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Abstract: Rapid and accurate evaluation of cultivated land quality (CLQ) using remotely sensed 
images plays an important role for national food security and social stability. Current approaches 
for evaluating CLQ do not consider spectral response relationships between CLQ and spectral 
indicators based on crop growth stages. This study aimed to propose an accurate spectral model to 
evaluate CLQ based on late rice phenology. In order to increase the accuracy of evaluation, the 
Empirical Bayes Kriging (EBK) interpolation was first performed to scale down gross primary 
production (GPP) products from a 500 m spatial resolution to 30 m. As an indicator, the ability of 
MODIS-GPPs from critical growth stages (tillering, jointing, heading, and maturity stages) was then 
investigated by combining Pearson correlation analysis and variance inflation factor (VIF) to select 
the phases of CLQ evaluation. Finally, a linear Partial Least Squares Regression (PLSR) and two 
nonlinear models, including Support Vector Regression (SVR) and Genetic Algorithm-Based Back 
Propagation Neural Network (GA-BPNN), were driven to develop an accurate spectral model of 
evaluating CLQ based on MODIS-GPPs. The models were tested and compared in the Conghua and 
Zengcheng districts of Guangzhou City, Guangdong, China. The results showed that based on field 
measured GPP data, the validation accuracy of 30 m spatial resolution MODIS GPP products with 
a root mean square error (RMSE) of 7.43 and normalized RMSE (NRMSE) of 1.59% was higher than 
that of the 500 m MODIS GPP products, indicating that the downscaled 30 m MODIS GPP products 
by EBK were more appropriate than the 500 m products. Compared with PLSR (R2 = 0.38 and RMSE 
= 87.97) and SVR (R2 = 0.64 and RMSE = 64.38), the GA-BPNN model (R2 = 0.69 and RMSE = 60.12) 
was more accurate to evaluate CLQ, implying a non-linear relationship of CLQ with the GPP 
spectral indicator. This is the first study to improve the accuracy of estimating CLQ using the rice 
growth stage GPP-driven spectral model by GA-BPNN and can thus advance the literature in this 
field. 
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1. Introduction 

Cultivated land quality (CLQ) has significant influence on agricultural production and resident 
living [1–3]. The CLQ often changes dramatically under conditions of human disturbances or 
environments [4]. Thus, rapid and accurate quantification of CLQ is critical. Traditionally, the 
assessment of CLQ is usually conducted using field measurements, which is time-consuming and 
costly. More importantly, this method lacks the ability to generate spatial distributions of CLQ [5–7]. 
Using remotely sensed data offers the potential of obtaining accurate and spatially explicit estimates 
of CLQ with low cost and has attracted the attention of scholars [8–12]. 

Current studies on CLQ evaluation using satellite imagery can be divided into two categories: 
traditional CLQ evaluation methods and pressure-state-response (PSR) based approaches. In the 
former group of CLQ evaluation methods, remote sensing data were only utilized to obtain some 
traditional indicators of CLQ, such as soil properties. One typical example is the study of Yang et al. 
(2012) in which Landsat TM images were used to derive soil organic matter, soil acidity, soil texture, 
and then generate the estimates of CLQ based on gradation regulations on the quality of farmland in 
China [13]. Instead of soil fertilizer variables, Zhao et al. (2012) utilized normalized difference 
vegetation index from Landsat TM imagery to evaluate CLQ [14]. However, the evaluation efficiency 
of CLQ using satellite image-driven evaluation methods is limited because the use of the methods is 
dependent on field measurements. 

While, of the PSR based methods, CLQ is directly evaluated using remote sensing spectral 
indicators. For example, Liu et al. (2010) developed a linear model for evaluating CLQ based on 
predictors, including slope, sandy area ratio in a pixel, and modified soil-adjusted vegetation index 
[4,15]. Liu et al. (2019) generated the spatial distribution of CLQ estimates based on the Genetic 
Algorithm-Based Back Propagation Neural Network (GA-BPNN) model. The authors utilized five 
remote sensing data derived predictors, including Slope, Vegetation Index, Temperature Vegetation 
Dryness Index, Road Accessibility, and Patch Fractal Dimension, and found that CLQ was 
significantly and nonlinearly correlated with the spectral predictors [16]. Xie et al. (2018) developed 
a frequent pattern-growth algorithm for improving the evaluation efficiency of CLQ [17]. At present, 
there have been no reports about CLQ evaluation using gross primary production (GPP). Some 
scholars have used GPP to evaluate cultivated land productivity. Ma et al. (2018) explored the 
estimation of cultivated land productivity using the mean GPP from 2000 to 2018 and analyzed the 
change trend and amplitude of cultivated land productivity, implying that GPP provided the 
potential to evaluate CLQ [18]. Although the studies demonstrated the possibility of rapidly 
evaluating CLQ, the spectral responses between CLQ and remote sensing indicators were ignored. 
Moreover, the prediction accuracy of CLQ is affected by the selected spectral indicators in the PSR 
framework due to the limitations of image spatial and spectral resolutions.  

This study aimed to propose an accurate spectral response model of CLQ based on GPP spectral 
indicators from the MODIS-GPPs from 2011 to 2015 at different growth stages of late rice and the 
corresponding temporal CLQ for mapping CLQ. Here, CLQ is defined as the farmland utilization 
quality grade and represents the degree of anthropogenic use and natural conditions of cultivated 
land [19]. The Empirical Bayes Kriging (EBK) interpolation was first employed to perform spatial 
downscaling transformation of the MODIS GPP images from 500 m spatial resolution to 30 m. The 
accurate spectral model based on GA-BPNN was then developed and validated by comparing it with 
a linear partial least squares regression (PLSR) and a non-linear support vector regression (SVR). The 
comparison of the models was made in the study area mentioned next. It is expected that the study 
can offer a powerful tool to rapidly and accurately estimate CLQ. 

2. Materials and Methods 

2.1. Study Areas 

The study area (Figure 1) is situated in the Conghua and Zengcheng District of Guangzhou, 
Guangdong of China (22°26′–23°56′ N, 112°57′–114°03′ E). The annual average temperature is 21 °C 
and the annual average precipitation is about 1900 mm, concentrating between April and September 
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[20–22]. The cultivated land area of Guangzhou in 2015 was 13,485.99 hm2 with an annual crop yield 
of 440,900 tons (referencing the Statistical Communiqué of Guangzhou on the 2015 National 
Economic and Social Development), of which the paddy field was 11,885.16 hm2 with the average 
paddy stand size of about 0.25 hm2, accounting for 87.91% of the total cultivated land area. The 
cultivated land is mainly concentrated in Conghua and Zengcheng Districts. Rice is the principal crop 
in the study area, with an annual double rotation system (early rice: March–June and late rice: 
August–November). 

 
Figure 1. The study area location in Guangzhou City (a), and Conghua and Zengcheng District (b), 
respectively, with a total of 420 sample plots for cultivated land quality (CLQ) (training sample plots 
are in yellow and validation sample plots for the model in purple) and another set of 240 sample plots 
in red for validating multi-scale Moderate-resolution Imaging Spectroradiometer (MODIS) gross 
primary production (GPP) products; (c,d) the validation areas for mapping at Aotou Town of 
Conghua District and Zhongxin Town of Zengcheng District. 

2.2. Data 

In this study, to match the 500 m spatial resolution of MODIS GPP products, field sampling plots 
of 500 m by 500 m were designed and within each plot, biomass was taken at five locations with one 
placed at the plot center and the other four at the middle points from the plot center to the corners 
along the diagonal lines. The GPP was estimated with an empirical regression model [23]:G𝑃𝑃 = ே௉௉଴.ହଶସ, 
where NPP was acquired from the following equation. 
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  𝑁𝑃𝑃 =  𝐵 × 𝛽𝛼   (1)

where  𝐵 is the dry biomass obtained from each of the sampled plots at the heading stage and dried 
in a constant temperature drying oven at 110 °C. The α  is the ratio of aboveground biomass to total 
biomass, and 𝛽 is the percentage of carbon in the biomass. For cultivated land, the value of α is 
usually 0.8 [24], and 𝛽 is 45% [25]. The rice samples were first destructively collected in the field 
sample plots and oven-dried at 110 °C for 50 min in the laboratory, and the temperature was then 
adjusted to 85 °C for 10 h until the sample weights did not change. The samples were finally taken 
out and weighed. 

Moreover, a total of 660 sample data were extracted from the CLQ map obtained from the 
Guangzhou National Land Department and the CLQ values were derived using gradation 
regulations on farmland quality in China (Regulation for gradation on agriculture land quality GB/T 
28407-2012) [26]. The plot sampled area is 30 m × 30 m, matching the 30 m spatial resolution of the 
downscaled MODIS products. The 660 samples were randomly divided into three groups: 294 
samples in yellow for modeling (Figure 1b), 126 sample in purple for validation of the estimated CLQ 
(Figure 1b), and another dataset of 240 sample plots in red for assessing the accuracy of mapping 
CLQ at the regional scale (Figure 1c,d). In addition, 2011– 2015 MODIS/Terra 8-day GPP products 
(MOD17A2H Version 6) at a spatial resolution of 500 m  500 m were acquired from the Land 
Processes Distributed Active Archive Center (LP DAAC/NASA). The MODIS Re-projection Tool 
(MRT) was employed to convert the sinusoidal projection into the Albers Equal Area projection for 
the MODIS GPP products. The scaling factor of 0.1 was utilized to obtain the standard MODIS-GPP 
products [27].  

According to the rice growth phases recommended by Ricepedia [28], the rice growth process 
can be characterized by five stages: seedling, tillering, jointing, heading, and maturity. In fact, the 
seedling stage was not taken into account because of the too small values of MODIS-GPPs detected 
and the impact of water on the spectral reflectance of rice. Thus, four growth stages were considered. 
Moreover, the dates of the acquired MODIS-GPP images with cloud cover less than 5% were 
consistent with the times of the four rice growth stages (Table 1) and the synchronous satellite-field 
experiment was carried out. 

Table 1. Acquisition dates of MODIS-GPPs and corresponding with rice growth stages. 

Growth Stage Tillering Stage Jointing Stage Heading Stage Maturity Stage 

Acquisition date (m/d/y) 

8/20/2011–8/27/2011 9/13/2011–9/20/2011 10/15/2011–10/22/2011 11/8/2011–11/15/2011 
8/19/2012–8/26/2012 9/12/2012–9/19/2012 10/14/2012–10/21/2012 11/7/2012–11/14/2012 
8/20/2013–8/27/2013 9/13/2013–9/20/2013 10/15/2013–10/22/2013 11/8/2013–11/15/2013 
8/20/2014–8/27/2014 9/13/2014–9/20/2014 10/15/2014–10/22/2014 11/8/2014–11/15/2014 
8/20/2015–8/27/2015 9/13/2015–9/20/2015 10/15/2015–10/22/2015 11/8/2015–11/15/2015 

2.3. Methods 

2.3.1. Downscaling of MODIS GPP Products Based on the EBK Interpolation 

The EBK was used to downscale the MODIS GPP products from a 500 m spatial resolution to 30 
m [29,30]. The EBK is superior compared with the conventional spatial downscaling methods that 
rely solely on the spectral data of images and do not take into account image texture and structure, 
as well as with the classical kriging methods that ignore the explanation of the error introduced by 
modeling semivariograms [31]. The EBK is a powerful non-stationary algorithm and divides an 
image into subsets and uses simulation to makes the process automatic for spatial interpolation [32]. 
In this method, the following Kriging Equation (2) was utilized to predict GPP values [30,33,34]: 

Z(௫బ) = ෍ 𝜆௜௡
௜ୀଵ · 𝑍(௫೔) + ෍ 𝑠௜ · 𝑈(௫೔)௡

௜ୀଵ  (2) 
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where 𝑍௜, (i = 1, … , 𝑛) is the GPP value at location xi, 𝜆௜, (i = 1,2,3…,n), represents the kriging weight 
generated using the parameters of cross-variograms, and 𝑠௜ , (i = 1,2,3…,n) is the kriging weight 
estimated on the basis of a cross-variogram between Z(௫೔)  and 𝑈(௫೔) . The 𝑛  denotes the total 
number of observations. The variable 𝑈(௫) was a standardized rank that was calculated as [30]: 𝑈(௫೔) = 𝑅𝑛 (3) 

where R represents a rank of the Rth order statistic of GPP on the land surface at location  𝑥௜ . 
Downscaling the 500 m MODIS GPP products to the 30 m spatial resolution using EBK was 
performed using ArcGIS 10.3 Geostatistical Analyst (Environmental Systems Research Institute, Inc., 
Redlands, CA, USA). 

2.3.2. Selecting the Phases of GPP 

The important step in selecting the phases for CLQ evaluation was the determination of the 
relevant growth stage. In this study, Pearson product moment correlation that quantifies the linear 
relationship between two variables [35,36] was applied to obtain the spectral variables with the 
highest coefficients at the significance level of 0.05. The correlation coefficient is calculated as: 𝑟௜ = ∑ (𝑅௡௜ − 𝑅௜)(𝑦 − 𝑦)ே௡ୀଵට∑ (𝑅௡௜ − 𝑅௜)ଶ ∑ (𝑦 − 𝑦)ଶே௡ୀଵே௡ୀଵ , (4)

where 𝑟௜ is the correlation coefficient between growth stage and CLQ, N is the total number of CLQ 
samples. 𝑅௡௜ is the 𝑖th growth stage of the nth CLQ sample, 𝑅௜ is the average of the CLQ sample 
values in the ith growth stage, and y is the nth CLQ, 𝑦 is the average value of CLQ. 

Moreover, the Variance Inflation Factor (VIF) was applied to mitigate the collinearity among the 
GPP predictors, which is calculated as [37,38]:  VIF = 11 − 𝑅௜ଶ   (5)

where, 𝑅௜ଶ is the determination coefficient between the ith predictor and the remaining independent 
variables. The larger the VIF, the greater the collinearity between the predictors. In general, the values 
from 0 to 10, 10 to 100, and equal to and greater than 100, respectively, imply no strong and serious 
collinearity. 

2.3.3. Partial Least Squares Regression 

In this study, to improve the evaluation of CLQ, GA-BPNN was proposed and compared with 
PLSR and SVR to predict CLQ using GPPs. 

As a linear multivariate model, PLSR relates two data matrices, X and Y. Compared with 
traditional regression, however, PLSR can be used to analyze the predictors that have strong 
correlations [39,40], which is expressed as follows: 𝑌 = 𝑋𝛽 + 𝜀, (6)

where 𝑌 is the response variable CLQ, 𝑋 is the predictor GPP at different stages, 𝛽 is the regression 
coefficient, and 𝜀 is the residual. 

2.3.4. Support Vector Regression 

The SVR is a widely used supervised learning method for solving the problem of regression 
fitting. Different from the traditional process from induction to deduction, SVR greatly simplifies the 
usual regression process by making efficient “transductive inference” from training samples to 
prediction [41–43]. Traditional regression algorithms use training samples to generate a model (a 
global trend) that is used to predict values of the dependent variable at unknown locations. In SVR, 
the values of 2011–2015 MODIS-GPPs as predictors 𝑥  in this study are first plotted onto an 
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m- dimensional feature space (m–number of predictors) and a linear model with its epsilon 
band- acceptable prediction surface is constructed in the feature space. 𝑓(𝑥) = 𝜔∅(𝑥) + 𝑏 (7)

where 𝑓(𝑥) presents CLQ estimates, ∅(𝑥) denotes the GPP set of nonlinear transformations, b is the 
error term, and 𝜔 is the weight coefficient. After preprocessing of data, the error term often has a 
zero mean and can be dropped. According to structural risk maximization principles, 𝜔 and 𝑏 are 
calculated by following the objective function 𝑅(𝑥). 

𝑅(𝑥) = 12 ‖𝜔‖ଶ + 1𝑙 ෍|𝑓(𝑥௜) − 𝑦௜|ఌ௟
௜ୀଵ  (8)

where |𝑓(𝑥௜) − 𝑦௜|ఌ is the insensitive loss function, ε is the error tolerance of the insensitive loss 
function , 𝑙 denotes the number of samples, ‖𝜔‖ଶ reflects the flatness of in the m-dimensional space. 

The model complexity can be simplified by minimizing  ‖𝜔‖ଶ. By introducing (non-negative) 
slack variables ξ୧, ξ୧∗, i = 1, … , n and penalty factor (C) to derive the deviation of training samples 
outside the insensitive loss function, SVR is formulated by minimizing the following objective 
function: 

R(ω, ξ୧, ξ୧∗) = 12 ‖𝜔‖ଶ + C ෍(୪
୧ୀଵ ξ୧ + ξ୧∗) 

s. t. ቐ y୧ − ∅(x) − 𝑏 ≤ ε + ξ୧∗ω∅(x) + 𝑏 − y୧ ≤ ε + ξ୧∗ξ୧, ξ୧∗ ≥ 0, i = 1, … , n , (i = 1, … , n) 

(9)

The above problem can be translated into the following dual problem: minα୧(∗)ϵRଶ୪ 12 ෍(α୧ − α୧∗)൫α୨ − α୨∗൯ ቀ∅(x୧)∅൫x୨൯ቁ + ε ෍(α୧∗ + α୧) − ෍ y୧(α୧∗ − α୧)୪
୧ୀଵ

୪
୧ୀଵ

୪
୧,୨ୀଵ  

s. t. ⎩⎨
⎧ ෍(α୧ − α୧∗)୪

୧ୀଵ = 00 ≤ α୧(∗) ≤ C, i = 1, … , l. 
(10)

where α୧ − α୧∗  is the transformation of the 𝜔 variable after introducing the Lagrange factor. The 
SVR function is obtained by solving the above problems: 

𝑓(𝑥) = 𝜔∅(𝑥) + 𝑏 = ෍(α୧∗ − α୧)K(x୧, x)୪
୧ୀଵ + 𝑏 (11)

where  𝐾(𝑥௜, 𝑥) = ∅(𝑥௜)∅(𝑥) is kernel function. 

2.3.5. Genetic Algorithm-Back Propagation Neural Network 

The GA-BPNN model is developed by combining a back propagation neural network (BPNN) 
with the genetic algorithm optimization (GA). The BPNN has been widely used to find solutions for 
nonlinear relationships. The training samples are used to train the multi-layer BPNN using the error 
back propagation (BP) algorithm. During the process of modifying the weights, however, the 
standard BP algorithm ignores previous gradient direction, which often leads to the oscillation and 
slow convergence of the learning process [44]. The GA mimics biological evolution processes and has 
the capacity of finding global optimum solutions of the problems and thus can be utilized to optimize 
the thresholds and weights of the BPNN [45]. Therefore, the combination of BPNN and GA results in 
an integrated model that provides the potential of improving the efficiency and accuracy of the 
predictions. The flow chart of GA-BPNN with its structure [46] is shown in Figure 2. 
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Figure 2. The Flow chart of GA-BPNN. 

3. Results 

3.1. Downscaling of MODIS GPPs by EBK Interpolation 

To improve the accuracy of evaluating CLQ, 2011–2015 MODIS-GPPs with the 500 m spatial 
resolution were scaled downs to a 30 m spatial resolution using the EBK interpolation. Compared 
with the original standard MODIS-GPP for the same date, the downscaled MODIS-GPP on the 233rd 
to 289th day in 2013 shows more detailed information (Figure 3), indicating that the quality of the 
downscaled data is higher than the original standard data. 

 
Figure 3. The spatial distribution maps of the cumulative GPP from the 233rd to 289th days in the 
study area in 2013: (a) 500 m original standard MODIS-GPPs and (b) 30 m MODIS-GPPs interpolated 
by the Empirical Bayes Kriging (EBK) method. 
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Table 2 shows the comparison results of MODIS-GPPs between the spatial resolutions of 500 m 
and 30 m based on the field observations (dry biomass) of 30 samples plots. The average MODIS- GPP 
was 475.09 g C/m2 for the 500 m, 472.73 g C/m2 for 30 m, and the average field observation was 465.49 
g/m2. Compared with the field observations, the 30 m spatial resolution MODIS GPP has a root mean 
square error (RMSE) of 7.43 and a normalized RMSE (NRMSE) of 1.59%, while the corresponding 
values for the 500 m MODIS GPP were 33.43 and 7.18%. The results imply that the downscaled 
MODIS-GPPs by EBK interpolation can reflect the productivity of cultivated land more accurately 
than the unscaled MODIS-GPPs. 

Table 2. Comparison of the original 500 m spatial resolution MODIS-GPPs from the 289th day in 2013 
with their downscaled 30 m products by the Empirical Bayes Kriging (EBK) method based on the dry 
biomass field observations of 30 sample plots. 

Plot# Field Observations 
30 m MODIS-GPPs 500 m MODIS-GPPs 

Estimates Absolute Error (%) Estimates Absolute Error (%) 
1 514.23 521.95 1.50 530.31 3.13 
2 485.68  496.85 2.30 485.82 0.03 
3 519.91 529.79 1.90 525.33 1.04 
4 685.27 688.70 0.50 731.61 6.76 
5 538.52 546.06 1.40 555.16 3.09 
6 592.24 599.94 1.30 609.87 2.98 
7 639.33 645.08 0.90 571.20 10.66 
8 402.12 411.77 2.40 407.59 1.36 
9 437.78 445.66 1.80 447.50 2.22 
10 451.55 460.13 1.90 490.44 8.61 
11 555.35 560.35 0.90 598.75 7.81 
12 299.14 307.52 2.80 352.92 17.98 
13 317.47 325.09 2.40 330.34 4.05 
14 506.90 515.01 1.60 520.97 2.78 
15 408.60 416.77 2.00 447.72 9.57 
16 438.98 446.44 1.70 415.71 5.30 
17 457.91 464.78 1.50 446.98 2.39 
18 448.84 456.02 1.60 450.13 0.29 
19 393.27 399.95 1.70 409.76 4.19 
20 494.46 501.87 1.50 459.74 7.02 
21 394.18 401.67 1.90 395.16 0.25 
22 379.54 386.38 1.80 389.23 2.55 
23 425.62 431.58 1.40 431.13 1.29 
24 380.76 387.62 1.80 383.95 0.84 
25 567.61 572.15 0.80 682.55 20.25 
26 401.86 410.30 2.10 370.57 7.79 
27 539.04 543.35 0.80 541.45 0.45 
28 541.05 546.46 1.00 509.82 5.77 
29 364.34 372.00 2.10 368.16 1.05 
30 383.00 390.66 2.00 392.90 2.59 

Mean 465.49 472.73 1.64 475.09 4.80 
Stdev 91.77 91.00  97.57  

RMSE  7.43  33.43  

NRMSE (%)  1.59  7.18  

3.2. Model Comparison for CLQ Evaluation 

In this study, to reduce the calculation burden, variance inflation factor (VIF) was used to 
perform the analysis of collinearity of the GPPs among four growth stages given a year for developing 
the models of evaluating CLQ based on 420 sample points. The results in Table 3 indicate that there 
is collinearity among the GPPs in the four growth stages. Therefore, all data at the four growth stages 
were selected to construct spectral models. 
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Table 3. The variance inflation factors (VIFs) of MODIS-GPPs at the key growth stages. 

         Growth Stages  
Years 

Tillering Jointing Heading Maturity 

2011 1.971 1.981 4.611 2.874 
2012 1.407 2.687 4.130 3.451 
2013 1.274 4.092 7.679 4.468 
2014 1.421 1.667 3.257 3.448 
2015 2.073 1.699 2.655 1.026 

In this study, three kinds of models including PLSR, SVR, and GA-BPNN were developed for 
comparing the evaluation accuracy of CLQ. For each of the years from 2011 to 2015, one PLSR model 
was obtained based on 294 training samples using CLQ as the response variable and GPPs at the four 
growth stages as the predictors. With the same training datasets for the years, the corresponding SVR 
and GA-BPNN models were constructed. The prediction accuracies of CLQ from all the models were 
assessed based on the values of RMSE, NRMSE and the coefficient of determination (R2) between the 
estimated and observed CLQ values [45] according to the training and validation samples. The 
obtained 2011–2015 PLSR evaluation models are: 𝐶𝐿𝑄෢ = 2128.457 + 0.008 × GPP் ௜௟௟௘௥௜௡௚/ଶ଴ଵଵ + 9.388 × GPP௃௢௜௡௧௜௡௚/ଶ଴ଵଵ + 14.073 ×GPPு௘௔ௗ௜௡௚/ଶ଴ଵଵ − 4.620 × GPPெ௔௧௨௥௜௧௬/ଶ଴ଵଵ              (Rଶ = 0.38, P < 0.001) (12)𝐶𝐿𝑄෢ = 2562.905 + 0.238 × GPP் ௜௟௟௘௥௜௡௚/ଶ଴ଵଶ + 0.428 × GPP௃௢௜௡௧௜௡௚/ଶ଴ଵଶ + 3.778 ×GPPு௘௔ௗ௜௡௚/ଶ଴ଵଶ + 5.437 × GPPெ௔௧௨௥௜௧௬/ଶ଴ଵଶ              (Rଶ = 0.39, P < 0.001) (13)CLQ෢ = 2336.989 + 6.886 × GPP୘୧୪୪ୣ୰୧୬୥/ଶ଴ଵଷ + 6.834 × GPP୎୭୧୬୲୧୬୥/ଶ଴ଵଷ − 0.401 ×GPPୌୣୟୢ୧୬୥/ଶ଴ଵଷ + 2.444 × GPP୑ୟ୲୳୰୧୲୷/ଶ଴ଵଷ               (Rଶ = 0.40, P < 0.001) (14)CLQ෢ = 2451.9366 + 0.586 × GPP୘୧୪୪ୣ୰୧୬୥/ଶ଴ଵସ + 6.341 × GPP୎୭୧୬୲୧୬୥/ଶ଴ଵସ + 0.516 ×GPPୌୣୟୢ୧୬୥/ଶ଴ଵସ + 6.911 × GPP୑ୟ୲୳୰୧୲୷/ଶ଴ଵସ               (Rଶ = 0.38, P < 0.001) (15)CLQ෢ = 2328.035 + 3.458 × GPP୘୧୪୪ୣ୰୧୬୥/ଶ଴ଵହ + 3.791 × GPP୎୭୧୬୲୧୬୥/ଶ଴ଵହ + 5.946 ×GPPୌୣୟୢ୧୬୥/ଶ଴ଵହ − 4.830 × GPP୑ୟ୲୳୰୧୲୷/ଶ଴ଵହ               (Rଶ = 0.35, P < 0.001) (16)

For the development of SVR models, the support vector machine (SVM) was selected as 
epsilon- SVR, its loss function was set as 0.1, and the range of kernel parameter and penalty parameter 
was set as (2−8, 28) [47]. Moreover, the obtained GA-BPNN models had a three-layer network and a 
hidden layer with 13 neuron nodes. A total of 1000 iterations was used with 10 maximum runs. Both 
learning rate and learning objective were 0.01. The mutation probability, crossover probability and 
population size were respectively 0.1, 0.3, and 10 [36]. The obtained models based on the 294 training 
samples are compared in Figure 4. 

Based on the scattered graphs from the training samples in Figure 4, the points of estimated vs. 
observed CLQ are overall randomly distributed at both sides of the 1:1 lines. However, the accuracies 
of the predicted CLQ values vary greatly depending on the models. Overall, the estimates of CLQ 
from the PLSR models for 2011 to 2015 have smaller R2 values and greater RMSE and NRMSE values, 
then the SVR models and the GA-BPNN models. This indicates that the GA-BPNN models performed 
best, implying that CLQ was nonlinearly correlated with GPPs. 
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Figure 4. Scatterplots of measured versus estimated CLQ using the training dataset from 2011 to 2015: 
(a–e) partial least squares regression (PLSR) model; (f–j) support vector regression (SVR) model; (k–
o) GA-BPNN model. 

In addition, the predicted CLQ values from the models were validated for their accuracy using 
126 validation samples in Figure 5. Given a year and a model, the points of predicted vs. measured 
values of CLQ were randomly placed at both sides of the 1:1 line. But, the PLSR models led to obvious 
overestimations and overestimations for the smaller and greater CLQ values, respectively. The 
overestimations were mitigated by SVR models and more mitigation was achieved by the GA-BPNN 
models. Among the three kinds of models, the GA-BPNN models have the smallest average RMSE 
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of 67.37, than the SVR models with average RMSE of 73.04 and the PLSR models with average RMSE 
of 92.45 for years from 2011 to 2015, indicating that the GA-BPNN models have the strongest ability 
of predicting CLQ. 

 
Figure 5. Scatterplots of measured versus estimated values of CLQ using the validation data set of 
126 samples from 2011 to 2015: (a–e) PLSR model; (f–j) SVR model; (k–o) GA-BPNN model. 

3.3. Mapping CLQ at the Regional Scale 

The rice growth stage GPP-driven spectral model for year 2013 was used to map the CLQ for 
Aotou Town of the Conghua District and Zhongxin Town of the Zengcheng District to validate its 
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capacity of predicting CLQ at the regional scale in Figure 6. The referenced values of CLQ were 
grouped into five classes based on the gradation regulations on agriculture land quality in China 
(Regulation for gradation on agriculture land quality GB/T 28407-2012). The R2, RMSE, and NRMSE 
values of the predictions from the GA-BPNN model were calculated based on 60 sample data in 
Aotou and Zhongxin town, respectively (Figure 7). The prediction accuracies with RMSE of 73.32 and 
104.35 and NRMSE of 10.47% and 17.75% show that the GA-BPNN model is appropriate to map CLQ 
at both towns. 

 
Figure 6. Spatial distributions of the predicted CLQ in 2013 using the GA-BPNN model for the study 
area: (a) Aotou Town and (b) Zhongxin Town. 

 
Figure 7. Measured and estimated CLQ in 2013 using the GA-BPNN model with the 120 validation 
sample plots for mapping: (a) Aotou Town and (b) Zhongxin Town. 

4. Discussion 

The CLQ implies the carrying capacity of land productivity and is critical for food supply and 
security. However, CLQ often changes dramatically due to human activity induced disturbances and 
environmental changes [4]. Thus, it is necessary to realize real-time monitoring and evaluation of 
CLQ in agricultural regions, especially vulnerable or urban fringe areas [48,49]. Previous studies 
[4,15,16] on remote sensing-based evaluation of CLQ mainly focused on retrieving spectral indicators 
in both the traditional evaluation system and the PSR framework system. However, it is impossible 
to acquire accurate CLQ data using the previous evaluation methods due to ignoring spectral 
relationships of spectral indicators from crop growth stages with CLQ. This study is the first attempt 
to propose the spectral models relating CLQ to GPP spectral indicators obtained from four growth 
stages of late rice phenology for evaluating CLQ. It is expected that this study can enhance the 
literature in this field.  
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Based on the comparison of the evaluation results from three kinds of models, SVR (average R2 
= 0.64 and NRMSE = 9.78%) and GA-BPNN (average R2 = 0.69 and NRMSE = 8.59%) models 
performed better than the PLSR model (average R2 = 0.38 and NRMSE = 11.55%), implying that there 
is obvious non-linear correlation of CLQ with GPP spectral indicator. This conclusion is consistent 
with the findings of previous studies [16], indicating that the non-linear models are appropriate. It 
was also found that the GA-BPNN models provided more accurate predictions of CLQ than the SVR 
and PLSR models, which was mainly attributed to the integration of BPNN with GA which has the 
ability of optimizing the BPNN weights and thresholds. For the SVR models, however, the kernel 
function and penalty factor used only referenced expert experiences and they were limited in the 
accuracy of CLQ evaluation [50–52]. 

Based on the field measured GPP values, moreover, the accuracy of the 30 m MODIS GPP 
generated by the EBK interpolation, with 7.43 of RMSE and 1.59% of RRMSE, was higher than those 
of the 500 m MODIS GPP, with 33.43 of RMSE and 7.18% of RRMSE, showing the improvements of 
26% in RMSE and 5.59% in NRMSE, respectively. These results show that the downscaled 30 m 
MODIS GPPs were more accurate than the original 500 m spatial resolution products. Although 
previous studies have shown that machine learning algorithms provide potential on CLQ evaluation, 
with R2 of 0.59 and NRMSE of 11.19% [16], the GA-BPNN model proposed in this study shows 
stronger ability for CLQ evaluation with R2 = 0.69 and NRMSE = 8.59%, implying that the GPP 
spectral indicator provides a direct and effective means for estimating CLQ. The further application 
of the GA-BPNN model to mapping CLQ for Aotou Town and Zhongxin Town resulted in NRMSE 
values of 10.47% and 17.75% based on 120 validation samples. This indicated that the GA-BPNN 
model proposed in this study had great potential to map CLQ at a large scale.  

It should be noticed that in this study the experiment was conducted only for paddy fields in 
which cultivated lands often have good and excellent quality. We are currently unable to verify 
whether the GA-BPNN model based on the relationship of CLQ with GPP can perform well in other 
types of cultivated lands. Therefore, in the future, we will expand the study to other kinds of 
cultivated lands with different grades of CLQ. Moreover, in order to further validate the GA-BPNN 
model for CLQ evaluations, larger sample sizes should be employed. In addition, a limited accuracy 
assessment using MODIS GPPs with 500 m spatial resolution was undertaken in this study. The 
spatial resolution of the used images will affect the evaluation accuracy of CLQ because when the 
rice planted areas that are smaller than the spatial resolution of the images dominate the study area, 
mixed pixels will exist. The GPP products from finer spatial resolution images acquired from 
different sensors should be tested. As the correlation coefficient method meets the assumption of 
normal distribution of data, it was used for determining the use of GPP from the four growth stages. 
In future study, more powerful methods may be introduced to obtain the growth stages of the crops. 
Finally, more evaluation algorithms (such as Random Forest and Deep Learning) should be 
attempted to improve the evaluation efficiency and accuracy for CLQ. 

5. Conclusions 

This study attempted to obtain an accurate spectral model for evaluation of CLQ based on the 
GPP spectral indicator at four important growth stages of late rice phenology by comparison of PLSR, 
SVR, and GA-BPNN models using the measurements of CLQ from 294 training samples and the 
corresponding GPP data from MOD17 products. This study was conducted in the Zengcheng and 
Conghua district of Guangzhou City and led to the following conclusions: (1) The downscaled 30 m 
spatial resolution MODIS GPP data by the EBK interpolation with NRMSE of 1.59% were more 
reliable than the original 500 m resolution MODIS GPP products with NRMSE of 7.18%; (2) The 
GA- BPNN spectral model showed the strongest prediction ability for CLQ (RMSE = 60.39) compared 
to the PLSR and SVM models, indicating the existence of a nonlinear relationship of CLQ with GPP 
spectral indicators; (3) The NRMSE values of CLQ predictions from the GA-BPNN model for two 
validation areas were relatively small (12.14% and 18.39%), further implying that the GA-BPNN 
model based on rice phenological data could be applied to accurately mapping CLQ at the regional 
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scale. This study is the first report to provide an effective means for CLQ evaluation using a crop 
growth stage GPP-driven spectral model with GA-BPNN.  
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