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Abstract: With global warming, the problem of soil water deficit is growing in Central Europe,
including Poland, and the use of catch crops is recommended to mitigate climate changes. This study
aimed to determine the influence of water deficit on phosphorus (P) content and accumulation in
the above-ground biomass of spring barley and Italian rye-grass growing separately and in the
mixture, and on the inter-species interactions between these crops. The study was based on a pot
experiment established in accordance with the additive design. The experimental factors were as
follows: A. water supply of the plants: an optimal dose and a dose reduced by 50% in relation
to the optimal dose, and B. the sowing type: barley sown as a single species, rye-grass sown as a
single species, and barley with rye-grass catch crop. Based on the P accumulation in plant biomass,
the relative yield of barley and rye-grass, the total relative yield, and the competitive equilibrium
index were determined. Water deficit had no effect on the P content in the plants, but it reduced the P
accumulation in barley stems, leaves and spikes, as well as in rye-grass stems and leaves, from the
emergence to the end of plants’ growing period, both when the plants were sown as a single species
and as a mixture. Barley was a stronger competitor than rye-grass. Inter-species competition occurred
at the stem elongation and heading of barley. The intensification of inter-species competition for P
under water deficit conditions should be taken into account when recommending the undersowing
of barley with rye-grass for sustainable agriculture.

Keywords: Hordeum vulgare; Lolium multiflorum; phosphorus; water stress; competition indices;
plant development stages

1. Introduction

Stress in organisms can be induced by either abiotic or biotic factors [1]. In agro-ecosystems,
of all the abiotic factors, drought is the main determinant that limits the development of plants
and, consequently, their yielding [2]. Central Europe, including Poland, is located in a temperate
climate [3], where the relevance of drought is often underestimated [4]. However, in recent years,
with global climate change, the problem of drought has become increasingly serious in the region [4].
Rising atmospheric temperatures have resulted in increasing evapotranspiration rates [4], and seasonal
and monthly distributions of precipitation have also been changing [5]. Drying trends were observed
for spring and less pronounced for summer, i.e., for a large part of the vegetation period [5]. In general,
drought reduces the uptake of minerals and their transport from the roots to the above-ground
parts, which affects the rate of plant physiological processes [6]. Tolerance to water stress is a very
important feature of plants during drought. Knowledge of species’ sensitivity and response to water
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deficit can be helpful while selecting plants for cultivation, particularly in regions at risk of drought.
Numerous studies indicate that resistance to stress is a genotypic trait [7–10].

Catch crops undersown in small grains (main crop) is a form of mixed cropping which offers
numerous environmental benefits [11,12], and is considered as a sustainable agricultural practice [12,13].
Catch crop residues left in the field are a significant source of nutrient-rich organic matter [14].
After harvesting the main crop, they serve as ground covers and reduce nitrogen and phosphorus
(P) leaching from the soil, as well as direct and indirect greenhouse gas emissions [15–19]. For the
latter reason, the cultivation of catch crops is claimed to make an important contribution to climate
change mitigation [20,21]. However, underplanted catch crops may compete for nutrients with the
main crop [22,23], especially in unfavorable conditions such as water deficit [24]. Italian ryegrass
(Lolium multiflorum) is one of the most popular catch crops, often undersown in spring barley
(Hordeum vulgare) [25,26].

Hordeum vulgare is cultivated in many countries worldwide, with the grains intended mainly for
animal feed purposes [27]. It is usually cultivated as the main crop. It is ranked fourth, following wheat,
rice and maize, in terms of the area under cultivation [28]. Similarly to other cereals, it is also included
in mixtures with leguminous plants [29–32], and is used as a protective plant for underplanted catch
crops [25,33–35]. The species is distinguished by natural tolerance to drought [36]. This tolerance is
determined by early flowering, which ensures optimal pollination, seed development and ripening in
an optimal time period. In cereals, the consequences of water deficiency are determined by both the
plant’s development stage during which the stress occurs [37], and the frequency of drought occurrence
during plant development [38].

Lolium multiflorum is a fast-growing annual or perennial grass originating from Europe [39].
L. multiflorum, similarly to L. perenne, is a valuable fodder plant cultivated in many regions of the world,
in both dry and rainy areas [33,40–42]. L. multiflorum is cultivated as the main crop, but it can also be
cultivated as an underplanted catch crop, similarly to other grasses, papilionaceous plants and their
mixtures [15,43,44].

Phosphorus (P) is the second macronutrient after nitrogen, whose deficiency most frequently
inhibits plant growth [45]. Poor water availability reduces the uptake of macronutrients from
the soil [46,47], and may also affect their content in plants [48–51]. The more severe the drought,
the more adverse the effect on the component ratio in the plant [52]. The literature offers many articles
on the competition between the cultivated plants, particularly cereals and papilionaceous plants,
for habitat resources [53–57]. However, no models have ever been developed to fully explain how
plants compete for nutrients under water deficit conditions. Various indicators are used to assess
this interaction, e.g., relative yield, relative competitive capacity [58], which are based not only on
plant biomass [59], but also on the accumulation of macroelements [23,60]. Relatively more is known
about nitrogen accumulation, while there are few studies on phosphorus [61,62]. This study may
complement this information.

The study aimed to determine the influence of water deficit on P content and accumulation in the
above-ground biomass of spring barley and Italian rye-grass growing separately and in the mixture
(rye-grass undersown in barley), and on the inter-species interactions between these crops at different
plant development stages.

2. Materials and Methods

2.1. Experimental Design

The study was based on a pot experiment conducted at a greenhouse laboratory of the Faculty of
Biology and Biotechnology, University of Warmia and Mazury. The study was carried out on spring
barley (Rastik cultivar) and Italian rye-grass (Gaza cultivar).

The experimental factors were as follows:

1. water supply of the plants: optimal (OW), and reduced by 50% in relation to the optimal one (LW),
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2. sowing type: barley grown as a single species (BP), rye-grass grown as a single species (RP),
barley in a mixture with rye-grass (BM), and rye-grass in a mixture with barley (RM).

An optimal dose of water was determined in a trial experiment, in which plants’ irrigation
requirements were established based on water loss estimated by daily measurements of pot weight.
At the beginning of the trial experiment, the pots with plants were well irrigated, and the soil moisture
content was maintained daily by re-watering with the water lost in the previous 24 h. Daily amounts
of water supplied to the pots with barley, rye-grass and barley-rye-grass mixture were recorded during
the successive growth stages. After finishing the trial experiment, based on the recorded data of water
amounts used for daily irrigation, the pattern of plant watering with a higher dose for the proper
experiment was established. A higher daily dose of water, common for the three types of sowing,
was calculated as an average of barley, rye-grass, and barley-rye-grass mixture requirements at a given
stage of plant growth. This dose was dynamic according to the plant development (changeable during
vegetation), and it was slightly verified during each growing season. The reduced dose was always
equal to one-half of the higher one. At the beginning of each experimental series of the experiment
(sowing), the soil moisture was about 20% (measured by time domain reflectometry (TDR) method).

The plants were cultivated on proper brown soil formed from slightly loamy silty sand. The soil
had a slightly acidic reaction (pH in 1 M KCl 5.6–6.1), average phosphorus (51–61 mg kg−1),
potassium (98–117 mg kg−1) and magnesium (33–42 mg kg−1) content, and an organic carbon
content of 7.1–11.1 g kg−1. Each pot, a week before sowing, was filled with 8 kg soil material
previously mixed with mineral fertilizers, in a dose of pure component (g pot−1): N–0.5 (urea),
P–0.2 (monopotassium phosphate), K–0.45 (potassium sulphate).

Plant kernels were sown into Kick–Brauckmann pots (diameter of 22 cm, depth of 28 cm).
When preparing the mixture, the additive pattern was applied, as it assesses the species’ interactions at
early development stages better than the substitution pattern [63,64]. When single-species sowing was
applied, 18 spring barley kernels or 18 Italian rye-grass kernels were sown, while for the mixed-species
sowing, 18 spring barley kernels and 18 Italian rye-grass kernels were sown (pure sowing stand).
The kernels were distributed using templates at an equal distance from each other over the soil surface,
and placed at a depth of 3 cm.

From the kernel sowing to plant harvesting, the temperature at the laboratory was maintained at
20–22 ◦C. The exception was a 9-day period during the full plant emergence when the temperature
was lowered to 6–8 ◦C to pass the vernalization process.

Three one-year cycles of the experiment were conducted. Each year (cycle), an experiment was set
up according to completely randomized design in four replications, and comprised 120 pots: two levels
of plant water supply x three levels of sowing type (two species sown separately and in a mixture)
x five testing dates x four replications.

2.2. Plant Sampling and Analysis

The phosphorus content in the above-ground biomass of the plants was assayed in five
developmental periods, determined by the developmental rhythm of barley sown as a single species and
supplied with an optimum water dose. These included (according to BBCH scale): leaf development
(10–13), tillering (22–25), stem elongation (33–37), heading (52–55), and ripening (87–91). When barley
reached the appropriate stage, the plants were removed from pots (intended for a particular stage),
and the shoots were separated from the roots. The material subjected to testing included the
above-ground parts of barley and rye-grass plants. The plants were dried in the air and then weighed.
For barley, beginning from the stem elongation stage, the shoots were separated into stems and leaves,
and from the heading stage, into the spikes as well. For rye-grass, the shoots were separated into the
stems and leaves, beginning from the barley stem elongation stage.

The phosphorus content was assayed by the spectrophotometric method (PN-ISO 6491:2000) [65],
at the Chemical and Agricultural Research Laboratory in Olsztyn.
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2.3. Calculations

The phosphorus accumulation was calculated by multiplying the content of this element in
individual parts of the plants by the weight of these organs.

Based on the phosphorus accumulation in the total above-ground biomass of the plants,
the relative yield (RY) (Equation (1)) and the total relative yield (RYT) (Equation (2))
were determined [66]:

RYB = YBM/YBP and RYR = YRM/YRP (1)

RYT = RYB + RYR (2)

The relative competitive capacity for phosphorus in mixed seedings was expressed as the
competitive equilibrium index (Cb) (Equation (3)) [67]:

Cb = ln[(YBM/YRM)/(YBP/YRP)] (3)

where: RYB—relative barley yield, YBM—barley in mixture yield, YBP—barley yield for single-species
sowing, RYR—relative rye-grass yield, YRM—rye-grass in mixture yield, YRP—rye-grass yield for
single-species sowing, ln—natural logarithm.

In the additive pattern, RY < 1 indicates competition, RY > 1 indicates positive interactions,
and RY = 1 no interactions. If RYT > 1, this indicates partial complementarity in resource acquisition
by the mixture components, positive interactions between species, or incomplete resource acquisition
by species in single-species seedings, while if RYT = 2, there are no competitive interactions between
species in the mixture, as the resource acquisition by each species in the mixture is the same as in the
single-species sowing [60].

The competitive equilibrium index Cb indicates which of the species is more competitive.
The experiment calculated Cb for barley in relation to Italian rye-grass. If the species are equal
competitors, then Cb = 0, if barley is a better competitor than rye-grass, then Cb > 0, and if rye-grass is
a better competitor than barley, then Cb < 0.

2.4. Statistical Analysis

The results were subjected to the analysis of variance (ANOVA). The statistics were calculated
separately for each growth stage and for individual plant parts. Homogeneous groups were identified
by Duncan’s test at p < 0.05. Using correlation coefficients, the relationship between the phosphorus
accumulation and its content in the organs of plants and their above-ground biomass (the leaves,
stems and spikes) was presented. The correlation coefficients were calculated separately for barley and
rye-grass, based on the results from all objects (irrespective of the water supply of the plants). It was
also checked as to whether the RY and RYT values differ significantly from the unity, and the Cb values
from zero, using the t-Student test [60]. Statistical analyses were carried out using the STATISTICA
software (data analysis software system), version 12, StatSoft [68].

The results in the tables are means for the three cycles (years) of the experiment.

3. Results

3.1. Phosphorus Content and Accumulation

3.1.1. Spring Barley

The water supply of the plants and the type of sowing had no significant effect on the P content in
the above-ground parts of barley throughout the growing period (Table S1).

Water deficit (LW) and the vicinity of rye-grass (BM) reduced P accumulation in the total
barley above-ground biomass and individual organs (Table 1). Only at the ripening stage was the P
accumulation in barley leaves not affected by the type of sowing. Throughout the cereal vegetation,
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most P in the above-ground biomass and the organs was accumulated by the plants BP-OW. Water deficit
(LW) reduced the P accumulation more than the presence of rye-grass (BM), and the interaction of
these factors (BM-LW) resulted in a further reduction in P accumulation.

Table 1. Phosphorus accumulation by barley (mg pot−1).

Growth Stage
of Barley

Plant
Part

Water Supply Sowing Type Water Supply x Sowing Type

OW LW BP BM BP-OW BM-OW BP-LW BM-LW

Leaf
development shoots 5.57 a 4.10 b 5.22 a 4.44 b 5.98 a 5.15 b 4.46 c 3.74 d

Tillering shoots 22.47 a 10.53 b 17.13 a 15.87 b 23.13 a 21.81 b 11.13 c 9.92 c

Stem
elongation

shoots 57.01 a 22.77 b 44.15 a 35.64 b 62.42 a 51.60 b 25.88 c 19.67 d

leaves 20.87 a 10.02 b 17.41 a 13.48 b 23.51 a 18.23 b 11.32 c 8.72 d

stems 36.14 a 12.76 b 26.74 a 22.16 b 38.91 a 33.37 b 14.56 c 10.95 d

Heading

shoots 68.28 a 29.66 b 54.37 a 43.57 b 74.75 a 61.82 b 33.99 c 25.33 d

leaves 18.37 a 11.57 b 17.47 a 12.47 b 22.52 a 14.22 b 12.43 c 10.72 d

stems 35.74 a 13.99 b 26.61 a 23.13 b 36.57 a 34.92 b 16.65 c 11.34 d

spikes 14.17a 4.09 b 10.29 a 7.98 b 15.66 a 12.69 b 4.91 c 3.28 d

Ripening

shoots 48.88 a 36.58 b 46.21 a 39.25 b 51.85 a 45.91 b 40.58 c 32.59 d

leaves 10.46 a 9.42 b 10.04 a 9.84 a 10.40 ab 10.51 a 9.68 bc 9.17 c

stems 20.15 a 17.43 b 19.86 a 17.71 b 19.44 a 20.85 a 20.28 a 14.57 b

spikes 18.28 a 9.74 b 16.31 a 11.70 b 22.00 a 14.55 b 10.62 c 8.86 d

OW—optimal water supply, LW—water supply reduced by 50%; BP—barley as a single species, BM—barley in a
mixture with rye-grass; a, b, c, d—homogeneous groups (values followed by the same letters, for each phase and for
each part of the plant, within experimental factors and their interactions are not significantly different at p < 0.05).

The amount of accumulated P was strongly correlated with the amount of barley above-ground
biomass (Table 2). Moreover, a positive correlation was demonstrated between the P accumulation and
P content in the vegetative organs of barley during tillering and stem elongation, and between the P
accumulation and P content in the barley stems at the heading and ripening stages.

Table 2. Coefficients of correlation (r) between phosphorus accumulation and phosphorus (P) content
and the above-ground biomass of plants.

Growth Stage of Barley Plant Part
Barley Rye-Grass

P Content Biomass P Content Biomass

Leaf development shoots 0.041 0.977 * 0.291 * 0.960 *

Tillering shoots 0.618 * 0.944 * 0.584 * 0.993 *

Stem elongation leaves 0.481 * 0.946 * 0.293 * 0.946 *
stems 0.602 * 0.968 * 0.229 0.990 *

Heading
leaves 0.116 0.934 * −0.024 0.963 *
stems 0.557 * 0.905 * −0.229 0.980 *
spikes 0.274 0.942 * – –

Ripening
leaves 0.125 0.769 * 0.110 0.850 *
stems 0.493 * 0.880 * −0.591 * 0.985 *
spikes −0.035 0.994 * – –

* r significant at p < 0.05.

3.1.2. Italian Rye-Grass

The P content in the vegetative organs of rye-grass throughout the growing period was not
affected by the water supply of the plants or the type of sowing (Table S2).
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Both water deficit (LW) and the vicinity of barley (RM) reduced the amount of accumulated P in
the rye-grass above-ground biomass (Table 3). The strength of the effects of the interaction between
water deficiency and barley’s competition (RM-LW) on this feature varied at different development
stages of the cereal. At the barley leaf development stage, a higher P accumulation was noted in
rye-grass RP-OW than RM-OW, in the absence of differences between RP-LW and RM-LW plants.
During barley tillering, the reducing effect of water deficit was still noted, but under these conditions,
the competitive effect of barley against rye-grass was also observed. From the stem elongation stage
until the end of vegetation, the vicinity of barley reduced the P accumulation in rye-grass leaves and
stems more than water deficit, and the interaction of stress factors (RM-LW) deepened this reduction.

Table 3. Phosphorus accumulation by rye-grass (mg pot−1).

Growth Stage
of Barley

Plant
Part

Water Supply Sowing Type Water Supply x Sowing Type

OW LW RP RM RP-OW RM-OW RP- LW RM-LW

Leaf
development shoots 0.94 a 0.65 b 0.85 a 0.74 b 1.06 a 0.82 b 0.64 c 0.66c

Tillering shoots 9.67 a 3.34 b 9.54 a 3.47 b 14.00 a 5.33 b 5.07 b 1.62 c

Stem
elongation

shoots 28.34 a 14.10 b 32.71 a 9.73 b 43.03 a 13.64 c 22.39 b 5.81 d

leaves 14.02 a 9.02 b 16.50 a 6.54 b 18.80 a 9.23 c 14.20 b 3.85 d

stems 14.32 a 5.08 b 16.21 a 3.19 b 24.23 a 4.41 c 8.19 b 1.96 d

Heading
shoots 57.69 a 29.82 b 65.56 a 21.95 b 85.22 a 30.16 c 45.90 b 13.74 d

leaves 36.26 a 18.98 b 40.77 a 14.47 b 52.56 a 19.96 c 28.98 b 8.99 d

stems 21.43 a 10.83 b 24.79 a 7.47 b 32.66 a 10.20 c 16.92 b 4.75 d

Ripening
shoots 63.58 a 35.71 b 70.27 a 29.02 b 89.6 a 37.55 c 50.92 b 20.49 d

leaves 44.71 a 25.71 b 50.20 a 20.22 b 63.64 a 25.78 c 36.76 b 14.66 d

stems 18.82 a 10.00 b 20.07 a 8.75 b 25.98 a 11.66 c 14.16 b 5.83 d

OW—optimal water supply, LW—water supply reduced by 50%; RP—rye-grass as a single species, RM—rye-grass
in a mixture with barley; a, b, c, d—homogeneous groups (values followed by the same letters, for each phase and
for each part of the plant, within experimental factors and their interactions are not significantly different at p < 0.05).

The P accumulation in the plants was determined by the above-ground biomass of rye-grass
(Table 2). Moreover, a positive correlation between the P accumulation and P content in rye-grass
vegetative organs until the stem elongation stage and a strong negative correlation between the P
accumulation and P content in rye-grass stems during barley ripening were found.

3.2. Competition for Phosphorus

Throughout the growing period, irrespective of the water supply of the plants, there was
competition for P between barley and rye-grass (RYB < 1 and RYR < 1) (Table 4). Only during the period
of leaf development under water deficit (LW) were no effects of barley on rye-grass noted (RYR = 1.04).
A water deficit increased the competition intensity, especially of rye-grass against barley from the stem
elongation stage to the end of barley vegetation (RYB = 0.75–0.80) and of barley against rye-grass from
the tillering stage to the barley heading stage (RYR = 0.26–0.32). Consequently, during the barley stem
elongation and heading stages under water stress conditions, there was full competition between the
species (RYT did not differ from 1) (Figure 1). At other development stages, the plants made use of the
resource, partially in a complementary manner (RYT > 1).
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Table 4. RY values for barley and rye-grass (based on P accumulation) depending on the water supply
of the plants.

Growth Stage of Barley

Water Supply

OW LW

RYB RYR RYB RYR

Leaf development 0.86 bc* 0.78 a* 0.84 ab* 1.04 a

Tillering 0.94 a 0.38 bc* 0.89 a* 0.32 bc*

Stem elongation 0.83 c* 0.32 c* 0.76 c* 0.26 c*

Heading 0.83 c* 0.35 bc* 0.75 c* 0.30 bc*

Ripening 0.89 b* 0.42 b* 0.80 bc* 0.40 b*

OW—optimal water supply, LW—water supply reduced by 50%; RYB—RY values for barley, RYR—RY values for
rye-grass; a, b, c—homogeneous groups (values in the column of the table within species values followed by the
same letters are not significantly different at p < 0.05); * RYB, RYR, significantly different from 1.0 (p = 0.05).
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Figure 1. Changes in the RYT (a) and Cb (b) values for the mixture of barley and rye-grass catch crop
during the growth. OW—optimal water supply, LW—water supply reduced 50%; growth stage of
barley: L—leaf development, T—tillering, S—stem elongation, H—heading, R—ripening; *—RYT
significantly different from 1.0 (p = 0.05) and Cb significantly different from 0.0 (p = 0.05).

Both under conditions of optimal water supply of the plants and water deficit, the competition of
rye-grass against barley was most intense during barley stem elongation and heading. On the other
hand, the competition of barley against rye-grass from the tillering to heading stages was the most
intense during stem elongation. Barley was a stronger competitor than rye-grass (the Cb index was
significantly higher than 0) (Figure 1).

4. Discussion

4.1. Phosphorus Content and Accumulation in Barley

The current study demonstrated no effects of water deficit on the P content in barley above-ground
parts throughout the growing period. The results of other studies conducted to date on the effects of
water stress on this feature are inconclusive. Both reports of no change [24] and of a reduction in the P
content [52,69] of the barley biomass with an increase in water stress were noted.

The type of sowing had no effect on the P content in barley above-ground biomass in the current
study. A convergent result was presented by Jastrzębska et al. [24], who examined the effect of red
clover as a catch crop accompanying spring barley. On the other hand, Wanic and Michalska [31]
demonstrated that mixed barley and pea sowing increased the P content in the cereal above-ground
biomass, at the heading and ripening stages.

The reduction in the P accumulation in barley above-ground biomass due to water deficit and
the presence of rye-grass was proven in the current study. To compare, Jastrzębska et al. [24] found
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that mixed spring barley and red clover sowing did not differentiate the amount of P accumulated
in the cereal until the heading stage, and at the heading stage, it significantly reduced the amount
in the leaves. The current study demonstrated that P accumulation was determined by the biomass
produced, and only during the initial period of plant development by P content in the plant. Lower P
accumulation under water deficit conditions indicates a smaller biomass. A reduction in barley biomass
under drought conditions was confirmed in studies by other authors [52,70–72].

4.2. Phosphorus Content and Accumulation in Rye-Grass

In the current study, the P content in the above-ground stems and leaves of rye-grass was not
affected by the water supply of the plants. AbdElgawad et al. [73] also found that drought and high
temperatures had no significant effect on the P and other nutrient concentrations in the above-ground
biomass of grasses (Poa pratensis, Lolium perenne) and legumes (Lotus corniculatus, Medicago lupulina).
No changes in the P content in rye-grass growing in the vicinity of spring barley were found in
the current study either. On the other hand, Høgh-Jensen and Schjoerring [74] demonstrated that P
concentration in the dry matter of Lolium perenne shoots in the single-species sowing was lower than
noted when rye-grass was sown in a mixture with Trifolium repens.

There are few studies on the effects of water deficit and competition on P accumulation in the
rye-grass biomass. Indirectly, conclusions about it can be drawn based on the biomass, since the
P accumulation throughout the growing period had a positive correlation with the above-ground
biomass accumulation. Brink et al. [75] also indicates a strong correlation between P uptake and the
dry matter of Lolium multiflorum, while Burkitt et al. [76] explain such a relationship for Lolium perenne.
Italian rye-grass is sensitive to water scarcity and primarily responds with poor tillering [77], which can
result in lower biomass. The sensitivity of grasses to drought is a feature of the species [78], and even a
varietal feature [79], while agronomic and physiological effects of water deficit are determined by the
duration of drought [10]. On the other hand, the strength of the effect of a protective (main) crop on
the development of catch crop is determined by the protective crop species and the catch crop species.
Barley is regarded as a good protective crop for underplanted catch crops [25]. Kuraszkiewicz and
Pałys [35] demonstrated that winter rye is a better protective crop than spring barley and oats, and in
years with high precipitation, the yields of both fresh and the air-dry above-ground biomass of the
catch crop are greater.

4.3. Relative Yields

The nutrient accumulation in plant biomass can result from inter-species interactions such as
competition, facilitation and complementarity [74]. For example, a study by Rahetlah et al. [59]
demonstrated that Italian rye-grass and spring vetch make complementary use of resources, and that
such a mixture could be an alternative to a rye-grass single-crop system, particularly in the dry
season. Based on the P accumulation in the plant biomass, expressed as relative yields, it was
demonstrated that barley and rye-grass competed for P during the stem elongation and heading stages
under water deficit conditions, while at other stages, irrespective of the water supply of the plants,
they had a complementary effect (1 < RYT < 2). According to Sobkowicz and Podgórska-Lesiak [60],
complementarity always occurs at the early plant development stages in the additive pattern.
Before competition or other effects of emerging plants occur, RYT in the additive mixture is always
equal to 2, since the yield of each species is the same in the mixture as in the single-species sowing.
At subsequent stages of development, barley was more competitive against rye-grass. This is a result
of the higher initial barley growth rate following the emergence, which determined its competitive
advantage over the slower growing catch crop [30]. A species that grows faster makes use of the
necessary growth resources and makes them unavailable to other species [30]. In the current study,
the strength of species’ competition was changing during vegetation. Both under the conditions
of the optimal plants’ water supply and of water deficit, barley competed more strongly during
the tillering and stem elongation stages and this phenomenon, then started to decrease in intensity.



Agriculture 2020, 10, 329 9 of 13

At the same time, at the barley stem elongation and heading stages, the competition of rye-grass
against the cereal (RYB) began to intensify, which is probably due to the higher growth rate of rye-grass.
Similar observations as regards oats as well as rye-grass and vetch catch crop are presented by
Paris et al. [80]

5. Conclusions

Water deficit had no effect on the phosphorus content in the above-ground parts of spring
barley and Italian rye-grass. This factor reduced phosphorus accumulation in the biomass of barley
(the stems, leaves and spikes) and of rye-grass (the stems and leaves) from the emergence to the
end of plant growth, both when the plants were cultivated as a single species and in a mixture.
Water deficit inhibited the phosphorus accumulation in the barley biomass more than the competition
of rye-grass. The competition from barley was, for rye-grass, a stronger factor hindering phosphorus
accumulation in the stems and leaves than water deficit. Spring barley was a stronger competitor than
rye-grass. Irrespective of the water supply of the plants, the competition intensified until the stem
elongation phase. The full competition was noted at the stages of most intense barley development, i.e.,
during the stem elongation and heading. Underwater deficit inter-species competition for P intensified,
which further weakened the P uptake both by barley and rye-grass. This phenomenon should be taken
into account when recommending the undersowing of barley with Italian rye-grass for sustainable
climate-smart agriculture.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0472/10/8/329/s1,
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