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Abstract: Based on hyperspectral imaging technology, rapid and efficient prediction of soil moisture
content (SMC) can provide an essential basis for the formulation of precise agricultural programs
(e.g., forestry irrigation and environmental management). To build an efficient inversion model
of SMC, this paper collected 117 cultivated soil samples from the Chair Hill area and tested them
using the GaiaSorter hyperspectral sorter. The collected soil reflectance dataset was preprocessed
by wavelet transform, before the combination of competitive adaptive reweighted sampling
algorithm and successive projections algorithm (CARS-SPA) was used to select the bands optimally.
Seven wavelengths of 695, 711, 736, 747, 767, 778, and 796 nm were selected and used as the factors of
the SMC inversion model. The popular linear regression algorithm was employed to construct this
model. The result indicated that the inversion model established by the multiple linear regression
algorithm (the predicted R2 was 0.83 and the RMSE was 0.0078) was feasible and highly accurate,
indicating it could play an important role in predicting SMC of cultivated soils over a large area for
agricultural irrigation and remote monitoring of crop yields.

Keywords: hyperspectral imaging; soil moisture content; wavelet transform; CARS-SPA algorithm;
inversion model

1. Introduction

Land resources are irreplaceable natural resources on which human beings depend. Due to
the scarcity of land resources, their rational usage and management is a significant issue. As an
intermediate medium for energy exchange between the land surface and atmospheric materials [1], soil
moisture content (SMC) is a significant material factor for surface vegetation, microorganisms, and crop
growth [2]. SMC also plays an essential role in agricultural production forecasts and quality factors [3,4].
Accurate and fast acquisition of soil moisture content can provide an important basis for precision
agriculture and forestry management and development. It has a profound and important influence on
monitoring and managing of the meteorology, forestry, agriculture, hydrology, and other ecological
conditions in certain areas [5–7]. Moreover, SMC also represents the degree of dryness and wetness
at a certain depth of the soil layer, which can provide land surface parameters for many geoscience
environmental applications [8–11]. In addition, global climate change has resulted in increased
challenges to agricultural and forestry irrigation management. Therefore, accurately measuring and
using soil moisture information for prediction is a significant research field for many scholars.
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The traditional detection methods of SMC include weighing, electrical resistance, neutron
moisture detection, and neutron scattering [12]. Because the traditional SMC measurement solution is
expensive and time-consuming, and the collected dataset contains limited information for further data
analysis [13], measurement of the relationship between SMC and soil reflectance has attracted greater
attention of global researchers [14]. Wang et al. [15] studied the soil in the wheat field tillage layer,
and the result showed that the spectral reflectance at 350 to 1100 nm decreased with increasing SMC.
Zhang et al. [16] used cracked saline-alkali soil as the research object and found that after conversion in
specific wavebands, the correlation coefficients at 471, 600, and 624 nm with SMC were relatively high.
After analyzing the characteristics of spectra for different soil types with different levels of SMC under
laboratory conditions, the researchers summarized several general rules that can be widely applied in
building inversion models to predict SMC for agricultural irrigation. He et al. [17] tested a particular
type of experimental soil and built an inversion model based on the sensitive band of moisture they
found. This study has laid a theoretical foundation for building SMC inversion models of different
soil types with rapid calculations and accurate predictions, thus providing new technical methods.
These models can solve the problems found in traditional SMC predictions in terms of high cost, small
areas of sampling inspection, and complexity of operating experimental equipment.

The spectral reflectance of soil is also affected by instrumental errors and environmental parameters
such as light, temperature, and humidity. Thus, before the model is built, the spectra collected needs to
be preprocessed. A variety of transformation methods can be used to preprocess the collected spectra
data. These methods include the logarithmic first-order differential method of reflectivity, the square
root method of reflectivity, the relative reflectance method, and the nine-point moving weighted average
method [18]. Although these methods can reduce the background noise in the spectra, problems
such as complicated processing procedures and the inability to retain feature information still exist.
Considering its multi-resolution, low-entropy, and low-frequency signal characteristics, in addition to
its ability to process random signals [19], the wavelet transform method was applied in the current
study as the preprocessing method. To remove the noise in the high-frequency region, this method
can decompose the signal into high-frequency and low-frequency parts. Thus, the processed data
remains the most prominent feature of the original signal, achieving the purpose of improving the
signal-to-noise ratio (SNR). As a result, the wavelet transform has been widely applied to spectrum
processing in existing research. Large amounts of data collected from long-continuous bands contain a
significant quantity of information that is redundant, thus requiring extra effort in calculation and
testing when establishing an inversion model of SMC. Therefore, this paper uses the combination
method of the competitive adaptive reweighted sampling algorithm (CARS) and the successive
projections algorithm (SPA) to select fewer characteristic wavelengths as inversion factors from the
original dataset [20], improving the fitting degree and accuracy of the inversion models. Under this
circumstance, simple linear regression and multiple linear regression algorithms can simplify the
complexity and redundancy of the inversion model, improve the prediction efficiency, and achieve
the goal of predicting SMC over a large area. Peng et al. [21] constructed a high-precision multiple
linear regression model for Xinjiang meadow soil to invert SMC at 698, 702, 703, 746, and 747 nm.
Zhang et al. [22] built a simple multivariate linear inversion model of SMC based on a tidal flat study.

The contributions of this paper are as follows: (1) Conducting data collection and studying
the regularity of SMC and spectral reflectance in cultivated soil. (2) Using a wavelet transform and
CARS-SPA algorithm to build simple and multiple linear inversion models of SMC, which have
higher accuracy.

2. Materials and Methods

2.1. Overview of the Study Area

Figure 1a shows the Chair Hill area (Jiangbei New District, Nanjing City, Jiangsu Provence, China),
which is the study area in this paper. Its geographic location is 118◦70’ E, 32◦13’ N, and it has a
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subtropical monsoon climate. The annual average temperature is 13.4–22.7 ◦C, annual average rainfall
is about 1063–1200 mm, and relative humidity averages 76%. The area is mainly planted with plane
trees, peach trees, and ginkgo trees. Because it is located in the suburbs of Nanjing City, Chair Hill has
fewer human-induced factors and protection from vegetation coverage is up to 95%.
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Figure 1. Location of the study area and distribution of sampling points: (a) location of the Chair Hill;
(b) distribution of sampling points.

2.2. Field Data Collection and Processing

This study first investigated the relevant areas within the scope of Chair Hill and then collected
cultivated soil samples at the experimental area in mid-to-late December 2019. The cultivated soil
is often used for crops and tree planting, and its surface (0–10 cm depth) was chosen in the sample
collecting area, which was located at the junction of sycamore and ginkgo trees, in an open location
without covering branches above. Each sampling area was sized 15 × 15 cm, and a total of 9 samples
were collected in one sampling operation. In total, 117 soil samples (excluding branches, roots,
and other particulate impurities in the soil) were collected during the experiment, each with a net
weight of 120 g. Among these samples, 52 sampling units were used for SMC detection, and 65 samples
were used for reflectance spectra measurement of soil. The specific distribution of sampling points is
shown in Figure 1b.

All spectral reflectance measurements were carried out in a laboratory at 15 ◦C. The experiment
applied the GaiaSorter hyperspectral sorting system, which is equipped with SpectraSENS hyperspectral
data acquisition software and two charge-coupled device (CCD) cameras. The collected samples were
separately put into transparent petri dishes of 10 cm diameter, and placed in the instrument for data
collection. The specific steps were as follows:

Step 1: To ensure the clarity of the image, the GaiaSorter hyperspectral sorting system was warmed
up in advance, and parameters such as the height of the two cameras, the scanning forward speed,
and the exposure time were set up as Table 1.

Table 1. Parameters of GaiaSorter hyperspectral sorting system.

Number Item Parameter

1 Range of spectral scanning /nm 380–2500
2 Scanning forward speed /cm

(
s−1

)
0.36

3 Height of camera (Camera 1/Camera 2) /cm 5/7

Step 2: Camera lens caps were removed and a standard whiteboard was used to calibrate the
spectral reflectance by collecting an all-white image Dw with a reflectivity of 1 under the above
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conditions. The lens caps were then replaced, and an all-black image Dd was collected with a reflectivity
of 0. According to Formula (1), the reflectance α at the region of interest (ROI) s or band i of the spectral
image can be obtained after monochrome correction, which can overcome interference factors such
as uneven light source distribution and image noise in some bands of the system and thus improve
the SNR.

α(si) =
Ds(si) −Dd(si)
Dw(si) −Dd(si)

(1)

Step 3: Samples were placed on the stage and the "Start Scan" button in SpectraSENS was
clicked. During data acquisition, the platform moved vertically toward the cameras to complete the
process. Figure 2 shows images acquired by the GaiaSorter hyperspectral sorter system from camera 1
and camera 2. After gathering all of the samples’ data, ENVI software was used to obtain the ROI
information from the hyperspectral images, and the average spectral value was selected as the value of
the sample.
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Camera 1 (380–1100 nm); (b) picture collected by Camera 2 (900–2500 nm).

2.3. SMC Data Processing

The drying and time domain reflectometry (TDR) methods are commonly used as the SMC
measurement technology. This research used the former to collect the SMC of each sampling unit.
The procedure was as follows: (1) The surface soil was collected with a standard aluminum box,
which was sealed immediately after collection; (2) an electronic balance with an accuracy of 0.01 g was
used to weigh the box (denoted m1). After continuously drying samples in an oven for 24 h at 105 ◦C,
the boxes were taken out and measured again (denoted m2). In this study, the SMC of the experiment
was defined as the average water content of the soil units collected in the same batch under the same
conditions, and the mass water content formula was applied to calculate its value:

α(%) =
m1 −m2

m1
× 100% (2)

where α(%) represents the soil moisture content (%); m1 is the total mass of the soil sample and
aluminum box before drying (g); m2 is the total mass of the soil sample and aluminum box after
drying (g).
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2.4. Hyperspectral Data Pretreatment

2.4.1. Wavelet Transform

The soil reflectance spectrum is subject to noise because of interference factors such as light
conditions, air humidity, and spectrum acquisition instruments. In order to smooth the waveform and
improve the SNR, this study used the wavelet transform algorithm for denoising.

Suppose ϕ(t) ∈ L2(R), and if Φ(ω), the Fourier transform of ϕ(t), satisfies the condition:∫
R

∣∣∣Φ(ω)
∣∣∣2|ω|−1dω < +∞ (3)

then ϕ(t) can be defied as a basic wavelet function.
A set of function sequences

{
ϕβ,γ(t)

}
can be obtained by expanding and translating ϕ(t):

ϕβ,γ(t) = β−
1
2ϕ

(
t− γ
β

)
(4)

where β > 0,γ ∈ R; β is the scale factor and γ is the translation factor.
Assuming that β = 2− j, γ = k2− j, j, k ∈ Z, and, as for any signal f (t) ∈ L2(R), its discrete wavelet

function can be denoted:
ϕ2− j,k2− j(t) = ϕ j,k(t) = 2

j
2ϕ

(
2 jt− k

)
dt (5)

In this research, the spectral data was treated as a signal sequence of finite length.
Therefore, its discrete wavelet transform can be described as:

WT f ( j, k) =
∑
n∈Z

f (n)ϕ j,k(n) (6)

where f (n) is the signal sequence; ϕ j,k(n) is the basic wavelet function, and ϕ j,k(n) is the conjugate
of ϕ j,k(n).

2.4.2. Wavelet Denoising

When the signal x(t) is contaminated by noise and becomes s(t), the noise-containing signal
model can be expressed as:

s(t) = x(t) + n(t) (7)

where n(t) is the Gaussian white noise signal, which is subject to the distribution N
(
0, σ2

)
.

The wavelet coefficients of s(t) can be determined as w j,k using a linear wavelet transform.
Thresholding is key to wavelet denoising, and contains the selection of the threshold function and
threshold estimation. The soft threshold function was performed in this experiment:

ˆw j,k =

 0,
∣∣∣w j,k

∣∣∣ < τ
sig

(
w j,k

)(∣∣∣w j,k
∣∣∣− τ), ∣∣∣w j,k

∣∣∣ ≥ τ (8)

where τ is the threshold, which is defined as τ =
√

2 log10 N, N is the length of the signal [23].

2.5. CARS-SPA Based Feature Wavelength Optimization

A wide range of bands, and large number of bands, were collected in this experiment. To select
fewer characteristic wavelengths as the independent variables of the regression equation, the CARS-SPA
algorithm was used in this study.

Competitive adaptive reweighted sampling (CARS) is an algorithm based on the rule of "survival
of the fittest". In this study, it formed the basis of the regression coefficient calculated in a partial least
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squares (PLS) model, combined with the Monte Carlo sampling method to filter out the characteristic
wavelength subset and the exponential decay function (EDF) to remove the wavelengths with smaller
weight values [24]. Figure 3 demonstrates the processing procedure of the CARS algorithm.Agriculture 2020, 10, x FOR PEER REVIEW 6 of 14 
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The definition of the weight ωi in Figure 3 is:

ωi =
|bi|∑p

i=1|bi|
(9)

where i = 1, 2, . . . , p, and p is the variable number. Generally, N = 50 is set in the Monte Carlo
method [19].

The determining equations of a and k in the ri formula in Figure 3 are as follows:

a =
(p

2

) 1
N−1

(10)

k =
ln p

2

N − 1
(11)

After using CARS to roughly screen some characteristic wavelengths, this study used the successive
projections algorithm (SPA) to continuously find the optimal characteristic wavelength in the spectra as
the independent variable of the inversion model. The SPA uses the multivariate linear regression (MLR)
algorithm to select the optimal wavelength data, which are evaluated by obtaining and comparing the
root mean square error of cross validation (RMSECV) values. The smaller the RMSECV, the better the
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achieved results [25]. The absolute values of the wavelengths’ regression coefficients contained in the
dataset are rated, and the wavelengths with larger regression coefficients are selected to build the MLR
model. After recording and assessing the RMSECV, the optimum wavelength and its number will be
determined. The calculation process of the SPA is as follows:

Matrix xcal (N ×M) is the training set used to build the model, xi is the ith column of the matrix,
std is the position dataset of unselected column vectors after each screening (i.e., unselected band
combination), and N is the number of samples.

Step 1: Select one of the wavelengths as the starter k[0], meanwhile set n = 1;
Step 2: Calculate the projection values of all of the wavelengths xi in the dataset std on the

orthogonal space at xk(n−1):

Pxi = xi −
(
xT

i xk(n−1)

)
xk(n−1)(x

T
k(n−1)xk(n−1))

−1
(12)

Step 3: Calculate the maximum projection value of wavelength k[n] and put it into std while
letting n = n + 1:

k[n] = arg(max||Pxi||), i ∈ std (13)

Step 4: When n < N, return to Step 2;
Step 5: Evaluate the new set of selected variables through multiple linear regression, and ultimately

obtain the preferred band combination {k[m]}, m = 1, 2, . . . , M−1.
SPA can reduce the redundancy of the original spectrum information and the number of variables

that determine the linear regression models, thus ensuring the accuracy of the models while effectively
reducing the fitting complexity and improving the simulation velocity. This feature can be used as a
major advantage for establishing highly simplified inversion models [26].

2.6. Linear Regression Forecasting Model of Soil Moisture Content

2.6.1. Simple Linear Regression Model

If the independent variable of the simple linear regression model is x and the dependent variable
is y, then the basic equation is:

yi = axi + b + ε (14)

where a and b are undetermined parameters; i = 1, 2, . . . . . . , n (n represents the total number of
experimental datapoints); ε represents a random parameter.

The least squares method can be used to obtain the simple linear regression model as:

ŷ = âx + b̂ (15)

â = y− âx (16)

b̂ =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 (17)

where ŷ is the predicted value of y; â is the predicted value of a; b̂ is the predicted value of b; x is the
average of x; y is the average of y.

2.6.2. Multiple Linear Regression Model

The multiple linear regression (MLR) inversion model established in this study was a combination
of characteristic wavelengths based on the selective data sets. The basic form of the MLR model is:

y j = β1x1 j + β2x2 j + · · ·+ βkxkj + a + ε j (18)
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where the independent variables are x j; the dependent variable is y; a and β j are undetermined
parameters; j = 1, 2, . . . . . . , n (n represents the total number of experimental datapoints); ε j represents
random parameter [27].

In this research, the value of k was set as 2, and the MLR model was combined with independent
variables selected from 7 characteristic wavelengths. The MLR models can achieve higher inversion
accuracy by considering more factors in the equation than are considered by simple linear regression
models. The optimal SMC inversion models are determined by the evaluation parameters.

2.7. Parameters of Model Evaluation

This research used the root mean square error (RMSE), coefficient of determination (R2), and mean
absolute error (MAE) to evaluate the accuracy of the inversion model. RMSE and MAE have inverse
relationships with model performance, and a proportional relationship exists between R2 (R2

∈ [0, 1])
and the performance of the model. The mathematical representations of these parameters can be
expressed as follows:

(1) Root mean square error

RMSE =

√∑n
i=1 (ŷi − yi)

2

n
(19)

(2) Coefficient of determination

R2 =

∑n
i=1(ŷi − y)2∑n
i=1(yi − y)2 (20)

(3) Mean absolute error

MAE =
1
n

n∑
i=1

∣∣∣ŷi − yi
∣∣∣ (21)

3. Results and Discussions

3.1. Results of SMC and Soil Spectral Data

In this paper, the drying method and GaiaSorter hyperspectral sorting system were respectively
used to collect the SMC values and spectral data. Table 2 presents the statistics of SMC measured in
the experiment.

Table 2. Statistics of soil moisture content (SMC).

Soil Samples Minimum of
SMC

Maximum of
SMC

Average of
SMC Variance Coefficient of

Variation

52 4.83% 9.92% 7.90% 0.013% 14.42%

After collecting soil spectral reflectance data and SMC, this study used wavelet transform and
wavelet denoising to improve the SNR of the spectrum. The spectral reflectance for each SMC was the
average of the spectra data collected under the same sampling conditions. The spectrum was set as
s(t), which represents the discrete signal with noise [23]. Seven layers of "db4" decompositions were
applied to the original basic wavelet function through MATLAB and the wavelet coefficients of each
layer were used to reconstruct the spectrum. According to the Figure 4, the original waveform showed
significant noises at 1000–1200 nm.
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Figure 4. The original waveform of full-spectrum.

After using wavelet transform from layer 1 to 7, the spectrum was progressively smoother because
of the removal of high-frequency signals. However, some sensitive bands of the spectrum were
removed; for example, the peak between 380 and 1000 nm can still be seen in the layer 6 decomposition,
but is invisible in layer 7. The training results indicate that a good smoothing effect was achieved
in the 6-layer "db4" decomposition process, and the correlation coefficient with the original data
was 0.912. Figure 5 shows the L6 full-spectrum smoothing diagram and its partially enlarged view in
the 2002–2304 nm band.
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Figure 6 shows part of the collected SMC and its corresponding reflectance spectrum. The following
rules can be seen from Figure 6: (1) The spectral reflectance values tend to rise first and then decrease
in the bands of 380–1000 nm and 1000–2530 nm, that is, there are reflection peaks in these two ranges.
Furthermore, there is an absorption valley in the near-infrared band between 1000 and 1350 nm. (2) The
span of 380–1000 nm conforms to the law that the spectral reflectance gradually decreases with the
increase of SMC. However, in the 1000–2530 nm band, this law is not obvious. The spectra with large
differences in SMC generally conform to the law that the spectrum decreases with increasing SMC.
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3.2. Processing Results of CARS-SPA Algorithm

This research used the CARS-PLS algorithm to perform the first round of screening for the
pretreated soil spectrum’s full-spectral variables. Simultaneously, the data were processed separately
by the CARS and the SPA to compare the accuracy of different algorithms.

CARS can be used to filter out unsuitable wavelengths in the band. This experiment set 50 as
the number of Monte Carlo samples [24]. In the 1st to 15th iterations, the RMSECV value decreased.
Thereafter, however, the RMSECV value started to rise slowly. Figure 7 represents the unprocessed
spectral information using CARS to screen variables. It can be seen that the RMSECV value gradually
decreased in the 1–32 iterations and, from the 33rd iteration, the RMSECV gradually increased.
The minimum RMSECV at the 32nd iteration was 0.5431. Table 3 illustrates the comparison of selected
wavelengths and RMSECV of CARS, SPA, and CARS-SPA algorithms. In Table 3, when using the
CARS-SPA algorithm to process the spectral data, CARS was first used to filter the spectrum of the full
band. After the characteristic wavelength dataset was obtained, SPA was then used to carry out a more
detailed evaluation and finally obtain the optimal wavelengths.

As shown in Table 3, when the CARS and SPA algorithms were used independently to process the
full band, the performance of the model constructed using the SPA algorithm was better than that
constructed using CARS. Furthermore, the performance of the model using the CARS-SPA algorithm
was significantly more accurate than the first two models, which is consistent with the conclusion of
Cai et al. [19]. The result of this research also illustrates that the CARS-SPA algorithm has the least
characteristic factors compared with the CARS and SPA algorithms. Therefore, using the CARS-SPA
algorithm can not only reduce the complexity of the model, but also improves its accuracy. The CARS
algorithm first optimized 124 characteristic wavelengths, of which 40 characteristic wavelengths were
between 695 and 796 nm, and 32 characteristic wavelengths were between 1273 and 1474 nm. Figure 8
shows the result of further filtering characteristic wavelengths between 695 and 796 nm using the SPA
algorithm. It can be observed from the diagram that seven characteristic wavelengths were finally
obtained in this band, among which, the minimum RMSECV was at 778 nm, at which point the fitting
effect of the model was optimal. Finally, the wavelengths of 695, 711, 736, 747, 767, 778, and 796 nm
were selected as the inversion model factors.
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Table 3. Performance of models built by CARS-SPA algorithm.

Variable Selection Methods Range of Band Number of
Variables

Number
of Factors

RMSECV
(Root Mean

Square Error of
Cross Validation)

CARS
(competitive adaptive reweighted sampling) 380–2530 nm 544 124 0.523

SPA
(successive projections algorithm) 380–2530 nm 544 10 0.477

CARS-SPA
(competitive adaptive reweighted sampling

combined with successive projections algorithm)
1273–1474 nm 32 7 0.413

CARS-SPA 695–796 nm 40 7 0.024
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3.3. Results of Inversion Models

According to the selected results of CARS-SPA, the preferred wavelength was firstly subjected to
simple linear regression analysis. Some of the simple linear inversion models and their accuracy results
are listed in Table 4, which was constructed based on the factors of the seven characteristic wavelengths
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screened above. The R2 values of the inversion models were between 0.63 and 0.66, the RMSE was
between 0.0082 and 0.0084, and the MAE was 0.56–0.58%.

Table 4. Simple linear inversion model and the accuracy.

Factor Equation of Model R2 RMSE
(Root Mean Square Error)

MAE
(Mean Absolute Error)

R736 Y = −6.682 ×10−6 R736+0.1579 0.63 0.0084 0.0056
R747 Y = −6.717 ×10−6 R747+0.1584 0.64 0.0084 0.0057
R778 Y = −7.092 ×10−6 R778+0.16 0.65 0.0083 0.0056
R796 Y = −7.494 ×10−6 R796+0.161 0.66 0.0082 0.0058

To improve the fitting degree of the model and the accuracy of the predicted value, this paper
used the multivariate linear method for gradual regression to establish the inversion models [27].
Table 5 shows that the R2 of the multiple linear regression equations increased to 0.75 compared with
the simple linear regression equations. If Equation (3) in Table 5 was used to calculate the predicted
SMC, the predicted R2 value would be 0.822. Therefore, this study determined that multivariate linear
inversion models composed of factors of 695, 711, 736, 747, 767, 778, and 796 nm could accurately
deduce the soil moisture information.

Table 5. Multivariate linear inversion model and accuracy.

Number Equation of Model R2 RMSE

1 Y = −2.591 ×10−5 R778+1.979 ×10−5 R695+0.1567 0.74 0.0079
2 Y = −9.428 ×10−5 R711+9.068 ×10−5 R695+0.1518 0.75 0.0078
3 Y = −2.792 ×10−5 R767+2.178 ×10−5 R695+0.1555 0.74 0.0079
4 Y = −4.691 ×10−5 R747+4.233 ×10−5 R711+0.1519 0.73 0.0079
5 Y = −3.145 ×10−5 R796+2.32 ×10−5 R711+0.1592 0.73 0.0080

Figure 9 shows the predicted SMC values obtained from the model based on the spectral data in
the validation set.

Y = −9.428× 10−5R711 + 9.068× 10−5R695 + 0.1518 (22)

The R2 of the predicted SMC was 0.83, which proves that the inversion model can achieve a good
prediction of the SMC.
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4. Conclusions

In this study, based on the verified regular pattern in which the spectra of cultivated soil will
decrease with increasing SMC, the SMC inversion models of cultivated soil were established using
seven characteristic wavelength inversion factors: R695, R711, R736, R747, R767, R778, and R796.

The results show that the inversion accuracy of the multiple linear inversion model is better than
that of the simple linear regression model, with its predicted R2 increasing to 0.82 and the RMSE
decreasing from 0.0084 to 0.0078. The multivariate linear inversion model composed of R695 and R711

showed the best predictive ability, with a predicted R2 of 0.83, and RMSE of 0.0078. The proposed
models in this paper can be used as a reference for future research on the rapid prediction of large-scale
SMC of cultivated soil through hyperspectral remote sensing images.

Author Contributions: J.L. and X.Z. conceived and designed the experiments; T.W., J.Y. and J.L. performed the
experiments and analyzed the data; X.Z. and W.Z. helped perform the data analysis; T.W., J.Y. and J.L. wrote
the manuscript; X.Z. and W.Z. reviewed and edited the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was jointly funded by the Fundamental Research Funds for the Central Universities
of China (NO. KYTZ201661), China Postdoctoral Science Foundation (NO. 2015M571782), the Innovation and
Entrepreneurship Training Project (No. 201910307068Y) of college students in Jiangsu Province, China.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Corbari, C.; Sobrino, J.A.; Mancini, M.; Hidalgo, V. Land surface temperature representativeness in a
heterogeneous area through a distributed energy-water balance model and remote sensing data. Hydrol. Earth
Syst. Sci. 2010, 14, 2141–2151. [CrossRef]

2. Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Hu, G.; Yue, G.; Sheng, Y.; Wu, J.; Chen, J.; et al. Soil moisture
and texture primarily control the soil nutrient stoichiometry across the tibetan grassland. Sci. Total Environ.
2018, 622–633, 192–202. [CrossRef]

3. Jun, X.U.; Jiang, J. Research on the estimation model of soil moisture content based on the characteristics of
thermal infrared data. Asian J. Agric. Res. 2013, 5, 90–94.

4. Nsafon, B.E.K.; Lee, S.-C.; Huh, J.-S. Responses of Yield and Protein Composition of Wheat to Climate
Change. Agriculture 2020, 10, 59. [CrossRef]

5. Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the utility of remotely sensed
soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top Appl. Earth Obs.
Remote Sens. 2010, 3, 57–66. [CrossRef]

6. Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Young, I.M. Modeling soil processes: Key challenges
and new perspectives. Vadose Zone J. 2016, 15, 1–57. [CrossRef]

7. Nagahage, E.A.A.D.; Nagahage, I.S.P.; Fujino, T. Calibration and Validation of a Low-Cost Capacitive
Moisture Sensor to Integrate the Automated Soil Moisture Monitoring System. Agriculture 2019, 9, 141.
[CrossRef]

8. Kerr, Y.H. Soil moisture from space: Where are we? Hydrogeol. J. 2007, 15, 117–120. [CrossRef]
9. Joshi, C.; Mohanty, B.P. Physical controls of near-surface soil moisture across varying spatial scales in

an agricultural landscape during smex02. Water Resour. Res. 2010, 46, p.W12503.12501-W12503.12521.
[CrossRef]

10. Sobrino, J.A.; Franch, B.; Mattar, C.; Jiménez-Muñoz, J.C.; Corbari, C. A method to estimate soil moisture
from airborne hyperspectral scanner (ahs) and aster data: Application to sen2flex and sen3exp campaigns.
Remote Sens. Environ. 2012, 117, 415–428. [CrossRef]

11. Stevanato, L.; Baroni, G.; Cohen, Y.; Fontana, C.L.; Gatto, S.; Lunardon, M.; Marinello, F.; Moretto, S.;
Morselli, L. A Novel Cosmic-Ray Neutron Sensor for Soil Moisture Estimation over Large Areas. Agriculture
2019, 9, 202. [CrossRef]

http://dx.doi.org/10.5194/hess-14-2141-2010
http://dx.doi.org/10.1016/j.scitotenv.2017.11.331
http://dx.doi.org/10.3390/agriculture10030059
http://dx.doi.org/10.1109/JSTARS.2009.2037163
http://dx.doi.org/10.2136/vzj2015.09.0131
http://dx.doi.org/10.3390/agriculture9070141
http://dx.doi.org/10.1007/s10040-006-0095-3
http://dx.doi.org/10.1029/2010WR009152
http://dx.doi.org/10.1016/j.rse.2011.10.018
http://dx.doi.org/10.3390/agriculture9090202


Agriculture 2020, 10, 292 14 of 14

12. Li, X.; Yu, T.; Wang, X.; Shang, X.; Chen, H. A grey relationship-based soil organic matter content inversion
pattern. In Proceedings of the 2011 IEEE International Conference on Grey Systems and Intelligent Services,
Nanjing, China, 15–18 September 2011; pp. 30–33. [CrossRef]

13. Yao, Y.; Wei, N.; Tang, P.; Li, Z.; Yu, Q.; Xu, X.; Chen, Y.; He, Y. Hyper-spectral characteristics and modeling of
black soil moisture content. Trans. Chin. Soc. Agric. Eng. 2011, 27, 95–100.

14. Na, W.; Yao, Y.; Chen, Y. The advance of soil quality information monitoring by hyperspectral remote sensing.
Chin. Agric. Sci. Bull. 2008, 24, 491–496.

15. Wang, C.; Feng, M.C.; Yang, W.D.; Guang-Xin, L.I.; Zhao, J.J.; Zhu, Z.H. Hyperspectrum monitoring of the
som in plough layer in winter wheat filed. J. Shanxi Agric. Sci. 2014, 42, 869–873.

16. Zhang, J.H.; Jia, K.L. Spectral reflectance characteristics and modeling of typical takyr solonetzs water
content. Chin. J. Appl. Ecol. 2015, 26, 884–890.

17. He, T.; Jing, W.; Lin, Z.; Ye, C. Spectral features of soil moisture. Acta Pedol. Sinica 2006, 43, 1027–1032.
18. Liu, W.D.; Baret, F.; Zhang, B.; Tong, Q.X.; Zheng, L.F. Using hyperspectral data to estimate soil surface

moisture under experimental conditions. Int. J. Remote Sens. 2004, 8, 434–442.
19. Cai, L.H.; Ding, J.L. Prediction for soil water content based on variable preferred and extreme learning

machine algorithm. Spectrosc. Spectr. Anal. 2018, 38, 2209–2214.
20. Wei, J.; Junlong, F.; Shuwen, W.; Runtao, W. Using cars-spa algorithm combined with hyperspectral to

determine reducing sugars content in potatoes. J. Northeast Agric. Univ. 2016, 47, 88–95.
21. Peng, J.; Xiang, H.Y.; Wang, J.Q.; Liu, W.Y.; Chi, C.M.; Niu, J.L. Inversion models of soil water content using

hyperspectral measurements in fields of the arid region farmland. Agric. Res. Arid Areas 2013, 31, 241–246.
22. Xiao-yan, Z.; Huan, L.; Li-ji, C.; Zhi-yuan, L. Critical spectral characteristics and moisture retrieval models of

intertidal sediments. Adv. Mar. Sci. 2019, 37, 65–74.
23. Lu, J.; Ding, W. The feature extraction of plant electrical signal based on wavelet packet and neural network.

In Proceedings of the International Conference on Automatic Control and Artificial Intelligence (ACAI 2012),
Xiamen, China, 3–5 March 2012; pp. 2119–2122. [CrossRef]

24. Han, Y.; Chen, J.; Pan, T.; Liu, G. Determination of glycated hemoglobin using near-infrared spectroscopy
combined with equidistant combination partial least squares. Chemometr. Intell. Lab. 2015, 145, 84–92.
[CrossRef]

25. Hao, Q.; Zhou, J.; Zhou, L.; Kang, L.; Nan, T.; Yu, Y.; Guo, L. Prediction the contents of fructose, glucose,
sucrose, fructo-oligosaccharides and iridoid glycosides in morinda officinalis radix using near-infrared
spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118275. [CrossRef] [PubMed]

26. Ying, L.; Guo, Y.; Chang, L.; Wu, W.; Rao, P.; Fu, C.; Wang, S. Spa combined with swarm intelligence
optimization algorithms for wavelength variable selection to rapidly discriminate the adulteration of apple
juice. Food Anal. Methods 2016, 10, 1–7.

27. Jiang, G.; Grafton, M.; Pearson, D.; Bretherton, M.; Holmes, A. Integration of precision farming data and
spatial statistical modelling to interpret field-scale maize productivity. Agriculture 2019, 9, 237. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/GSIS.2011.6044141
http://dx.doi.org/10.1049/cp.2012.1417
http://dx.doi.org/10.1016/j.chemolab.2015.04.015
http://dx.doi.org/10.1016/j.saa.2020.118275
http://www.ncbi.nlm.nih.gov/pubmed/32217454
http://dx.doi.org/10.3390/agriculture9110237
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Overview of the Study Area 
	Field Data Collection and Processing 
	SMC Data Processing 
	Hyperspectral Data Pretreatment 
	Wavelet Transform 
	Wavelet Denoising 

	CARS-SPA Based Feature Wavelength Optimization 
	Linear Regression Forecasting Model of Soil Moisture Content 
	Simple Linear Regression Model 
	Multiple Linear Regression Model 

	Parameters of Model Evaluation 

	Results and Discussions 
	Results of SMC and Soil Spectral Data 
	Processing Results of CARS-SPA Algorithm 
	Results of Inversion Models 

	Conclusions 
	References

