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Abstract: The combined stress of waterlogging and shading (WS) caused by continuous rain threatens
the production of high-quality weak gluten wheat in China (Triticum aestivum L.). To evaluate its
influences on wheat quality formation, Yangmai 158 was chosen to be subjected to WS at 0–7 days
after anthesis (DAA, WS0–7), 8–15 DAA (WS8–15), 16–23 DAA (WS16–23), and 24–31 DAA (WS24–31),
respectively, with non-stressed plants as control (Non-WS). Compared with Non-WS, WS reduced
the amylopectin content and enhanced amylose content in the mature grains. WS enhanced the
number and surface but reduced the size of the starch granules. The number, volume, and surface
area percentages of B-type starch granules were enhanced, and the number and volume percentages
of A-type starch granules were reduced by WS. The peak viscosity and gelatinization temperature
were enhanced and the low viscosity and final viscosity were decreased by WS. WS applied at the
mid-grain-filling stage (WS8–15 and WS16–23) had greater modification on the starch content, granule
size distribution and pasting characteristics than that applied at early (WS0–7) or late (WS24–31).
The changes of starch pasting characteristics under WS had a significant correlation with the amylase
and amylopectin content, amylase/amylopectin, and the ratio of the volume percent of B-type and
A-type starch granules.

Keywords: wheat; starch quality; starch granule size distribution characteristic; starch pasting
characteristic

1. Introduction

Starch is the most abundant component in winter wheat grains, and accounts for two-thirds to
three-quarters of wheat kernel dry weight. Starch is distributed in different classes of granules in the
endosperm, and has a major role in the properties of wheat flour and its products [1–4]. At least two
distinct starch granules, according to their size, exist in the grains of mature wheat, the large A-type
with a boundary diameter bigger than 10 µm and the small B type with a boundary smaller than
10 µm [5–7]. A very small C-type starch granule has also been reported, and it is debated whether it
should be classified as a B-type because of the difficulty in plotting the boundary between them [1].
In wheat endosperm, A-type granules constitute the majority weight of starch [1,8], whereas B-type
granules comprise up to 99% of granules in number [9]. Starch granules are primarily composed of
amylose and amylopectin bound with a few proteins and lipids [2,6,10,11]. Amylose is a predominantly
linear molecule linked by α-1,4 bonds that comprises 25–30% of wheat grain starch. Amylopectin is a
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highly branched polymer with branch points linked by α-1,6 bonds and comprises 70–75% of wheat
grain starch [11]. It has been reported that the B-type starch granules have a lower amylose content
than A-type ones [2], and B-type starch granules were negatively correlated with the content of starch
in the grain [6]. A-type and B-type starch granules showed a significant difference in the capacity to
combine lipid and protein, due to their structural differences [2,6,10,11]. Thereby the characters of the
pasting, the retrogradation, the viscosity, and the baking properties also exhibit significant differences
between the two types of starch granules [11–13].

The pasting properties, the retrogradation, and the viscosity characteristics of starch are extremely
important to the appearance, structure, and quality of wheat flour food. It is demonstrated that the
peak viscosity of starch is positively correlated with the ratings of noodles, and the final viscosity
is positively correlated with the slippage of noodles [5,14]. A-granules, generally, contain more
amylose and showed higher paste viscosities than B-granules [15]. Common and durum starches
with high proportions of A-granules exhibit higher paste viscosities than those with more B- and
C-granules, and peak and final viscosities of wheat starch decrease with increasing proportions of
B-type granules [15,16]. The starch pasting behavior of soft wheat flour is associated with A- and
B-type granule content and their composition [8]. The gelatinization, pasting, and retrogradation
properties of starch granules are also different in starch sources that differ in the ratio of amylose
to amylopectin contents, molecular structures of amylose and amylopectin, granule morphology,
and minor-component contents [4]. The starch granule distribution in wheat grains is a quantitative
trait and is co-regulated by genetic characteristics and environmental factors [17]. The changes in
environmental factors and agronomic practices such as abnormal temperature [18], water stress [19],
nitrogen and sulfur fertilization supplementation [20,21], and light intensity [22] during the grain-filling
stage is demonstrated as significantly affecting the number of starch granules in wheat grains, the ratio
of the volume percentage of A-type to B-type starch granules (PA/PB), and the starch granule volume
and surface area distribution, thus the starch quality may also be influenced.

The Downstream Plain of the Yangtze River is the second largest wheat production region in China
and it represents the primary production area of high quality weak gluten wheat. However, wheat in
this region is often subjected to persistent rainfall during the grain-filling stage. Statistically, during the
wheat grain-filling stage, a rainfall event lasting more than 5 days occurred almost every year during
the past 50 years in this region [23]. Persistent rainfall imposes the combination of waterlogging
and shading stress (WS) on wheat production. Studies have demonstrated that shading alters the
function of chloroplasts in plant leaves [24] and reduces their electron transport and photosynthetic
functions [23,25], thereby leading to changes in starch quality [22]. On the other hand, soil waterlogging
also limits plant carbon assimilation and reduces starch accumulation in wheat grains [26]. However,
a single stress of shading or waterlogging is not sufficient to reveal the combined effect of waterlogging
and shading result in persistent rainfall on wheat yield and starch quality, which limits the production
of wheat in this region [23]. In this study, Yangmai 158 is used and subjected to a 7-day combined
stress of waterlogging and shading (WS) at different periods of the wheat grain-filling stage to simulate
the effect of continuous rainfall. Changes of the content and accumulation amount of starch and its
components, the size distribution characteristics of starch granules in wheat grains, and starch pasting
properties are analyzed to reveal the effects of the combined stresses of waterlogging and shading
occurring at different periods of the grain-filling stages on wheat yield and starch quality.

2. Materials and Methods

2.1. Experimental Design

We detailed the experimental setup in our previous report [23]. Briefly, Yangmai 158
(Triticum aestivum L.) was chosen to be subjected to combined waterlogging and shading stress
(WS) at 0–7 days after anthesis (DAA, WS0–7), 8–15 DAA (WS8–15), 16–23 DAA (WS16–23), or 24–31 DAA
(WS24–31), represent the early, early-mid, mid-late, and late grain filling period, respectively,
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with non-stressed plants served as control (Non-WS). About 75% of the full radiation was blocked
on the top of the crop canopy with two layers of black polyethylene screens installed more than
180 cm above the ground. A 2-cm water layer was kept above the soil surface of the pot to achieve the
waterlogging treatment. The screens were removed and the excessive water in the pots was drained
immediately at the end of the treatments. The experiment was a randomized block design, with three
replicates for each treatment.

2.2. Measurement of Content of Starch, Starch Granule Size Distribution, and Starch Pasting Properties

The determination of amylose and amylopectin content in wheat grains was done according to
the method described by Zhang et al. [7]. We stirred 50 mg of amylose or amlopectin standard sample
with 0.5 mL of absolute ethanol and 4.5 mL of 1M NaOH at 85 ◦C for 20 min and then diluted to 50 mL
with distilled water. Of standard amylose solution, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 mL were diluted
to 20 mL with distilled water, respectively, after adjusting the pH to 3.5 with 1 M acetic acid. Then,
0.5 mL of I2-KI reagent were added, and then we used distilled water diluted to 50 mL. We diluted
the standard amylopectin solution 0.5, 1.25, 2, 2.75, 3.5, and 4.25 mL proceeding under the same
reaction conditions as above. The mixed solution then was scanned between 400 and 960 nm with a
Heλios Gamma spectrophotometer (ThermoSpectronic, Cambridge, UK) after blending for 20 min.
The absorption peaks of the standard amylose that reacted with the I2-KI reagent were 630 and 460 nm,
while those of amylopectin were 740 and 550 nm. The standard equation of amylose or amylopectin
was achieved by calculating the relationship between the compositions and their absorption values.
Next, 100 mg of wheat grains were milled and then diluted to 50 mL with distilled water. The solution
was kept at 85 °C for 20 min, after reacting with I2-KI reagent, the absorption was scanned at 460, 550,
630, and 740 nm with the Heλios Gamma spectrophotometer. The rest of the process was carried out
according to standard sample analysis, and the composition was calculated according to standard
equations. The total starch content was the sum of amylose and amylopectin.

According to the procedure described by Bechtel and Wilson [1] and Zhang et al. [27], the starch
granule was isolated and the size of the granule was measured with a Saturn DigiSizer-5200
(Micromeritics Instrument Corporation, Norcross, GA, USA). Briefly, the endosperm was squeezed
out from the caryopses of wheat carefully and then mixed with the pH 7.5 buffer solution (5 mM
magnesium acetate, 25 mM Tricine and 50 mM potassium acetate) at 4 ◦C. The pellets were collected
and were suspended in ethanol after being centrifuged for 10 min at 3000× g at 4 ◦C. The suspension
was filtered through a 53 mm pore size nylon screen and was washed with excess ethanol. Then,
the starch sample was collected by centrifugation, re-suspended in a 0.1 M NaCl aqueous solution
containing 10% of toluene, and stirred with a high-speed magnetic stirrer for 1 h to remove the protein.
We repeated this step until the toluene layer became clear and no protein was present. To re-purify
the starch, the starch was washed three times with water and twice with ethanol, and then dried
at 30 ◦C for 48 h. The starch granule size distribution was measured with a Saturn DigiSizer-5200
(Micromeritics Instrument Corporation, Norcross, GA, USA). The standard refractive indices used were
1.31 for water and 1.52 for starch. Volume frequency percent and mean diameter of starch granules
were then automatically measured using the embedded laser light scattering technology and summing
Mie scattering models. Each measurement was repeated three times.

The pasting properties of wheat flour starch were measured with a Rapid Visco Analyser (RVA,
Newport Scientific Pty. Ltd., Warriewood, Australia) according to the standard method of the American
Association of Cereal Chemists (AACC) 76-21.

2.3. Statistics

For the statistical analysis we used the Statistical Package for the Social Sciences (IBM SPSS Statistics
23, IBM, Armonk, NY, USA). All data were subjected to a one-way analysis of variance (ANOVA) to
determine the significance of differences between treatments. Pearson correlation analysis was used to
determine the relationship between starch characteristic parameters and RVA characteristic parameters.
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3. Results

3.1. Effect of Post-Anthesis WS Treatments on the Yield and the Pasting Characteristics of Starch in Wheat
Mature Grains

The WS treatments during the grain-filling stage significantly affected the content and accumulation
of amylopectin and amylose in the mature wheat grains (Table 1). Compared with that under Non-WS,
the amylopectin content decreased by 19.57% and 8.17% (p < 0.05) under the WS8–15 and WS16–23

treatments and by 4.16% and 1.93% (p < 0.05) under the WS24–31 and WS0–7 treatments, respectively.
In contrast, the amylose content in grains increased under WS treatments; the biggest increment was
found in WS8–15, followed by WS16–23 and WS0–7, and then was WS24–31, significant differences existed
among all of the treatments except between WS0–7 and WS16-23. The total starch content (the sum of
the content of amylopectin and amylose) of wheat grains decreased by 12.3% and 4.5% (p < 0.05) under
WS8–15 and WS16–23. No statistical significance in the reduction of total starch content was found under
WS0–7 and WS24–31. The ratio of the content of amylose to that of amylopectin (amylose/amylopectin) in
wheat grains was 0.309 under the control, while that under WS0–7, WS8–15, WS16–23 and WS24–31 were
increased by 6.22%, 38.15%, 16.46%, and 8.12% (p < 0.05). The accumulation account of amylopectin in
grains was found to be the lowest under WS8–15, followed by WS16–23, both of them then exhibited
significantly lower than WS0–7 and WS24–31 and then lower than Non-WS. The accumulation account
of amylose in the grains was found to be the lowest under WS8–15 and WS16–23, followed by WS0–7 and
WS24–31, and all of them were then significantly lower than Non-WS.

Table 1. Effect of combined waterlogging and shading stress during post-anthesis on starch accumulation
and paste traits of wheat.

Treatment
Content

(%)
Accumulation Account

(mg/plant)
Peak

Viscosity
(cP)

Trough
Viscosity

(cP)

Final
Viscosity

(cP)

Pasting
Temperature

(◦C)Amylose Amylopectin Amylose Amylopectin

Non-WS 14.4 d 46.5 a 326.9 a 1055.6 a 3195 c 2320 a 4213 a 72.3 b
WS0–7 15 b 45.6 b 316.5 b 962.2 b 3663 b 2108 b 3960 b 72.8 b
WS8–15 16 a 37.4 d 300.8 c 703.1 e 3988 a 1916 d 3492 c 76.8 a
WS16–23 15.4 b 42.7 c 297.2 c 824.1 d 3653 b 2040 c 3978 b 75.3 a
WS24–31 14.9 c 44.5 b 311.4 b 930.1 c 3187 c 2206 ab 4050 ab 73.5 ab

Note: WS0–7, WS8–15, WS16–23 and WS24–31 indicate the combined waterlogging and shading stress (WS) applied
at 0–7 days after anthesis (DAA), 8–15 DAA, 16–23 DAA, or 24–31 DAA, respectively, and Non-WS indicates
the non-stress treatment. Trait data are the means of three replicates, and different letters afterwards indicate a
significant difference among treatments (p < 0.05).

The peak viscosity, trough viscosity, final viscosity, and pasting temperature of starch in wheat
grains was influenced significantly by the WS treatments applied at any phase post anthesis (Table 1).
The peak viscosity was enhanced by WS, and the highest enhancement was observed in WS8–15,
followed by WS16–23, and WS0–7, and no difference was found between WS24–31 and Non-WS.
The trough viscosity and the final viscosity exhibited an opposite trend to the peak viscosity when
responded to WS; the biggest reduction was found in WS8–15, and then was in WS16–23 and WS0–7.
WS24–31 exhibited no significant effects on the trough viscosity and the final viscosity. Compared with
Non-WS, the pasting temperature was increased by 6.22% (p < 0.05) and 3.45% (p < 0.05) under WS8–15

and WS16–23 respectively, yet no significant changes were observed under WS0–7 and WS24–31.

3.2. Effect of Post-Anthesis WS Treatments on the Volume Distribution of Starch Granules in Mature
Wheat Grains

The starch granule size distribution profile in the grain endosperms at the maturity stage of
Yangmai 158 exhibited a multimodal distribution ranging from 0.44 to 42 µm. Apparently, three kinds
of B-type granules peaked at 1.25 µm (ranged in 0.44–1.41 µm), 2.97 µm (ranged in 1.41–3.53 µm),
and 5.59 µm (ranged in 3.53–10 µm), and one kind of A-type granule that peaked at 21.04 µm could be
defined through the granule size distribution profile (Figure 1). The starch granule in different size



Agriculture 2020, 10, 384 5 of 12

ranges showed varied patterns when responding to the WS treatments applied at different periods
of the grain-filling stage (Figure 1), thus the difference of the starch granule size distribution profile
between WS and Non-WS presented a positive and negative alternation. Generally, the volume
present of three kinds of B-type granules increased. The volume present of A-type granules ranged in
10–30 µm decreased under WS, and that of ranged in 30–42 µm decreased under WS0–7 and WS24–31,
while it increased under WS8–15 and WS16–23, which suggests that two kinds of A granule that peak
at 17.7 and 33.3 µm could exist. In order to analyze the changes of starch granule characteristics
under WS treatment in more detail, here we marked the B-type granules that peaked at 1.25, 2.97,
and 5.59 µm as B1-, B2-, and B3-type, and the A-type granules that peaked at 17.7 and 33.3 µm as A1-
and A2-type, respectively.
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Figure 1. Effects of post-anthesis combined waterlogging and shading stress on the starch granule size
distribution in the endosperm of mature wheat grains. WS–Non-WS indicates the difference of volume
frequency percent distribution profile of the starch granules between WS and Non-WS.

WS applied at different stages of the grain-filling reduced the mean grain size of starch granules
(Table 2). Compared with Non-WS, the mean grain size of starch granules was dramatically decreased
by 0.84 µm under WS8–15 and 0.43 µm (p < 0.05) under WS16–23; the reductions were approximately
0.40 µm (p < 0.05) under WS0–7 and WS24–31 treatments, with no significant differences between them.
The reduction of the mean grain size of starch granules under WS may result in the reduction of volume
frequency percentage of A-type and the increment of that of B-type. Interestingly, the changes of the
volume frequency percent under WS differed in A- or B-type peaked starch granules. Compared with
Non-WS, the B1-type starch granules had a biggest increment at WS0–7, which was significantly bigger
than WS16–23 and WS24–31 and had a lowest increment at WS8–15. However, the maximal increments of
B2- and B3-type starch granules were all found under WS8–15, while the minimum increments were
found under WS16–23 of B2-type and under WS0–7 and WS 24–31 of B3-type starch granules. The volume
frequency percent of A1-type starch granules reduced by 7.8%, 4.95%, 2.95%, and 2.86% under WS8–15,
WS16–23, WS0–7, and WS24–31, respectively. The volume frequency percent of A2-type changed hardly
under WS24–31 and had a significance enhancement of 0.98% and 0.89% under WS8–15 and WS16–23,
while they were reduced by 0.16% under WS0–7. The ratio of volume percentage of A-type to B-type
starch granules were significantly decreased under WS applied at any period of the grain-filling
stage, with the largest decrement showed in WS8–15 and WS16–23, followed by that in WS24–31 and
WS0–7 (p < 0.05).
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Table 2. Effect of combined waterlogging and shading stress during post-anthesis on the size and
volume percent distribution of different kinds of starch granules in wheat grains at maturity.

Treatments
Mean Grain Size

(µm)

Volume Frequency Percent of Different Kinds Starch Granules (%)
PA/PB

B1-type B2-type B3-type A1-type A2-type

Non-WS 15.03 a 5.16 d 10.61 d 0.249 d 57.31 a 4.93 c 1.65 a
WS0–7 14.68 b 5.84 a 11.34 b 0.254 c 54.3 c 4.8 d 1.45 b
WS8–15 14.19 d 5.47 c 11.61a 0.268 a 49.51 d 5.88 a 1.24 d
WS16–23 14.6 c 5.76 b 11.16 c 0.263 b 52.36 c 5.82 b 1.39 c
WS24–31 14.65 b 5.75 b 11.25 b 0.257 c 54.45 b 4.93 c 1.47 b

Notes: Trait data are the means of three replicates, and different letters afterwards indicate significant difference
among treatments (p < 0.05). PB/PA: The ratio of volume percentage of A-type to B-type starch granules. B1-, B2-,
and B3-type indicating the B-type granules peaked at 1.25, 2.97, and 5.59 µm, and A1- and A2-type indicating the
A-type granules peaked at 17.7 and 33.3µm, respectively. Same as below.

3.3. Effect of Post-Anthesis WS Treatments on the Surface area Distribution of Starch Granules in Mature
Wheat Grains

The starch granule surface area distribution profile in Yangmai 158 endosperm at maturity also
showed as a four-peak curve under Non-WS (Figure 2). The surface area of starch granules was
dramatically enhanced 16.08%, 8.80%, 4.85%, and 4.55% by WS8–15, WS16–23, WS24–31, and WS0–7,
respectively, compared with the control (Table 3). However, WS had different impacts on the surface
area of the different B- or A-types starch granules, as shown in Figure 2, namely, the surface area of
the B1- and B3-type starch granules was enhanced, while that of B2-type and A1-type starch granules
was reduced compared to Non-WS. The highest surface area percent of B1-type was found in WS0–7,
it was significantly higher than WS16–23 and WS24–31, and then higher than WS0–7, which was then
significantly higher than Non-WS. Compared with the control, the surface area frequency percent of
B2-type starch granules was found enhanced by WS8–15 and reduced by WS24–31, but changed little by
WS0–7 and WS24–31. WS8–15 had a greater surface area frequency percent of B3-type starch granules
followed by WS16–23, WS24–31, WS0–7, and Non-WS orderly, and significant differences existed among
treatments. The surface frequency percentage of the A1-type was reduced by the WS, with the largest
reduction being seen in WS8–15, followed by WS16–23, WS0–7 and WS24–31. The surface frequency
percentage of the A2-type was enhanced by WS8–15 and WS16–23 but reduced by WS0–7, with non-change
under WS24–31 compared with control.Agriculture 2020, 10, x FOR PEER REVIEW 7 of 13 

 

 
Figure 2. Effects of post-anthesis combined waterlogging and shading stress on starch granule 
surface area distribution profile in the endosperm of mature wheat grains. WS–Non-WS indicates the 
difference of surface area frequency percent distribution profile of the starch granules between WS 

and Non-WS. 

3.4. Effect of Post-Anthesis WS Treatments on the Number Distribution of Starch Granules in Mature Wheat 
Grains 

The starch granules with a boundary diameter of 0.5–8 μm comprise up the most part of the 
granules in number. The number frequency percent of the starch granule with a diameter of 0.5–0.75 
μm was enhanced, and with a diameter of 0.75–30 μm was reduced by WS applied post-anthesis 
compared with those of Non-WS (Figure 3). Compared with control, the number of starch granules 
per unit weight starch in wheat endosperms was significantly increased under WS, with the largest 
increment showed in WS8–15, followed by that in WS0–7, WS16–23 and WS24–31 (Table 4). The variation 
of the starch granule number under WS mainly caused by the increment percentage of B1-type ones, 
which was enhanced greatest under WS0–7, followed by WS8–15, WS16–23 and WS24–31 compared with 
control. The greatest reduction of the B2-type starch granules number frequency percent was 
observed under WS24–31, then was WS16–23 and WS0–7, and the smallest reduction was observed under 
WS8–15. The lowest percentage of number of B3-type appeared under WS8–15 WS16–23 and WS24–31, with 
non-significant differences among them, which was then significantly lower than WS0–7 and Non-WS 
orderly. The number frequency percentage of the A1-type was reduced by the WS stress, with the 
largest reduction being seen in WS8–15, followed by WS16–23 and WS0–7, then was WS24–31. The number 
frequency percentage of the A2-type was enhanced by WS8–15, but reduced by WS0–7, WS16–23 and 
WS24–31 compared with control. 

Table 4. Effect of combined waterlogging and shading stress during post-anthesis on number 
frequency percent distribution of different kinds of starch granules in wheat grains at maturity. 

Treatments 
Number × 1010 

g−1 
Number Frequency Percent of Different Kinds Starch Granules (%) 

B1-type B2-type B3-type A1-type A2-type 
Non-WS 6.63 e 85.43 d 12.54 a 1.86 a 0.145 a 0.017 b 
WS0-7 7.39 b 86.03 a 12.13 c 1.72 c 0.135 c 0.006 c 
WS8-15 8.45 a  85.94 b 12.27 b 1.65 c 0.133 d 0.018 a 

WS16-23 7.22 c 85.9 b 12.13 c 1.83 b 0.138 c 0.006 c 
WS24-31 7.06 d 85.86 c 11.95 d 1.73 c 0.141 b 0.006 c 
Note: Trait data are the means of three replicates, and different letters afterwards indicate significant 
difference among treatments (p < 0.05). 

0.5 1 5 10 50

Su
rf

ac
e 

Fr
eq

ue
nc

y 
Pe

rc
en

t (
%

)

0

1

2

3

S
u
rf
ac
e 
F
re
q
u
en

cy
 P
er
ce
n
t 
d
if
fe
re
n
ce
 

b
et
w
ee
n
 W

S
 a
n
d
 N

o
n
-W

S
 (
%
)

Starch Granules Diameter (μm)

1 10

Non-WS

0.5 1 5 10 50
-0.45

-0.15

0.15

0.45WS0-7-Non-WS
WS8-15-Non-WS
WS16-23-Non-WS
WS24-31-Non-WS

Figure 2. Effects of post-anthesis combined waterlogging and shading stress on starch granule surface
area distribution profile in the endosperm of mature wheat grains. WS–Non-WS indicates the difference
of surface area frequency percent distribution profile of the starch granules between WS and Non-WS.
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Table 3. Effect of combined waterlogging and shading stress during post-anthesis on character values
of starch surface area distribution in wheat grains at maturity.

Treatments
Surface Area

m2 g−1

Surface Frequency Percent of Different Kinds Starch Granules (%)

B1-type B2-type B3-type A1-type A2-type

Non-WS 0.659 d 31.47 d 26.79 b 22.59 e 18.33 a 0.81 b
WS0–7 0.689 c 34.00 a 26.68 b 22.84 d 15.72 c 0.76 c
WS8–15 0.765 a 33.56 c 27.03 a 24.55 a 14.33 d 0.93 a
WS16–23 0.717 b 33.64 b 26.16 c 24.04 b 15.25 c 0.91 a
WS24–31 0.691 c 33.72 b 26.41 b 23.03 c 16.06 b 0.79 b

Note: Trait data are the means of three replicates, and different letters afterwards indicate significant difference
among treatments (p < 0.05).

3.4. Effect of Post-Anthesis WS Treatments on the Number Distribution of Starch Granules in Mature
Wheat Grains

The starch granules with a boundary diameter of 0.5–8 µm comprise up the most part of the
granules in number. The number frequency percent of the starch granule with a diameter of 0.5–0.75 µm
was enhanced, and with a diameter of 0.75–30 µm was reduced by WS applied post-anthesis compared
with those of Non-WS (Figure 3). Compared with control, the number of starch granules per unit
weight starch in wheat endosperms was significantly increased under WS, with the largest increment
showed in WS8–15, followed by that in WS0–7, WS16–23 and WS24–31 (Table 4). The variation of
the starch granule number under WS mainly caused by the increment percentage of B1-type ones,
which was enhanced greatest under WS0–7, followed by WS8–15, WS16–23 and WS24–31 compared
with control. The greatest reduction of the B2-type starch granules number frequency percent was
observed under WS24–31, then was WS16–23 and WS0–7, and the smallest reduction was observed under
WS8–15. The lowest percentage of number of B3-type appeared under WS8–15 WS16–23 and WS24–31,
with non-significant differences among them, which was then significantly lower than WS0–7 and
Non-WS orderly. The number frequency percentage of the A1-type was reduced by the WS stress,
with the largest reduction being seen in WS8–15, followed by WS16–23 and WS0–7, then was WS24–31.
The number frequency percentage of the A2-type was enhanced by WS8–15, but reduced by WS0–7,
WS16–23 and WS24–31 compared with control.Agriculture 2020, 10, x FOR PEER REVIEW 8 of 13 
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distribution profile in the endosperm of mature wheat grains. WS–Non-WS indicates the difference of
the number frequency percent distribution profile of the starch granules between WS and Non-WS.
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Table 4. Effect of combined waterlogging and shading stress during post-anthesis on number frequency
percent distribution of different kinds of starch granules in wheat grains at maturity.

Treatments
Number ×

1010 g−1

Number Frequency Percent of Different Kinds Starch Granules (%)

B1-type B2-type B3-type A1-type A2-type

Non-WS 6.63 e 85.43 d 12.54 a 1.86 a 0.145 a 0.017 b
WS0-7 7.39 b 86.03 a 12.13 c 1.72 c 0.135 c 0.006 c
WS8-15 8.45 a 85.94 b 12.27 b 1.65 c 0.133 d 0.018 a

WS16-23 7.22 c 85.9 b 12.13 c 1.83 b 0.138 c 0.006 c
WS24-31 7.06 d 85.86 c 11.95 d 1.73 c 0.141 b 0.006 c

Note: Trait data are the means of three replicates, and different letters afterwards indicate significant difference
among treatments (p < 0.05).

3.5. Relationship between the Starch Content and Starch Pasting Characteristics of Wheat under Post-Anthesis
WS Treatments

Significant correlations among starch granule distribution, starch content and components, and the
starch pasting characteristic parameters were noted (Table 5). Peak viscosity exhibited significant
positive correlation with the amylose content and the number of starch granules but an extremely
significant negative correlation with mean grain size of A-type starch granules. Trough viscosity and
final viscosity were positively correlated with the content of starch and amylopectin, the mean grain
size of starch granules and PA/PB, while there was an extremely significant negative correlation with
amylose content, amylose/ amylopectin, the mean grain size of B-type starch granules and number and
surface area of starch granules. Pasting temperature was positively correlated with amylose content,
amylose/ amylopectin, and number and surface area of starch granules, while there was a negative
correlation with the content of starch, amylopectin content, the mean grain size of starch granules,
the mean grain size of A-type starch granules, and PA/PB. The trough viscosity had an extremely
significant positive correlation with the mean grain size of A-type starch granules, while it had a
significant negative correlation with the mean grain size of B-type starch.

Table 5. Correlation coefficients between starch composition, starch size distribution values and RVA
characteristic parameters.

Peak Viscosity Trough Viscosity Final Viscosity Pasting Temperature

Amylose content 0.890 * −0.982 ** −0.943 * 0.958 *
Amylopectin content −0.782 0.882 * 0.946 * −0.967 **

Starch content of grain −0.752 0.892 * 0.935 * −0.957 *
Amylose/Amylopectin 0.822 −0.909 * −0.962 ** 0.964 **

Mean grain size of starch granules −0.816 0.938 * 0.959 ** −0.903 *
Mean grain size of B-type starch granules 0.795 −0.932 * −0.839 0.817
Mean grain size of A-type starch granules −0.924 * 0.983 ** 0.878 −0.943 *

PA/PB −0.865 0.976 ** 0.933 * −0.911 *
Number (×1010 g−1) 0.883 * −0.944 * −0.993 ** 0.919 *
Surface area (m2 g−1) 0.852 −0.954 * −0.956 * 0.971 **

* and ** indicate significant difference at 5% and 1% levels of the correlation, respectively (2-tailed).

4. Discussion

The biosynthesis and accumulation of starches in wheat grains are significantly affected by
environmental conditions and cultivation measures [7,18,21]. Covering 10% of the radiation in the
early and mid-grain-filling stage reduces the amylopectin and total starch content and increases the
amylose content [22], while shading (33% of light) during the jointing and maturity stages reduced the
amylopectin and total starch content, yet it had no significant impact on amylose [27]. Soil waterlogging
reduces the total starch and amylopectin content in wheat grains but increases the amylose content [26].
In this study, the combined stress of waterlogging and shading applied at any phase after anthesis all
significantly resulted in the change of the total starch. The grain-filling process could be divided into
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three periods as gradual increase, rapid increase, and slow increase, and the response to environmental
stress at different periods of the grain-filling stage varies [23]. The endosperm cells undergo rapid
divisions and most of grain filling occurred during this time window, thus the effects of environmental
stresses in this period on grain development are greatest [23,28]. Our study indeed demonstrated
that the WS treatments during the mid-grain-filling stage (WS8–15 and WS16–23) exhibited the largest
effects on starch accumulation relative to the treatment during the early grain-filling stage (WS0–7)
and during the late grain-filling stage (WS24–31). Under the WS8–15 and WS16–23, the large decrease in
the amylopectin content resulted in a decrease in the total starch content, whereas the decrease in the
amylopectin content accompanied with an increase in the amylose content resulted in no significance
in the total starch content under the WS0–7 and WS24–31. After WS treatments, a trend opposite that of
the change in amylose and in amylopectin lead to an increase in the ratio of amylose/amylopectin,
which was consistent with the effects under shading or waterlogging stress [22,26]. Because the
starch content in the mature wheat grains during the maturity stage accounts for 65–70% of the
total dry weight, the decrease in the starch content under environmental stresses represents the
primary reason for the decrease in the wheat yield [18]. Here, the decrease in the starch accumulation
accounted for 64.8–97% of the decrease in the grain yield under WS stresses, which indicated that the
insufficiency of starch accumulation was the primary reason for the decrease in the wheat yield under
the WS treatments.

In wheat endosperms, starch is present in the form of starch granules. It is demonstrated that
the development of the large-sized and small-sized starch granules in wheat endosperms differs
significantly [1]. The onset of the development of the A-type starch granules is from 4–5 days after
anthesis, and that of the B-type starch granules is from 12–14 days after anthesis [11]; therefore,
the formation of starch granules is regulated by the development process. The weak-light treatment at
the grain-filling stage reduced the mean grain size of starch granules in wheat grains and increased the
number of starch granules, the surface area, and the percentage of small-sized starch granules [22].
There are relatively few studies on the effects of soil waterlogging stress or the double stress of
waterlogging and shading on the distribution characteristics of wheat starch granules. The results
of this study demonstrated that WS treatments during different periods of the grain-filling stage all
significantly altered the size distribution of starch granules in wheat grains, decreased the mean grain
size of starch granules, and increased the number and the surface area of starch granules. WS enhanced
the number, surface, and volume percentage of B-type granules and reduced the number and the
surface of A-type granules. Two kinds (A- and B-types) or three kinds (A-, B-, and C-types) were
conventionally used to analyze the distribution of wheat starch granules [7,12,26]. However, in percent
study, a four-peak curve of volume and surface frequency percentage distribution profile was observed.
Interestingly, we found in the percent study that the three different peaked B-types respond differently
to WS, and two different kinds of A-types also apparently respond differently to WS. The number,
surface, and volume percentage of B1-type which peaked at 1.25 µm was enhanced by WS, to all
appearances, the increment of the surface area of B1-type caused by both the enhancement of the
number and size as the increment of the number infrequency percent was smaller than that of the
surface infrequency percent. The increased surface and volume and percentage together with the
decreased number frequency percentage of B2- and B3-type starch granules indicated that they were
getting bigger under WS. Furthermore, the surface, volume, and number frequency percentages of
A1-type were reduced by WS, however, the decrement of the number frequency percentages was
smaller than that of the surface frequency percentages, which means the A1-type were getting fewer
and smaller under WS. WS applied during 0–7 DAA had an apparent greater effect on B1-type starch
granules, while applied at 8–15 DAA had a smaller effect on B2- and B3-type starch granules compared
with other WS. WS applied during the mid-grain-filling stage had a greater impact on the distribution
of A-type starch granules. The starch granule development fastest during the mid-grain-filling
stage, when environmental stress imposes the greatest impact on wheat starch development [23,28].
Zhang et al. [27] demonstrated that the maximum grain size of Yangmai 158 occurred 16–20 days after
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anthesis and that shading stress (33% of light) from the jointing stage to the maturity stage has the
greatest effect on the volume-based size distribution of starch granules in wheat grains, whereas stress
during the late grain-filling stage has the smallest effect. In this study, the mid-early WS treatment,
which was applied prior to the occurrence of the maximal grain size of Yangmai 158, had the greatest
effect on the volume, surface, and number-based size distribution of starch granules in grains, followed
by WS16–23, and the effect of WS treatments during the early and late grain-filling stage had the
smaller effect.

The morphology, structure, and composition of starch granules in wheat grains are one of the
primary factors that determine the quality of wheat starches [16,29]. Studies have demonstrated that
A-type and B-type starch granules exhibit significantly different starch components [3,9,11,12]; A-type
starch granules contain approximately 30–36% amylose, whereas B-type starch granules contain only
24–27% amylose [2,3,9,18]. The increase in the percentage of B-type starch granules should lead to
a decrease in the amylose content [29]. In this study, the relative percentage increase in the B-type
starch granules under the WS treatments was associated with an increase in the amylose content.
Under drought and high-temperature stresses, the decrease in the percentage of B-type starch granules
in wheat grains did not affect amylose content [18,26]. All these findings may be because of the
differences in the amylose and amylopectin composition in different starch granules among different
wheat qualities [5,9,14].

The pasting properties of starches are important indicators that reflect the quality of starches,
which directly affect the tissue structure of bread and steamed bread and the elasticity and viscosity
of noodles [14]. Environmental conditions may have significant effects on the pasting characteristics
of wheat starches. Weak-light treatment reduced the peak viscosity, trough viscosity, and final
viscosity when applied during the early and mid-grain-filling stage but increased the peak viscosity,
trough viscosity, and final viscosity when applied during the late grain-filling stage [22]. The pasting
characteristics of wheat grain starches also altered significantly under waterlogging stress [30]. In this
study, the combined stress of weak-light and waterlogging during different periods of the grain-filling
stage all increased the peak viscosity and pasting temperature and decreased the trough viscosity and
final viscosity of starches; however, treatment during the mid-grain-filling stage had a greater impact
on the pasting properties of starches than during the early and late grain filling stages. The effects of
environmental condition changes on the pasting characteristics of wheat starches were closely related to
the distribution of starch granules with different sizes and to the ratio of amylose/amylopectin [5,14,30]
The correlation analysis between the pasting properties and starch compositions or granule distribution
(Table 3) demonstrates that under the WS treatments, the increase in the amylose content and the
number of starch granules in wheat grains exhibited a significantly positive correlation with the peak
viscosity and a significant negative correlation with the trough viscosity and final viscosity; the increase
of the content of starch and amylopectin, PA/PB, the mean grain size exhibited a significantly positive
correlation with the trough viscosity and the final viscosity, but affected the peak viscosity hardly;
and the amylose/amylopectin and surface area of starch granules negatively correlated with the trough
viscosity and the final viscosity and exhibited a non-significant positive correlation with peak viscosity;
the increment of amylose content, amylose/amylopectin, number and surface area and the decrement
of the content of starch, amylopectin content, the mean grain size of starch granules, the mean grain
size of A-type starch granules and PA/PB were positively benefit for pasting temperature.

5. Conclusions

In summary, all the WS treatments during the grain-filling stage were not conducive to the
formation of grain yield and grain quality in wheat. The treatments during the mid-grain-filling
stage (DAA 8–15 and DAA 16–23) exhibited the greatest impact. The WS treatments during the
grain-filling stage decreased the amylopectin content but increased the amylose content and the
amylose/amylopectin ratio. The total starch content was affected by the timing of the treatment
applied; total starch was decreased when treatment was in the mid-grain-filling stage but had no
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significant change when the treatment was applied during the early or late periods of the grain-filling
stage. The WS treatments increased the number and the surface area of starch granules, increased the
proportion of B-type starch granules (and thus decreased PA/PB), and reduced the mean grain size
of starch granules. WS enhanced the number and size of B-type starch peaked at 1.25 µm and the
size of B-type starch peaked at 2.97 and 5.59 µm, but reduced the number and size of A-type starch
that peaked at 17.7 µm. WS applied at earlier (WS0–7) had a greater influence on the number, size,
and surface area frequency percentage of B-type starch granules peaked at 1.25 µm compared with
other WS. The influence of WS on the surface area and volume frequency percentage of B-type starch
granules peaked at 2.97 and 5.59 µm, and A-type peaked at 17.77µm was greater when applied at
mid-grain-filling stage than at earlier or later stage. Starch pasting parameters also changed accordingly:
the peak viscosity and pasting temperature were increased, whereas the trough viscosity and the
final viscosity were decreased under the WS treatments. Likewise, WS treatment during the early to
mid-grain-filling stage had the greatest impact on the grain size distribution and pasting parameters of
starch granules, followed by that during the mid- to late grain filling stage, and treatments during the
early and late grain-filling stage had a relatively small impact.
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