Validation of an Automated Body Condition Scoring System Using 3D Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Somers, J.R.; Huxley, J.; Lorenz, I.; Doherty, M.L.; O’Grady, L. The effect of lameness before and during the breeding season on fertility in 10 pasture-based Irish dairy herds. Ir. Vet. J. 2015, 68, 14. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.M.; Schutz, M.M. An Interdisciplinary Review of Body Condition Scoring for Dairy Cattle. Prof. Anim. Sci. 2008, 24, 507–529. [Google Scholar] [CrossRef]
- Roche, J.R.; Dillon, P.G.; Stockdale, C.R.; Baumgard, L.H.; VanBaale, M.J. Relationships Among International Body Condition Scoring Systems. J. Dairy Sci. 2004, 87, 3076–3079. [Google Scholar] [CrossRef]
- Vasseur, E.; Gibbons, J.; Rushen, J.; de Passillé, A.M. Development and implementation of a training program to ensure high repeatability of body condition scoring of dairy cows. J. Dairy Sci. 2013, 96, 4725–4737. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [PubMed]
- Shalloo, L.; O’Donovan, M.; Leso, L.; Werner, J.; Ruelle, E.; Geoghegan, A.; Delaby, L.; O’Leary, N. Review: Grass-based dairy systems, data and precision technologies. Animal 2018, 12, S262–S271. [Google Scholar] [CrossRef] [PubMed]
- Halachmi, I.; Klopčič, M.; Polak, P.; Roberts, D.J.; Bewley, J.M. Automatic assessment of dairy cattle body condition score using thermal imaging. Comput. Electron. Agric. 2013, 99, 35–40. [Google Scholar] [CrossRef]
- Anglart, D. Automatic estimation of body weight and body condition score in dairy cows using 3D imaging technique. Master’s Thesis, Sveriges Lantbruksuniversitet, Uppsala, 2010. [Google Scholar]
- Spoliansky, R.; Edan, Y.; Parmet, Y.; Halachmi, I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 2016, 99, 7714–7725. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.R.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodriguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques. Agronomy 2019, 9, 90. [Google Scholar] [CrossRef]
- Mullins, I.L.; Truman, C.M.; Campler, M.R.; Bewley, J.M.; Costa, J.H.C. Validation of a commercial automated body condition scoring system on a commercial dairy farm. Animals 2019, 9, 287. [Google Scholar] [CrossRef] [PubMed]
- Bazin, S.; Augeard, P.; Carteua, M.; Champion, H.; Chilliard, Y.; Cuylle, G.; Disenhaus, C.; Durand, G.; Espinasse, A.; Gascoin, A.; et al. Grille de Notation de l’état d’engraissement des Vaches Pie-noires; RNED bovin: Paris, France, 1984. [Google Scholar]
- Lowman, B.G.; Scott, N.A.; Somerville, S.H. Condition Scoring of Cattle; Edinburgh School of Agriculture: Edinburgh, UK, 1976; ISBN 0902164236 9780902164239. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- O’Leary, N. BMF Data and Analysis. Available online: https://github.com/nialloleary/BMFValidation (accessed on 1 May 2020).
- Halachmi, I.; Polak, P.; Roberts, D.J.; Klopcic, M. Cow Body Shape and Automation of Condition Scoring. J. Dairy Sci. 2008, 91, 4444–4451. [Google Scholar] [CrossRef] [PubMed]
- Myles, P.S.; Cui, J.I. Using the Bland-Altman method to measure agreement with repeated measures. Br. J. Anaesth. 2007, 99, 309–311. [Google Scholar] [CrossRef]
- Nutter, B. Bland-Altman Method to Measure Agreement with Repeated Measures; R Core Team: Vienna, Austria, 2008. [Google Scholar]
- Carrasco, J.L.; Puig-Martinez, J. cccrm: Concordance Correlation Coefficient for Repeated (and Non-Repeated) Measures; R Core Team: Vienna, Austria, 2015. [Google Scholar]
- McAlinden, C.; Khadka, J.; Pesudovs, K. Precision (repeatability and reproducibility) studies and sample-size calculation. J. Cataract. Refract. Surg. 2015, 41, 2598–2604. [Google Scholar] [CrossRef]
- McBride, G. A Proposal for Strength-Of-Agreement Criteria for Lin’s Concordance Correlation Coefficient; National Institute of Water & Atmospheric Research Ltd.: Hamilton, New Zealand, 2005. [Google Scholar]
- Buckley, F.; O’Sullivan, K.; Mee, J.F.; Evans, R.D.; Dillon, P. Relationships Among Milk Yield, Body Condition, Cow Weight, and Reproduction in Spring-Calved Holstein-Friesians. J. Dairy Sci. 2003, 86, 2308–2319. [Google Scholar] [CrossRef]
- Miller, G.A.; Hyslop, J.J.; Barclay, D.; Edwards, A.; Thomson, W.; Duthie, C.A. Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Ferguson, J.D. Implementation of a Body Condition Scoring Program in Dairy Herds James. In Proceedings of the Penn Annual Conference, Philadelphia, PA, USA, 24–25 January 1996; University of Pennsylvania, Center for Animal Health and Productivity: Kennett Square, PA, USA, 1996. [Google Scholar]
Apr 12th | Apr 26th | May 10th | Jun 7th | Jul 19th | Aug 16th | Oct 11th | Nov 1st | Nov 8th | Dec 6th | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
FB | 97 | 5 | 93 | 92 | 66 | 80 | 62 | 62 | 0 | 3 | 560 |
JK | 97 | 0 | 92 | 91 | 70 | 80 | 0 | 0 | 46 | 0 | 476 |
BMF | 102 | 5 | 99 | 94 | 72 | 82 | 65 | 62 | 47 | 3 | 1945 * |
Mean | Median | Min | Max | 1st Qu. | 3rd Qu. | |
---|---|---|---|---|---|---|
Days in milk | 62.39 | 62 | 36 | 90 | 55 | 71 |
Cow lactation | 2.6 | 3 | 1 | 5 | 1 | 4 |
FB assessor BCS scores | 2.9 | 3 | 2.5 | 3.5 | 2.75 | 3 |
JK assessor BCS scores | 2.94 | 3 | 2.5 | 3.5 | 2.75 | 3 |
Mean assessor BCS scores | 2.89 | 2.91 | 2.44 | 3.24 | 2.8 | 2.98 |
BMF BCS scores (converted) | 2.92 | 3 | 2.5 | 3.5 | 2.75 | 3 |
Week of 12 April to Week of 10 May | Week of 10 May to Week of 7 June | |
---|---|---|
BMF | 0.006 (0.016) | 0.004 (0.012) |
Mean of FB and JK | 0.009 (0.026) | 0.007 (0.022) |
FB | 0.012 (0.033) | 0.012 (0.033) |
JK | 0.013 (0.037) | 0.010 (0.026) |
FB | JK | JK FB mean | FB | JK | JK FB Mean | |
---|---|---|---|---|---|---|
CCC | CCC | CCC | r | r | r | |
JK | 0.67 (0.59–0.73) | 0.76 | ||||
BMF | 0.57 (0.47–0.66) | 0.57 (0.47–0.66) | 0.67 (0.58–0.75) | 0.67 | 0.69 | 0.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’ Leary, N.; Leso, L.; Buckley, F.; Kenneally, J.; McSweeney, D.; Shalloo, L. Validation of an Automated Body Condition Scoring System Using 3D Imaging. Agriculture 2020, 10, 246. https://doi.org/10.3390/agriculture10060246
O’ Leary N, Leso L, Buckley F, Kenneally J, McSweeney D, Shalloo L. Validation of an Automated Body Condition Scoring System Using 3D Imaging. Agriculture. 2020; 10(6):246. https://doi.org/10.3390/agriculture10060246
Chicago/Turabian StyleO’ Leary, Niall, Lorenzo Leso, Frank Buckley, Jonathon Kenneally, Diarmuid McSweeney, and Laurence Shalloo. 2020. "Validation of an Automated Body Condition Scoring System Using 3D Imaging" Agriculture 10, no. 6: 246. https://doi.org/10.3390/agriculture10060246
APA StyleO’ Leary, N., Leso, L., Buckley, F., Kenneally, J., McSweeney, D., & Shalloo, L. (2020). Validation of an Automated Body Condition Scoring System Using 3D Imaging. Agriculture, 10(6), 246. https://doi.org/10.3390/agriculture10060246