simulating outputs from multiple model components and
model choices can help to improve this.

We understand different uncertainty sources (Figure 1) but they are reliant on the
identification of appropriate model hypotheses. The difficult problem of characterizing
model structure adequacy is now attracting considerable attention, and recent work based
on information theory may help to avoid those methods based on model structure selec-
tion [29].

The third source of uncertainty frequently cited is due to incorrect conceptualization
and the values of parameters used [32]. In general, models incorporate many parameters
that typically require calibration via field measurement or statistical methods [39]. The
relative contribution of parameter uncertainty/structural identifiability to a model’s total
uncertainty can be significant, considering the type of model used and the catchment
response [40]. Parameter uncertainty can result in a wide spectrum of values for any
particular model output. However, significant research in model optimization has helped
historically to reduce the impacts of parameter uncertainty. By retaining only realistic
parameter values, the overall model uncertainty can be reduced [41].

Finally, output uncertainty is also considered as an important source of uncertainty.
Usually, this source of uncertainty depends on the summation of input uncertainty, but
does not correlate with prediction accuracy when used in a forecasting system [42]. Several
output variables might be predicted in the modeling system aside from the water resources
economic response, like water content in the soil profile or ground water level, which can
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be used for retaining realistic parameter sets. Recognizing inherent uncertainties in these
observations can help produce more realistic estimates of parameter uncertainty along
with total model uncertainty [43].

Overall, uncertainty in food security modeling arises from several sources: model
structure, parameters, observational input data and output used to drive and evaluate the
model (Figure 1). A useful first step in identifying the sources of uncertainties is to evaluate
how models are defined and constructed.

1.2. Food Security Models and Climate Change Impacts
1.2.1. Trends of Food Security Models

In the course of the past decade, simulation-based models (Table 1) of crop growth
have increasingly been used to comprehend how climate change may affect the world’s
ability to produce food [44]. The International Food Policy Research Institute (IFPRI) has
commenced a major sustained endeavor to analyze changes in the productivity of major
crops across the entire world. The results are integrated into economic modeling efforts
ranging from household to country-level economy-wide models to the global agricultural
sector partial-equilibrium economic model known as IMPACT [45].

Table 1. Typical models used in the global food security setup and appraisal studies.

Model World Food
System Model Watersim IMPACT GLOBE IMAGE ABARES Agrobiom

Type CGE PE PE CGE IA PE Biomass

Economy coverage Total economy Agriculture
and water Agriculture Total

economy Agriculture Agriculture Agriculture

Spatial scale 34 Regions 282
Sub-basins 115 Regions 19 Regions

24 Regions,
0.51_0.51

grid
37 Regions 149 Regions

Sectoral scale 10 Sectors 32 Com-
modities 32 Commodities 12 Sectors 12 Commodi-

ties
33 Commodi-

ties
5 Biomass
categories

Institution IIASA, Austria
IWMI-
IFPRI,
USA

IFPRI, USA

Oxford
Brookes

University,
UK

PBL, The
Netherlands

ABARES,
Australia

INRA/CIRAD,
France

Documentation [44] [46] [45] [47] [48] [49] [50]

Food prices Equilibrium prices Equilibrium
prices Equilibrium prices Equilibrium

prices n.a.

Computation
and

estimation of
food security

indicators.

Calorie availability No information on
calculation

No infor-
mation on

calcula-
tion.

Post calculation
using equilibrium
food supply from
model combined

with calorie
conversion factors

n.a. n.a. Equilibrium
prices n.a.

Undernourishment

Post estimation
using the ratio of
average national

calorie availability,
relative to

aggregate national
food requirements
from FAO as inputs

n.a.

Post estimation
using the ratio of
average national

calorie availability,
relative to

aggregate national
food requirements
from FAO as inputs

n.a.

Post
calculation

using calorie
availability
and FAO

data on food
intake.

n.a.

Post
calculation

using
equilibrium
food supply
from model

combined with
calorie

conversion
factors

Most interestingly, crop modeling launches at the field level, and scaling this up to the
global level is challenging. As climate data need to be collated, processed and formatted,
representative crop varieties and planting calendars must be chosen [46]. Global economic
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models have been increasingly used to project food and agricultural developments for long-
term time horizons, but food security aspects have often been limited to food availability
projections [45]. In this paper, we propose a broader framework to explore the future of
food security with a focus on crop yield and a reasonable proxy for quantifying the relation
with temperature to crop yield for specific locations, considering available data.

The economy-wide computable-equilibrium model, MAGNET-IMAGE, captures eco-
nomic and environmental interactions through the entire economic and environmental
system, considered as high potential to predict [47]. On the other hand, the land-focused
partial-equilibrium model, GLOBIOM, zooms in on the interlinkages between agricultural
practices and the environment [48]. Both models (MAGNET-IMAGE and GLOBIOM)
are (recursively) dynamic-, multi-country or region-based, and multiproduct models. A
summary of the main characteristics of the models is presented in Table 1. The modeling
framework is used to project developments in each future world between 2010 and 2050, in
10-year time steps. In this article, our analysis follows the 20-year time steps to demonstrate
the uncertainty and correlations in food security modeling.

As there is a prolific supply of scenarios in the field of climate change [51], most food
security studies use such climate-related scenario frameworks. For example, the Shared
Socioeconomic Pathways (SSPs) distinguish five global pathways portraying the future
evolution of key aspects of society defined along two axes: (i) socioeconomic challenges to
mitigation and (ii) socioeconomic challenges to adaptation [52]. Some SSP studies have
found that climate change and mitigation options have profound implications for food
security [2,10,11]. These climate-focused SSPs are noticed to be deficient as enthusiastic
food security scenarios in terms of addressing inequality by a diverse group of stakeholders.
Saline-tolerant crops, drought-tolerant crops, water-saving agro-based farming and rotated
crops can be good examples.

1.2.2. Climate Change Impact on Modeling Process

The unfolding impacts of climate change on hydrology and water resources, especially
in the form of extreme hydrologic events (e.g., floods), highlight the need to determine
the resilience of current approaches to hydrologic modeling and associated environmental
and socioeconomic planning and management responses [53,54]. We have entered the era
of the anthropocene, in which the cumulative impact of human activity has significantly
affected the earth’s ecosystems, environment and weather patterns. It is now evident that
the nature of flood and drought extremes is changing as a result of global temperature
rise [55,56].

Global mean atmospheric temperatures have risen one degree centigrade since prein-
dustrial times and it is now generally acknowledged that such an increase in extreme
weather is due to human-induced climate change. The recognition of climate change and
its impacts has triggered discussions over potential compensation for those communities
who have suffered losses and damage due to associated weather extremes [57]. Deter-
mining a valid loss and damage framework for climate change-induced impacts is, and
will likely continue to be, a highly complex and contentious issue, particularly given the
difficulties in definitively separating climate change-induced impacts from natural climatic
variation. Climate change impacts include [58,59] slow onset events (such as salinity in
coastal areas due to sea level rise), rapid onset events (such as cyclones and floods) and
associated socioeconomic losses [60]. Such damage, in turn, causes forced displacement
and migration, raising the increasingly urgent need to make financial provisions to support
affected and displaced people around the world [58].

The assessment of climate change impacts on food production using water resources
is made difficult by known uncertainties in the use of climate projections from Global
Climate Models (GCMs) [61–63]. Currently, the general consensus among the scientific
community is that overall annual precipitation may not change much, but subannual
patterns of rainfall could change significantly, with greater precipitation in the wet season
and less in the dry season [64–67]. Paradoxically, despite little change in annual rainfall
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totals, this will likely lead to more extreme flooding and more droughts (and reductions in
moderate floods) [68]. This scenario is already apparent, as rainfall patterns become more
erratic and unpredictable around the world.

The three main sources of uncertainty in assessing climate change impacts using
climate projections can be seen in GCM ensembles, i.e., uncertainties due to the selected
model structure, emissions scenarios and natural variability. The Intergovernmental Panel
on Climate Change (IPCC) gathers reviews and integrates GCMs in its Climate Model
Intercomparison Project (CMIP). In the most recent fifth phase of the project, CMIP5
(released in 2013) advanced the spatial resolution and parameterization of its predecessor,
CMIP3 (2010), but it still demonstrates significant uncertainty in climate projections at
the global scale. A key question is how to integrate such uncertainty in the use of these
projections for applications such as flood and food damage assessment processes at the local
level, where floods occur. Recent work [69] has derived metrics for efficiently quantifying
uncertainty in projections from CMIP5. The square root of error variance (SREV) specifies
uncertainty as a function of time and space, and decomposes the total uncertainty in
climate projections into its three sources. Such a methodology could prove to be a powerful
metric for quantifying the extent of uncertainty in assessing climate change impacts at the
catchment scale.

Uncertainty in food security modeling estimates can lead to significant over- or under-
investment and can result in either needlessly expensive over-preparedness or dangerously
inadequate flood mitigation and protection measures. As the uncertainties in estimates
affect decision-making, quantifying this uncertainty can provide an insight into potential
errors and help improve the decision-making process [70,71]. Food security assessment is
an essential for resource management and supporting policy development.

Food security risks are expected to increase across the globe due to increasing socioe-
conomic development (leading to the growth of populations within climate risk zones
and the impacts of subsidence and climate change) [72]. There has been speculation that
the frequency and intensity of extreme events will increase with warmer temperatures.
However, as any future projections are uncertain, does this new uncertainty alter food pro-
ductions or yield damage estimates? There have been recent studies showing consideration
of observational uncertainty in flood damage estimation [72–74] that integrate crop yield
loss as part of food resources. Furthermore, there is evidence that nonconsideration of
uncertainty in, say, rainfall, can result in a bias in the estimation of a derived variable such
as streamflow [75,76], where a nonlinear transformation exists. This leads us to speculate
that a similar bias is present in the case of food security modeling, considering uncertainty
in the changing nature of climate, especially temperature. Analysis shows seasonal rainfall
forecasts (Figure 2) with respect to rainfall simulated from the Predictive Ocean Atmo-
sphere Model for Australia-(POAMA) sea surface temperature (SST) (POM-Rain) over the
grid cells where at least one of the observed sea surface temperature anomalies (SSTA)
indices has significant correlation at 95% confidence interval (>|0.39|) with the observed
rainfall [77]. Projections of precipitation and temperature from GCMs are generally the
basis for assessment of the impact of climate change, and seasonal precipitation forecasts
help irrigators and water managers in planning and making decisions to maximize returns
on investments and to ensure security of water as well as food.
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2. Material and Methods—Quantifying Uncertainty in Food Security Modeling
2.1. Data and Study Area

In this study, the yearly crop yield data from China were taken to experiment with
the analysis of uncertainty in food security modeling. The current study selected China
as a study area due to readily available data and the region’s vulnerability to current
climate change scenarios. Crop yield data are available in the following link https:
//ourworldindata.org/crop-yields#yields-across-the-world. The historical or projected
temperature data were sourced from the World Bank, https://climateknowledgeportal.
worldbank.org/download-data. The emission scenarios RCP4.5, RCP6.0 and RCP8.5 were
considered. There are four Representative Concentration Pathways (RCPs), which are
RCP2.6, RCP4.5, RCP6.0 and RCP8.5. RCP2.6 has the lowest CO2 emission scenario. There-
fore, we excluded low emission scenario RCP2.6 to show the impact of a future warming
climate on crop yield. Future climate impacts have focused on a warming scenario called
“RCP8.5”. This high-emissions scenario is frequently referred to as “business as usual”,
suggesting that is a likely outcome if society does not make concerted efforts to cut green-
house gas emissions. For each of the emission scenarios, the projected data are available
for 14 GCMs. The GCMs are bcc_csm1_1, ccsm4, cesm1_cam5, csiro_mk3_6_0, fio_esm,
gfdl_cm3, gfdl_esm2m, giss_e2_h, giss_e2_r, ipsl_cm5a_mr, miroc_esm, miroc5, mri_cgcm3
and noresm1_m. The historical data period is 1961–2016 and the projected periods are
2020–2039, 2040–2059, 2060–2079, 2080–2099.

In addition to that, the daily rainfall and evapotranspiration data set was used
in this study. The data set was derived from the Australian Water Availability Project
(AWAP) [78,79], which is gridded to 0.050 × 0.050 and is extracted for the common 1980–
2005 period. The accuracy of this data set is typically low where gage density is low, as
is the case in central-west Australia, for instance [78]. The original meteorological data
used in the AWAP product were supplied by the Bureau of Meteorology Australia (BoM).
The AWAP platform uses model data fusion methods to combine both measurements
and modeling. Daily rainfall data are available from 1900 to present, temperatures from

https://ourworldindata.org/crop-yields#yields-across-the-world
https://ourworldindata.org/crop-yields#yields-across-the-world
https://climateknowledgeportal.worldbank.org/download-data
https://climateknowledgeportal.worldbank.org/download-data
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1911 to present and solar irradiance from 1990 to present. Gridded rainfall and potential
evapotranspiration data used in this study are available from the following links:

(i) for rainfall variability (http://www.bom.gov.au/web03/ncc/www/awap/rainfall/
totals/daily/grid/0.05/history/nat/\{startdate\}\{enddate\}.grid.Z’’)

(ii) for potential evapotranspiration variability (ftp://ftp.eoc.csiro.au/pub/awap/Australia_
historical/Run26j/FWPT/)

2.2. Models and Methods

To quantify the uncertainty in food security modeling, the following steps were considered.
Step 1: Selection of the conceptual hydrological model was based on catchment

suitability. Four parent conceptual hydrological models (TOPMODEL, ARNOXVIC, PRMS,
SACRAMENTO) were used in this experimentation. The dynamically dimensioned search
(DDS) algorithm was used for parameter optimization process [80]. To estimate the food
security modeling uncertainty, we analyzed the input uncertainty of the catchments using
the Quantile Flow Deviation (QFD) metric [80,81]. Then the estimated input uncertainty
was used to calculate model structure and parameter uncertainty.

Step 2: Obtained yearly crop yield (e.g., rice, cereal and wheat) for a country (e.g.,
China, Australia). The term cereal only represents a lumped term for a group of crops. Our
data provider did not include details about the crop types in this group.

Step 3: Obtained historical monthly mean temperatures of a country; then converted
to yearly mean temperature.

Step 4: Fit the linear regression between crop yield (Y) and yearly mean tempera-
ture (X).

Step 5: Or, Fit the nonlinear regression between crop yield (Y) and yearly mean
temperature (X).

Step 6: For future scenarios, estimated crop yield from the projected yearly mean
temperature. This process was to be done for 16 ensembles and three emission scenar-
ios (Representative Concentration Pathway, RCP 4.5, RCP 6.0, RCP 8.5) to quantify the
uncertainty in food security modeling),

Step 7: Generated the uncertainty estimation plot.
The modeling framework was used to project crop yields in future climate scenarios

between 2020 and 2100, in every 20-year time step. In this statistical-based model, the
predictand is yearly crop yield (e.g., rice, cereal and wheat) and the predictor is mean
annual temperature. Then a linear regression was fit over the historical period (1961–
2016). The spatial scale was over a whole country, e.g., China. The equation for linear
regression was:

Y = mX + c (1)

Here, Y is the predictand, crop yield; X is the predictor, temperature.
Using the historical period of data set, m (slope) and c (intersection) were determined.

Then future temperature scenarios were used to estimate crop yield.

3. Results and Analysis
Uncertainty Due to Model Structure

The median of projected yield for rice, wheat, cereal is likely to be increased in
comparison to the historical period. As the years pass by, the GCMs suggest that the mean
temperature over China is increasing. Increasing emission of carbon dioxide is likely to
increase temperature, thus, our results show that the overall trend of crop production will
continue to increase in a future warming climate (Figure 3A–C). This is conditioned on no
reduction in land use for a particular crop, at least current similar quality of fertilizer and
no impact of climate change on precipitation.

As part of the analysis, the correlation between historical crop yield and historical
temperature is evaluated first (Figures 4–6). The value of correlation for different crops like
wheat, rice and cereal shows a positive trend and that made the analysis of quantifying
uncertainty in food security modeling worthy. The mean of historical yield for rice, wheat

http://www.bom.gov.au/web03/ncc/www/awap/rainfall/totals/daily/grid/0.05/history/nat/\{startdate\}\{enddate\}.grid.Z''
http://www.bom.gov.au/web03/ncc/www/awap/rainfall/totals/daily/grid/0.05/history/nat/\{startdate\}\{enddate\}.grid.Z''
ftp://ftp.eoc.csiro.au/pub/awap/Australia_historical/Run26j/FWPT/
ftp://ftp.eoc.csiro.au/pub/awap/Australia_historical/Run26j/FWPT/
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and cereal is shown with the parallel dotted line. The value of the yield for each crop varies
according to the land use and production capacity of the catchment.
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4. Discussion—Uncertainty in Food Security Modeling

Emission scenarios for the Representative Concentration Pathways RCP 4.5, RCP 6.0,
RCP 8.5 are analyzed as part of the experiment to visualize the extent of uncertainty in
future food security. The results show significant uncertainty (Figure 3A–C) in the future
yield of crops in China that needs to be addressed in the policy and planning process to
combat any unusual situations.
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Availability of data and resource management are vital in quantifying uncertainty
in food security modeling. We have analyzed the input uncertainty of four different
catchments: (i) Richmond catchment at New South Wales (NSW); (ii) Seventeen Mile
catchment at Northern Territory; (iii) Buchan River catchment, at Melbourne, Victoria;
(iv) Barambah River catchment at Queensland in Australia and it clearly shows that the
availability of more gauge information reduces the uncertainty (Figure 7). Four parent
conceptual hydrological models (TOPMODEL, ARNOXVIC, PRMS, SACRAMENTO) are
used in this experimentation with the application of a dynamically dimensioned search
optimization algorithm [80]. Analysis of input uncertainty of four different catchments in
Australia shows the variability in uncertainty as a result of streamflow uncertainty. The
Quantile Flow Deviation (QFD) metric [80,81] is used to estimate the input uncertainty as
compared to model structure and parameter uncertainty.
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Figure 7. Experimental investigation shows that the augmented number of gauges reduce the overall uncertainty calculated
through the Quantile Flow Deviation metric (QFD) [80,81]. Here, we showed how we can quantify uncertainty, considering
the availability of data across four different catchments in Australia, named as (i) Richmond catchment at New South
Wales (NSW); (ii) Seventeen Mile catchment at Northern Territory; (iii) Buchan River catchment, Melbourne, Victoria;
(iv) Barambah River catchment at Queensland. The Australian Water Availability Project (AWAP) data set from the Bureau
of Meteorology, Canberra, Australia is used for this analysis. Four parent hydrological models (TOPMODEL, ARNOXVIC,
PRMS, SACRAMENTO) are used in this experimental setup.

On the other hand, in reality, achieving food security is much more complicated
than having enough food available. Understanding future food security also requires
insights into income distribution, purchasing power, political processes and institutional
change [82,83]. Changes in global food security have been monitored using, for example,
the Food and Agriculture Organization of the United Nations (FAO) suite of food security
indicators [84]. Thus, the focus on food security models is based on realistic information.

In this paper, the future of global food security is assessed using a wider range
of food security indicators like crop yield and temperature in a statistical multi-model
framework. These indicators are typically used to evaluate current and ex-post trends
in food security. However, we expand the coverage of these indicators in a consistent
structural modeling framework. We complement this analysis with an assessment of the
concomitant environmental impacts based on the Representative Concentration Pathways
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RCP 4.5, RCP 6.0, RCP 8.5. Though possible land use change has significant implication
in future food security modeling, considering drought and variability in soil moisture
amount, we believe that much effort is needed for a reasonable conclusion, and our future
research is focused on that particular aspect.

Our approach of using the increase in temperature as a predictor is based on past yield
and temperature trends, and we extrapolate the temperature yield relationship. However,
the intermediate processes like CO2 fertilization and its effect on different types of crop
productivity were not considered in the model. We believe the lack of representation
of such processes in our model can be a source of additional uncertainty and should be
considered in a future study. Temperature rise in climate scenarios is, of course, linked
to rising CO2 levels. However, the relationship between CO2 and temperature dynamics
can change between climate scenarios. The increasing temperature alone in a temperate
climate like China’s is not mainly the direct reason for increasing yields of C3 crops such as
wheat, rather than rising CO2 levels (beside production technology changes, including crop
breeding effects and others). Rising temperatures alone would decline yields of cereals (C3
crops such as wheat) in temperate climates normally without genetic adaptation by new
cultivars (shortening of growing cycles, less net assimilation rates), as shown by many crop
modeling studies. Just maize (C4 crop) will rise yield mainly by increasing temperatures
directly in temperate climates due to its much higher optimum growing temperature
and already saturated CO2 levels for maize. We believe future studies will consider and
incorporate more biophysical processes with the options ingesting crop-to-crop variability.

5. Conclusions

In this study, we investigated the uncertainty of a coupled hydrologic food security
model to examine the impacts of climatic warming on food production (rice, cereal and
wheat) in a mild temperature study site in China. In addition to varying temperature, our
study also investigated the impacts of three CO2 emission scenarios—the Representative
Concentration Pathway, RCP 4.5, RCP 6.0, RCP 8.5—on food production. Our ultimate
objective was to quantify the uncertainty in a coupled hydrologic food security model
and report the sources and timing of uncertainty under a warming climate using a cou-
pled hydrologic food security model tested against observed food production. Our study
shows an overall increasing trend in rice, cereal and wheat production under a warming
climate. In particular, under the highest emission scenario (RCP = 8.5), a rapid increase in
food production for all the crops is observed, and the maximum production is observed
during the 2080–2099 period. The investigation of the intermediate processes and state
variables reveals that the warming climate has minimal effects on water availability (soil
moisture above wilting point) and substantial influences in accelerating biophysical pro-
cesses and subsequently increasing crop productions. Further, we report the cascading
effects of increasing temperature on parameter uncertainties and their influences on rice,
wheat and cereal production. The current study also shows the relationship between
crop production and mean annual temperature is generally linear, with other embedded
complexities involved.

In the quantification of uncertainty in food security modeling, we provide an innova-
tive flexible framework on the spectrum of uncertainty. Relative to the mentioned studies,
our study is unique as it uses a combination of climate change uncertainty framework, a
broad set expressing uncertainty through temperature, SSTA and rainfall, and we make a
first step to include the uncertainty metric as the driver of outcomes. Future research will
concentrate on following major areas: (i) variability in forcing data and its impact on food
security modeling, (ii) understanding food security modeling impacts due to changing
climate and the uncertainties embedded, and (iii) assessing changes in food security to
hydro-ecologic systems based on consideration of the flow uncertainties.

In addition to that, time-varying parameter models for catchments with land use
change have a huge implication in the uncertainty quantification process of food security
modeling. The illustration is needed through an assessment of the possible trade-offs
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between food and nutrition security and sustainability in each of the worlds. Our analysis
method is flexible and can be disaggregated to examine any part of the modeling process,
including the selection of certain model subroutines or certain forcing data. By considering
multiple model structures, we are able to assess: (i) how the uncertainty varies across
different case study catchments and (ii) how the uncertainty varies depending on the
length of available observations.
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