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Abstract: One of the essential factors in the root zone environment that affects plant growth is
temperature. Determining the optimal root zone temperature condition in a hydroponic system
during cultivation could lead to an improvement in plant growth. An optimal control strategy can
be determined by identifying the eco-physiological process using a dynamic model. However, it is
difficult to develop a dynamic model of the responses of plant growth to root zone temperature because
the eco-physiological processes of plants are quite complicated. We propose an intelligent approach
that can deal with this complex system. Non-linear autoregressive with exogenous input (NARX)
neural networks were used to develop a dynamic model of the responses of plant growth to root
zone temperature. The responses of chili pepper plant growth as affected by root zone temperature
were measured during 60 days of cultivation inside a growth chamber using a non-destructive and
continuous system based on a load cell. Five datasets of dynamic responses of plant growth were
obtained for system identification. The results suggest that the application of a neural network is
useful for modeling the dynamic response of plant growth to root zone temperature in hydroponic
cultivation, with promising performance.

Keywords: plant growth; dynamic response; root zone temperature; dynamic model; NARX neural
networks; hydroponics

1. Introduction

In recent years, there has been growing interest in adopting hydroponic systems for crop
production worldwide. In combination with protected agriculture such as greenhouses and plant
factories, about 3.5% of the worldwide area has adopted hydroponic systems for crop production [1].
As a soilless technology, the benefits of adopting a hydroponic system for growing plants are flexibility
and accuracy in controlling the root zone environment. By using a hydroponic system, the root zone
environmental factors that influence crop growth and development can be controlled in optimal
conditions during each cultivation stage [1]. Thus, the crops can grow to their maximum potential.
Given its potential advantages, hydroponic culture is categorized as an intensive method of crop
production. In comparison with soil culture, hydroponic systems can offer a higher yield, yet lower
water and land usage [1].

Among the root zone environmental factors, temperature is one of the most important factors
that influence plant growth and development [2]. It has been reported that the mechanisms of
nutrient and water absorption processes within the roots are mainly regulated by root zone temperature
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(RZT) [3-5]. Therefore, RZT has been widely used as the determining factor for promoting plant growth
in hydroponic systems. For instance, during cold and hot air temperatures in winter and summer,
instead of completely controlling the air temperature, RZT control is used as a more economical and
wise solution to maintain plant growth under greenhouse cultivation [6,7]. A better understanding of
optimal RZT in hydroponic cultivation could lead to the improvement of plant growth.

Studies on environmental control technology for plant production systems [8-11] suggest that
the optimal plant conditions during cultivation vary between growth stages. This is because the
physiological status of the plant is changing and is remarkably affected by changes in environmental
factors. This control approach is mainly used in modern protected agriculture that applies real-time
control techniques such as optimal and adaptive control as its control strategy [9,12,13]. For realizing
the optimal strategy, an exact dynamic model of an eco-physiological process is necessary. This is
because by predicting and simulating the behavior of the eco-physiological process of a plant using a
dynamic model, an optimal control strategy can be determined easily [14]. This means that the model’s
accuracy plays a major part in the performance of optimal control strategies. Moreover, a dynamic
model is also used to better understand the process behavior and synthesis of the control system [15].

In order to control the growth of plants using the RZT, a dynamic model of the process is necessary.
By constructing a dynamic model of the process, the optimal control strategy of RZT in hydroponic
systems can be determined. In recent years, various studies on eco-physiological modeling and
environmental control technology for plant production systems in protected cultivation have been
intensively conducted [8,9,11,13,14,16,17]. In our previous study, we examined and identified the
response of the leaf water content of plants as affected by changes in the RZT within a short period of
time [18]; however, the dynamic response of plant growth as affected by change in the RZT has not
been identified. A better understanding of this system is necessary for a comprehensive study on plant
growth control in plant production systems.

It is well known that there are two main methods for the model-building of a system. First is
theoretical modeling, which applies a mathematical method from a well-defined system based on
theoretical analysis, e.g., derived from physical and chemical laws [19]. The other approach is
experimental modeling, which is also known as system identification, in which a model is constructed
based on the measurement of input-output signals of a system. One major advantage of system
identification is that it can be applied for an unknown process [19]. The building of a dynamic model of
the eco-physiological process of a plant, however, is difficult to conduct successfully using theoretical
modeling. This is because most of the eco-physiological processes of plants have strong non-linearity,
time delay, and time-varying parameters, which can be characterized as a complex system with
uncertain parameters [8,14,20-22]. This unknown process is also termed a black box system.

One useful approach to identifying a black box system is artificial neural networks (ANNSs) [23].
ANN s are an information-processing approach inspired by the biological neural system. Artificial
neural networks can identify a complex system without requiring prior knowledge of the relationships
among the parameters within the system by learning from its input-output signals [24-26].
With these capabilities, artificial neural networks are useful in handling uncertainties and non-linear
relationships [23]. Moreover, artificial neural networks are a general-purpose approach to dealing with
such a complex system. Not only effective for non-linear regression, artificial neural networks are also
useful for other applications such as classification, clustering, pattern recognition, and forecasting.
Further, analysis using artificial neural networks does not require restrictive assumptions about the
data (non-parametric), which makes this approach flexible to use [23]. These properties make artificial
neural networks superior to other statistical methods in the identification of a complex system [26].
Given this ability, artificial neural networks have high potential to successfully identify the complex
eco-physiological process of plants. In the agricultural sector, the artificial neural network technique
has been extensively developed in various applications [9,27,28]. Hence, system identification using
the artificial neural networks mentioned above may be useful in constructing a model of the dynamic
response of plant growth to RZT.
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The present study is an attempt to apply an artificial neural network to model the dynamic
responses of plant growth as affected by change in the RZT in hydroponic chili pepper plants.
The dynamic model proposed here was developed using system identification based on artificial neural
networks in a single input-single output (SISO) system. The model estimates the output variable of
dynamic response in plant growth using the input variable of RZT.

2. Materials and Methods

2.1. Plant Materials

Pepper (Capsicum annum L.) is an important commodity, and it is one of the most popular
crops grown in protected agriculture all over the world [29]. Moreover, peppers are well known as
temperature-sensitive cultivars [30-33]. Hence, in this study, a pepper cultivar was used.

Chili pepper seeds (Capsicum annum L. cv. Takanotsume Togarashi; Takii Seed Ltd., Kyoto,
Japan) were sown in seedling trays and germinated at a controlled room temperature of 26 °C.
After germination, at 15 days after seeding (DAS), the seedlings were transplanted to soilless media of
water-soaked polyurethane sponge blocks (2.3 X 2.3 x 2.7 cm) and grown in a greenhouse at day/night
temperatures of 25/20 °C under ambient light. Seedlings were watered as needed and supplied with
nutrient solution (Otsuka liquid fertilizer; OAT Agrio Co., Ltd., Tokyo, Japan) at 1 dS m™!.

2.2. Experimental Design

At 35 DAS, the plants were transferred to a growth chamber (2.5 x 2.5 X 2 m; (NK System; Nippon
Medical and Chemical Instruments Co., Ltd., Osaka, Japan). During observations, the growth chamber
was set up consistently with a 12 h photoperiod of 270 umol m~2 s~! PPFD (photosynthetic photon flux
density) as measured at the base of the growth chamber using a T&D TR-74i illuminance ultraviolet
(UV) recorder (T&D Corporation, Matsumoto, Japan), day/night temperature 25/20 + 1°C, relative
humidity 55/70 + 5%, and nutrient solution 2.3 + 0.2 dS m~!. Meanwhile, the dissolved oxygen level of
the nutrient solution was maintained with the application of an air bubble generator.

To obtain adequate information about the dynamic response of plant growth to RZT, five random
patterns of RZT were applied in the range 15-37 °C. Each pattern consisted of three sample plants
planted in an independent deep flow technique (DFT) hydroponic system. A total of 15 plants were
used for this experiment. To control the RZT, each pattern was equipped with an automatic independent
water temperature control system using a NETC-3 thermostat (Newmarins Co. Ltd., Fukuoka, Japan).
The thermostat regulated the nutrient solution temperature by controlling a ceramic water heater
(Power Safe PRO, Nisso, Japan) and cooling water circulator (FCW-10 Fine Circulators; TGK Co. Ltd.,
Tokyo, Japan), which circulated cooling water through a copper pipe inside the hydroponic system.
To supply the nutrient solution inside the container, an automatic system periodically pumped each
container with nutrient solution. The control system is depicted in Figure 1.

2.3. Measurement of Plant Growth

Dynamic changes in plant development were monitored through changes in the fresh weight of
the plants during observation. In a controlled environment, the fresh weight of a plant provides useful
information on the status of the plant and is also an indicator of plant growth [34-36]. In this study,
an automated non-destructive plant weight measurement system for pepper plants was developed.
The measurement system consisted of a CZL635 micro load cell (loads up to 5 kg and 0.05% precision;
Phidgets Inc., Calgary, Canada), load cell support structure, and plant holder, as illustrated in Figure 1.
However, because the plant roots were in the nutrient solution, the weight of the plant roots was
balanced by buoyant force. Thus, only the weight of the plant shoots was measured. To record the
change in plant weight during the experiment, data were sampled at five-minute intervals and stored
on a microcomputer (Raspberry Pi 3 Model B+; Raspberry Pi Foundation, Cambridge, UK).
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Figure 1. Root zone temperature control system and plant growth measuring system using a load
cell sensor.

The dynamic response of plant growth was determined as the growth rate of plant weight,
which measures the sensitivity of the change in plant weight (AW, [g]) with respect to the change in
time (At, [d]), as shown in the following equation:

AW

WR(t) = =

)

2.4. System Identification Method

2.4.1. Data Preprocessing

Sensors produce a large number of data points, which can be an advantage in modeling; therefore,
these data need to be reliably preprocessed. In supervised learning models, unreliable data could lead
to wrong outputs, which affect model performance [37]. Data preprocessing methods were applied in
this study to avoid unreliability and to organize data for model development.

Data that deviate considerably from the remaining observations can be defined as outliers. In this
study, to detect and remove outliers from time series data, the Hampel Identifier method [38] was
applied. The missing data then need to be replaced to maintain completeness and the trend of time
series data. Thus, the missing observation data were replaced by the moving average interpolation of
their latest neighboring time series data.

The response of plant growth to changes in environmental conditions can be categorized as a long
response that can be identified daily. Thus, resampling or aggregation of time series data was needed.
In this step, data were resampled on a daily basis using the averaging procedure and then smoothed
using the Savitzky-Golay filter [39]. All data preprocessing was performed using the Matlab® Signal
Processing Toolbox™ R2019a (MathWorks® Inc., Natick, MA, USA).

2.4.2. Dynamic Neural Networks for System Identification

In the present study, system identification was considered as a single input-single output system
with unknown parameters. Figure 2 shows a block diagram of the SISO system. For the control system
of plant growth, the output variable of plant growth response (WR) was estimated from the input
variable of RZT (RT).

Artificial neural networks are gaining attention as a general solution for handling non-linear system
problems due to their universal approximation capabilities [23]. However, specific neural network
architectures are required to solve certain problems optimally. Thus, in recent years, many variants of
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artificial neural network architecture have been developed. For identification of a dynamic system,
in this study, a non-linear autoregressive with exogenous input (NARX) network [40] is considered.
NARX networks are a particular class of artificial neural networks characterized by a feedback
procedure on the output which can identify any non-linear dynamic system. NARX networks have
been employed in various applications of dynamic systems. NARX networks also showed better
performance in the prediction of long-term dependencies [41]. Moreover, in particular, for constructing
a dynamic model in control system problems, NARX has been widely employed with excellent
performance [18,40,42-45].

Input (Ty) Black-haxmedel Output (Wy)
Root zone (Neural network) Growth rate
temperature of plant weight

Inputlayer Hidden layer Outputlayer
T(k) —*

Current output
of growth rate of
plant weight

Time series T(k—1)
of root-zone
temperature T(k—2)

WR(k)
T(k —dt)
Past time WR(k — dt)
series of
growth rate WR(k—2)
of plant
weight WR(k—1)

Figure 2. Block diagram of the single input-single output (SISO) system for system identification,
and non-linear autoregressive with exogenous input (NARX) network structure with three layers,
one input time series of the root zone temperature T(k), one hidden layer (h), one output time series
of the growth rate of plant weight WR(k), and a time-delay (df) neural network for identifying a
dynamic model.

The NARX network for identifying the dynamic response of plant growth to RZT and for creating
a black box model for simulation is illustrated in Figure 2. In this study, the NARX network structure
consists of three layers: input, hidden, and output layers. Moreover, a feedback loop procedure was
applied to produce time-series historical input and output data for dynamic identification [23,41].

To identify the dynamic system, the NARX network applies historical input data with
time delay (dt) operators, T(k), T(k—1),...,T(k—dt), and historical output data with time delay
operators, WR(k—1),..., GWR(k—dt), to the input layer, and applies the current output value
WR (k) to the output layer as training signals [23]. Backpropagation with the Levenberg-Marquardt
algorithm was then used [46] to train the network. Meanwhile, for prediction, the current output
WR(k) was estimated from historical input data T(k), T(k—1),..., T(k — dt) and historical output data
WR(k—1),..., WR(k — dt), as shown in Equation (2):

WR(K) = f(T(k), T(k—1),..., T(k—dt), WR(k—1),..., WR(k - dt)) @)

A program created using the Matlab® Deep Learning Toolbox™ R2019a (MathWorks® Inc., Natick,
MA, USA) was used to develop the model [47]. The workflow of model development in this study is
illustrated in Figure 3.
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Figure 3. The workflow of model development using NARX neural networks.

2.4.3. Model Validation and Model Structure Selection

To obtain sufficient accuracy of the identified model, data for identification were divided into
three independent datasets: training, validation, and test [48]. The training dataset was the sample of
data used by the learning algorithm to fit the model. The trained model was then evaluated using
the unbiased validation dataset while tuning the model parameters. During the training process,
the validation dataset was also used for regularization by the early stopping training process to
prevent model overfitting when generalization was not improving [46]. Four patterns of observation
datasets were used for the training and validation datasets, with the proportions of 75 and 25%,
respectively. This means that in each dataset, as many as 45 and 15 days of data were used for training
and validation, respectively.

Because the structure of the neural network model is significant in the performance of the model,
the model parameters, which consist of the time-delay operator and the number of neurons in the
hidden layer, needed to be determined. Here, the model parameters were determined through trial
and error based on cross-validation. Cross-validation provides an unbiased and robust evaluation of
the final model by evaluating the performance of the identified model by comparing the test dataset
and estimated data obtained from the model simulation [48].

2.4.4. Model Performance

To measure the performance of the proposed model, two performance criteria were used:
the root-mean-squared error (RMSE) and the coefficient of determination (R?) [48]. The RMSE
calculates the error variance of the predicted and observed values (the closer to zero, the better the
model performance for RMSE), as shown in Equation (3):

®)
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Meanwhile, the coefficient of determination is used to evaluate a model’s ability to explain and
predict future outcomes. The value of R? ranges from 0 to 1 (the closer to 1, the better the model fits),
and is calculated using Equation (4):

(MY Jiyi— X 9i Ny yi)z
(” Z?:l 92— (Z?:l 91‘)2)(” Z?:l vi? = ( :'1:1 yz‘)z)

where 7 is the number of data points, y; is the actual value or network output, and §; is the predicted
value or network target.

R* =

4)

3. Results

3.1. The Response of Plant Growth to Root Zone Temperature (RZT) for Identification

The time series data of plant weight development were successfully collected using the plant
weight measurement system based on a micro load cell. However, much unreliable data were also
recorded during observation. Figure 4 shows an example of the raw data from sensor number 14,
consisting of numerous suspicious records or outliers. These outliers appeared because of a system
error and probably because of unintentional actions, such as unintentional touching of the plants or
sensor during observation. The application of data preprocessing effectively removed the unreliable
records and reduced the noise from the observed data.
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Figure 4. Sample preprocessing of observation data from sensor 14: (a) the original data were cleaned
of unreliable records using the Hampel Identifier and reconstructed using the moving average method;
(b) the cleaned data were then resampled on a daily basis and smoothed using the Savitzky-Golay filter.

Figure 5 shows daily changes in plant weight, the growth rate of plant weight, and the RZT of
hydroponic cultivation for 60 days of observations, which started at 35 days after seeding. These 60 days
of observation correspond to the initial stages of pepper plant growth. The data on plant weight are
the average values of three pepper plants. Typical patterns of the growth in plant weight under five
different RZT treatments are shown. For Pattern 5, however, data were obtained up to only 55 days
because of a faulty sensor that produced unreliable records.

In this study, a model was developed based on the measured data for the input and output
variables of the system using neural networks. From the observations, the data on growth in plant
weight represent the accumulation of plant weight over time. Meanwhile, the growth rate of plant
weight measured the sensitivity of the change in plant weight to the change in time, which means that
the dynamic effect of RZT treatment on the growth in plant weight can be identified more clearly by
using a growth rate variable. Therefore, to achieve a control strategy, the growth rate of plant weight
was chosen as the controlled output for neural network model identification.
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Figure 5. Typical daily change in plant weight (a), the growth rate in plant weight (b), and the RZT
(c) in hydroponic pepper cultivation.

3.2. Determination of the Model Structure

The growth rate of plant weight, as determined by the RZT, was then identified by using neural
networks, and a black box model for predicting the growth rate of plant weight was developed. Because
the final model structure is determined by the model parameters (df), which are a combination of
time-delay order and the number of neurons in the hidden layer (h), these parameters were determined
to find the best performance of the identified model. The effect of the time-delay order and the number
of neurons in the hidden layer on model performance was investigated. Figure 6 shows the effect
of the model parameters on the estimation error (RMSE). It was found that the RMSE reached its
minimal value with the combination of 2 and 10 for the time-delay order and the number of neurons
in the hidden layer, respectively. For the second model performance, identical results were obtained,
with R? reaching the best value when the time-delay order and number of neurons in the hidden layer
were 2 and 10, respectively. Therefore, the foregoing suggests that the neural network structure with
time-delay order dt = 2 and number of neurons in the hidden layer h = 10 is useful for identification.

3.3. Identification Results

The performance of the identified neural network model was evaluated by comparing the
estimated values and the independent test dataset with the observed values. Figure 7 shows a
comparison of the estimated dynamic response calculated by the neural network model and the
observed response for the growth rate of plant weight. With RMSE and R? values of 0.49 g and 0.99,
respectively, it was found that the estimated response closely correlated with the observed response.
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Figure 7. Comparison of the estimated response calculated by the developed neural network model
and the observed growth rate of plant weight.

3.4. Estimation of the Characteristics of Plant Response

Using the identified neural network model, the relationship between RZT and the response of
plant growth was then estimated to provide an insight into the basic properties of the dynamic system
model. Figure 8 shows the estimated step response of the growth rate of plant growth to stepped input
from 20 to 21, 23, 25, 27, and 29 °C. In general, the step responses dramatically increased as the step
input of RZT increased. However, through the given range of five step inputs, the dynamic system
model generated five different characteristics of the step response. The gain of step response from 20 to
21 °C was slightly faster, but then immediately steady. Meanwhile, the gains of step response from 20
to 23 °C and 20 to 25 °C were largest. In general, with change in the input variable of RZT, the gain in
the step response of growth rate in plant weight gradually increased with time. These results show
how the model simulates the dynamic characteristics of step response for different input conditions,
which illustrates the ability of RZT in various ranges to control plant growth in a dynamic system.
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Figure 8. Estimated step response of the growth rate of plant weight to stepped RZT input, obtained
via simulation.

3.5. Estimation of the Relationship between RZT and the Growth Rate of Plant Weight

In order to confirm the relevance of the model in this study, the estimated relationship between
RZT and the average growth rate in plant weight, which also represents plant growth, was examined
via model simulation. Figure 9 shows the estimated static relationship between RZT and the growth
rate of plant weight. The estimated value of the growth rate of plant weight was obtained from the
average of the step response calculated using the identified model, where the step input value was set
as stationary from various values. From the simulation, it can be seen that the growth rate of plant
weight increased with RZT. However, above the range 25 to 26 °C, the growth rate tended to decrease
with RZT. In general, it was found that the relationship between RZT and the growth rate of the plant
showed strong non-linearity and peaked in the range of 24 to 26 °C. This result is consistent with a
previous study which reported that the optimal RZT range for bell pepper (Capsicum annum L.) is in
the range 25 to 27 °C or less in terms of yield [49] and 24 °C in terms of shoot dry weight [50].
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Figure 9. The estimated static relationship between the growth rate of plant weight and RZT, obtained
via simulation.
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4. Discussion and Conclusions

In this study, the dynamic responses of plant growth as affected by changes in the RZT were
examined using an automatic plant weight measurement system based on a load cell. Since plant tissue
is composed mostly of water, the fresh weight of a plant is very sensitive to changes in environmental
conditions. For this reason, in order to examine the fundamental eco-physiological behavior of the
response of plant growth to RZT, experiments were conducted in a strictly controlled environment
using a growth chamber, where light intensity, temperature, and relative humidity were controlled
precisely. As the environmental conditions inside the growth chamber were maintained constant, it can
be assumed that the responses of plant growth were affected by the changes in RZT.

Then, an artificial neural network was used to construct a dynamic model of the responses of
plant growth as affected by changes in the RZT in hydroponic cultivation. Based on the examination,
it was found that the NARX networks presented in this study were useful in identifying the complex
process of the dynamic response of plant growth as affected by changes in the RZT over 45 days of
cultivation. The NARX networks were shown to be capable of performing long-term dependency
prediction, as also shown by [40,41]. The model also successfully performed step response simulation,
which is typically conducted in control studies to estimate the basic properties of a dynamic system [19].
This suggests that dynamic optimization can potentially be applied to the system in order to maximize
plant growth. Moreover, from the simulation, estimation of the static relationship between the response
of plant growth and RZT can also be generated. The static relationship was determined as having
strong non-linearity with an upside-down parabolic curve peaking in the range of 24 to 26 °C, which is
consistent with previous studies on the relationship of plant growth and RZT [49,50]. This suggests
that a reliable computational model can be useful to predict the dynamic behavior of plant growth as
affected by RZT.

In previous studies, the examination of dynamic plant growth control using root zone
environmental factors in hydroponic cultivation was limited to nutrient solution concentration [16].
Meanwhile, optimal temperature control of the root zone environment, which is one of the essential
determining factors in hydroponic cultivation, had not been thoroughly investigated [18]. Identification
of the dynamic responses of plant growth as affected by RZT, which was conducted in this study,
may be useful for a better understanding of plant growth control in plant production systems.

However, the artificial neural network model presented in this study cannot be applied in
cultivation systems as it is. This is because the model is limited to the specific range of environmental
conditions in the setup used during the experiment. More data on plant response in broader
environmental conditions are required to construct a more robust model. For an artificial neural
network model, more training data are better for identification. Given that one of the significant
advantages of an artificial neural network model is the ability to re-train the current model using new
data, this model has great potential for further development.
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