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Abstract: Soil enzymes (urease, invertase, acid and alkaline phosphatase) activity in the rhizosphere
of field-grown tomato plants were used to monitor the impact of soil amendments (SA) and SA mixed
with biochar on soil microbial activity four months after addition of amendments. The soil treatments
were sewage sludge (SS); horse manure (HM); chicken manure (CM); vermicompost (worm castings);
commercial inorganic fertilizer; commercial organic fertilizer; and no-mulch (NM) native soil used
for comparison purposes. Soil treatments also were mixed with 10% (w/w) biochar to investigate
the impact of biochar on soil enzymes activity. The results showed a significant increase in soil
urease and invertase activities after incorporation of SA to native soil. Vermicompost and HM were
superior in increasing urease and invertase activity four months after their addition to native soil.
Alkaline phosphatase activity fluctuated among the soil treatments, revealing some obstruction of
its activity. SS amended with biochar increased acid phosphatase activity by 115% four months
after SS addition. Other than alkaline phosphatase, organic manure enhanced soil biological activity
(microbial biomass and release of enzymes), indicating that the use of manures, rather than inorganic
fertilizers, in crop production is an affordable and sustainable agricultural production system.
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1. Introduction

Soil quality is a combination of chemical, physical, and biological characteristics that enable
soils to perform a wide range of functions. It is dependent on soil biology, in which microorganisms
play energetic parts in soil fertility and crop production through enzymatic activity, organic matter
decomposition, and nutrient cycling. Soil amendments (SA), such as animal manures, are contributors
of soil fertility. Demand for food is increasing, and much of the plant production systems will depend
on fertilizers. As more sewage sludge (SS) treatment districts turn to composting as a means of sludge
maintenance, and because of the rapid growth in chicken manure (CM) production, SS and CM will be
available in rising quantities. Recycling wastes such as SS and CM for use as low-cost organic fertilizer
could result in a positive effect on the growth and yield of a wide variety of crops and promote the
restoration of ecologic and economic functions of soil.

The use of bioindicators, such as soil enzymes activity, as monitoring tools to assess soil health
and potential impact of SA, have been recommended [1,2]. Soil enzymes are very sensitive to the
environmental stress caused by high levels of trace metals [3,4], hormones, and antibiotics [5] in animal
manures, due to their impacts on soil biological activity. Effron et al. [6] reported that soil enzyme
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activity was sensitive to the pH changes, but different enzymes responded differently to the soil pH
that gave positive correlations with Cu, Pb, and Zn, and negative correlations with soil enzymes.

Soil microbial biomass and enzymes activity in the rhizosphere (the soil that surrounds the
plant root) are bioindicators of soil biological status. The mineralization of organic matter in soil is
carried out by a large community of microorganisms and involves a wide range of metabolic processes.
Positive correlation between the activity of soil enzymes and nutrient mineralization was reported in
agricultural soils [7].

Urease (urea amidohydrolase, EC 3.5.1.5) hydrolyzes urea fertilizers into NH3 and CO2, which are
associated with rise in soil pH [8], resulting in a rapid N loss to the atmosphere due to NH3

volatilization [9]. Accordingly, urease activity in soil has received great attention, due to its vital role
in the regulation of N supply to plants after urea fertilization. Soil urease originates mainly from
plants [10] and microorganisms [11]. Invertase (β-d-fructofuranosidase) is the enzyme that splits
sucrose into its two components, glucose and fructose. Invertase is available in microorganisms,
animals, and plants [12]. Its hydrolysis is in both acidic and alkaline conditions [13]. The activities of
urease and invertase are important in soil for releasing simple carbon and nitrogen sources for the
growth and multiplication of soil microorganisms.

Phosphatases convert organic phosphate esters to orthophosphate ions [14,15] available to the
plant uptake, and thus constitute an important link between biologically unavailable and bioavailable
phosphorus (P) pools in the soil. Phosphatases are ubiquitous in soil and produced by microorganisms
in response to low levels of inorganic phosphates. The amount of P in soil available to plants is small,
about 1–5% of the total P content [16]. Acid phosphatase (EC 3.1.3.2) is found in non-mammalian
species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with
mammalian acid phosphatase enzymes. Accordingly, the study of soil enzymes activities indicates the
potential of a soil to carry out specific biochemical reactions for maintaining soil quality.

Regarding animal waste, currently, the world generates 1.3 billion tons of municipal solid waste
(biosolids) annually. By 2025, the world could generate 2.2 billion tons of biosolids per year [17].
Recycling biosolids and animal manures for use as fertilizer would reduce dependence on synthetic
fertilizers and provide amendments useful for improving soil structure and nutrient status at low cost
to limited-resource farmers. Incorporation of organic materials, such as municipal SS compost, into soil
promotes microbiological activity [18]. There is growing evidence that soil biological parameters may
have potential as early and sensitive indicators of soil ecological stress and restoration [19]. In the
present investigation, soil biological activity was determined by monitoring the activity of enzymes
secreted by soil microorganisms. Mierzwa-Hersztek et al. [20] measured the activity of nitrifying
bacteria. Investigators [21] also measured soil microbial activity by the respiration method that
quantifies CO2 evolution. In another study, measurement of the soil biological activity was evaluated
by determining the number of selected groups of bacteria and actinomycetes using the serial dilution
method [22].

Studies also have indicated that biochar (product of a process known as pyrolysis) used as a soil
amendment could increase plant nutrients, soil cation exchange capacity (CEC), soil organic matter,
soil microbial activities, and nutrient availability [1,23]. Biochar application to agricultural soils has
a potential for climate change mitigation and improvement of soil properties, due to its increase of
CEC, nutrient and water retention, and positive influences on soil microbial communities and crop
yields [24]. Biochar can abate climate change by sequestering carbon, while simultaneously providing
increases in plant growth and crop yields [25,26]. In addition, Antonious et al. [27] reported that
municipal SS mixed with yard waste compost produced a high marketable yield and a great number
of eggplant fruits, compared to NM soil. Investigators [28] found that the use of vermicompost in
agricultural production systems had increased tomato fruit elemental content, compared to NM control
soil. Other investigators [29] indicated that a high yield of the Chinese cabbage was achieved by using
horse manure (HM) as a soil amendment. In addition, animal manure application, such as CM and
HM, to soil is proposed as a solution to the worldwide waste disposal problem.
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The main objective of this investigation was to assess the impact of sewage sludge, chicken manure,
horse manure, vermicompost, organic and inorganic commercial fertilizers, and biochar mixed with
soil amendments on soil urease, invertase, acid phosphatase, and alkaline phosphatase activity
in the rhizosphere of field-grown tomato plants. Our hypothesis is that organic fertilizers and/or
biochar addition to organic fertilizers can increase soil urease, invertase, and phosphatases activities,
compared to no-mulch native soil or inorganic fertilizers.

2. Materials and Methods

A field experiment at the University of Kentucky Horticulture Research Farm in Lexington, KY,
USA was established in a randomized complete block design (RCBD). Each plot was 1.2 × 3 m2, and the
entire study area contained 42 plots (3 replicates × 14 treatments). The soil treatments were: (1) control
(no-mulch NM untreated soil), (2) sewage sludge (SS), (3) horse manure (HM), (4) chicken manure
(CM), (5) vermicompost (worm casting), (6) organic fertilizer (Nature Safe 10:2:8), and (7) inorganic
fertilizer (Southern State 20:20:20). The soil in each of the seven treatments was also mixed with 10%
(w/w) biochar obtained from Wakefield Agricultural Carbon (Columbia, MO, USA) to make a total of
14 treatments. The native soil in the experimental plots was a Bluegrass-Maury silty loam (2.2% organic
matter, pH 6.2), located in the Bluegrass region (Fayette County, KY, USA). The soil has an average
of 56% silt, 38% clay, and 6% sand. Properties of biochar used in this investigation were: surface
area 366 m2 g−1 dry, bulk density 480.6 kg m−3, total organic carbon 88%, N 0.27%, P 2.06 mg kg−1,
K 280 mg kg−1, Ca 1881 mg kg−1, Cu 2.45 mg kg−1, Mg 558 mg kg−1, Zn 2.09 mg kg−1, 54% moisture,
temperature 200 ◦C, total inorganic carbon 0.34%, particle size (<0.5 mm), pH 7.4, and Cd content of
1881 mg kg−1. All SA were applied at 5% nitrogen (N) on dry weight basis, to eliminate variations
among soil treatments due to N content [1]. Researchers [30] found that the addition of too much N to
growing plants early in the season resulted in large plant size, late maturity, and plant stem damage.

SS (for example that contained 5% N) was purchased from the Metropolitan Sewer District,
Louisville, KY, and applied at 2242 kg ha−1. CM (1.1% N) was obtained from the Department of Animal
and Food Sciences, University of Kentucky, Lexington, Kentucky. HM (0.7% N) was obtained from the
Kentucky Horse Park, Lexington, Kentucky. Vermicompost (1.5% N worm castings) was obtained
from Worm Power (Montpelier, VT, USA). Organic and inorganic commercial fertilizers (10% and 20%
N, respectively), were obtained from the Southern States Cooperative Stores (Lexington, KY, USA) and
used at 1121 and 560.5 kg ha−1, respectively. Soil amendments were added to native topsoil at the rate
of 5% N, mixed, and rototilled to a depth of 15 cm of top soil. Seedlings of tomato, Solanum lycopersicum
var. marglobe, of 70 days old were planted in raised black plastic mulch, freshly tilled soil of 42 plots,
and watered using a drip irrigation system. Weeding and other agricultural operations were carried
out regularly as needed. The plants were sprayed with the insecticide esfenvalerate (Asana XL) three
times during the growing season at seven-day intervals, at a rate of 385.3 g ha−1 to control the Japanese
and Colorado potato beetles [30].

2.1. Collection and Preparation of Soil Samples

Soil samples (n = 3) were collected from the rhizosphere of growing tomato plants to a depth of
15 cm. This soil depth usually contains high microbial and enzymes activity. Samples were collected
using a core sampler (Clements Associates, Newton, IA, USA) equipped with a plastic liner tube of
2.5 cm inside diameter. for maintenance of sample integrity. Soil samples were air dried at room
temperature, passed through a 2 mm sieve, and kept at 4 ◦C up to 24 h before use.

2.2. Soil Enzymes Analysis

For determination of soil urease activity, 5 g of soil were collected from each treatment, and 10 mL
of 0.1 M phosphate buffer (pH 6.7) in 50 mL volumetric flasks were kept in an incubator at 37 ◦C
for 24 h, and the procedure was completed as described by Tabatabi and Bremner [31]. The method
was developed by measuring the concentrations of NH4

+ ions released in the soil solutions by the
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selective electrode method [32]. A series of standard solutions of NH4Cl covering the concentrations of
0.1–100 µg NH4-N mL−1 of water was used for calibration. Urease activity was expressed as µg NH4-N
released g−1 dried soil during the incubation time [33]. Invertase activity in soil was measured by the
method described by Balasubramanian et al. [34]. A standard calibration curve was obtained with
each group of samples, using analytical grade glucose in the range of 10–50 µg mL−1 glucose (Sigma
Chemical Company, St. Louis, MO, USA). Acid and alkaline phosphatase activities were assessed
using the method developed by Tabatabai and Bremner [35], which determines p-nitrophenol released
after soil incubation with sodium p-nitrophenol phosphate solution (pH 6.7 for acid phosphatase
assay, and pH 11 for alkaline phosphatase assay). Extracellular acid and alkaline phosphatase activity
were assayed using a colorimetric method that involved the hydrolysis of p-nitrophenyl phosphate
disodium hexahydrate (p-NPP) to p-nitrophenol (PNP), by reading the absorbance at 520 nm of the
yellow color formed upon hydrolysis of p-NPP to PNP. A standard curve containing 0–50 µg mL−1 of
p-nitrophenol was used for calibration.

2.3. Chracteristics of Soil Amendments

Soil amendments mixed with NM native soil were collected and air dried at room temperature,
sieved, and subjected to chemical analysis (Table 1). Soil samples from each plot (n = 3) were mixed
with double-distilled water in a soil/distilled water slurry of 1:5 (w/v) ratio. After mixing thoroughly
using a magnetic stirrer, soil pH and EC were measured using a hand-held portable combination (WTW
Weilheim, Germany) of glass electrode with calibrated millivolt meter (pH meter) and a conductivity
meter that was standardized with a KCl solution.

Table 1. Selected characteristics of no-mulch (NM) native soil and soil mixed with soil amendments
used for growing tomato at the University of Kentucky. South Farm (Fayette County, KY, USA).

Soil
Characteristics

Inorganic
Fertilizer CM Organic

Fertilizer SS Vermicompost NM HM

KCl Soil pH 5.29 ± 0.11 a 5.18 ± 0.28 a 4.88 ± 0.14 b 4.7633 ± 0.1 b 4.8 ± 0.15 b 4.71 ± 0.02 b 4.72 ± 0.09 b

Soil-Water pH 6.15 ± 0.1 a 6.057 ± 0.26 a 5.78 ± 0.13 b 5.67 ± 0.1 b 5.71 ± 0.13 b 5.63 ± 0.02 b 5.64 ± 0.09 b

P, ppm 121.3 ± 47.9 a 89.33 ± 6.64 a 94.83 ± 10.32 a 100.33 ± 10.69 a 87.67 ± 9.46 a 95.83 ± 10.2 a 116. ± 50 a

K, ppm 533.5 ± 96 ab 483.8 ± 74.8 ab 446.83 ± 10.1 bc 327.5 ± 4.92 d 557.3 ± 79.8 a 336.17 ± 12.06 d 365.5 ± 26.1 cd

C, ppm 1155.3 ± 28.1 bc 1160.8 ± 51 b 1112.8 ± 43.9 bcd 1050 ± 28.2 d 1230.2 ± 27.9 a 1091.7 ± 44.9 cd 1067.2 ± 12.2 d

Mg, ppm 135.33 ± 6.05 c 139 ± 5.29 c 130.67 ± 4.51 c 131.67 ± 3.4 c 180 ± 11.43 a 130.33 ± 2.84 c 150.83 ± 7.8 b

Zn, ppm 5.417 ± 0.36 d 7.117 ± 0.33 b 6.217 ± 0.44 c 7.867 ± 0.34 a 6.833 ± 0.21 bc 6.65 ± 0.82 bc 6.617 ± 0.34 bc

Cd, ppm 0.09 ± 0.01 a 0.08 ± 0.00 ab 0.08 ± 0.01 ab 0.08 ± 0.01 ab 0.08 ± 0.00 b 0.07 ± 00 ab 0.07 ± 0.00 ab

Cr, ppm 0.04 ± 0 a 0.04 ± 0 a 0.04 ± 0 a 0.04 ± 0 a 0.04 ± 0 a 0.04 ± 0 a 0.04 ± 0 a

Ni, ppm 0.54 ± 0.08 a 0.57 ± 0.14 a 0.42 ± 0.02 a 0.54 ± 0.16 a 0.62 ± 0.15 a 0.46 ± 0.09 a 0.52 ± 0.10 a

Pb, ppm 6.22 ± 0.21 d 8.217 ± 0.7 bc 7.7 ± 0.325 c 10.1 ± 0.66 a 6.23 ± 0.10 d 9.183 ± 1.17 ab 7.53 ± 0.73 c

Cu, ppm 2.96 ± 0.17 cd 3.08 ± 0.08 cd 3.01 ± 0.1 d 3.42 ± 0.11 b 3.927 ± 0.18 a 3.22 ± 0.1 cb 3.14 ± 0.15 cd

EC, µS cm−1 107.37 ± 7.87 ab 95.83 ± 14.61 b 112.03 ± 13.23 ab 106.4 ± 13.67 ab 122.83 ± 8.59 a 94.4 ± 13.1 b 89.03 ± 14.09 b

N-NO3, ppm 79.33 ± 8.39 a 18.33 ± 9.24 c 32.67 ± 8.5 bc 20 ± 3.46 c 37.33 ± 11.85 b 20.67 ± 4.51 c 25.00 ± 6 bc

N-NH4, ppm 50.7 ± 56.6 ab 66.7 ± 61.4 a 47 ± 23.5 ab 29.7 ± 17.9 ab 3.667 ± 0.58 b 5.67 ± 3.79 b 3.33 ± 0.58 b

Each value in the table is an average of three replicates ± standard deviation. Values accompanied by the same
letter(s) in each row are not significantly different. (P > 0.05) using Duncan’s test for mean comparison. Note that
CM = chicken manure, SS = sewage sludge, NM = no-mulch control treatment, and HM = horse manure.

Soil samples were dried in an oven at 105 ◦C for 24 h and ground manually in a ceramic mortar
and pestle to pass through a 2 mm non-metal sieve. To 1 g of each dry soil powder, 10 mL of
concentrated nitric acid (HNO3) were added, and the mixture allowed to stand overnight, then heated
for 4 h at 125 ◦C on a hot plate. The mixture was then diluted to 50 mL with double-distilled water
and filtered through Whatman filter paper No.1. Concentrations of metals were determined using
inductively coupled plasma-mass spectrometer (ICP-MS) in standard mode following the U.S. EPA
method 6020a [36] using an octopole collision cell ICP-MS (7500cx, Agilent, Santa Clara, CA, USA).
All metal standards were NIST traceable. Spike metal recovery ranged from 85–100%. NO3-N and
NH4-N were determined using the electrode method [32].
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2.4. Statistical Analysis

Data containing soil urease, invertase, acid and alkaline phosphatases activity, and soil chemical
composition were statistically analyzed using analysis of variance (ANOVA), and the means were
compared using Duncan’s multiple range test [37].

3. Results and Discussion

Our results reveal significant differences in soil urease activity between the two sampling dates
before (Figure 1A), and four months after, incorporation of amendments to native soil (Figure 1B).
Urease activity in soil increased 2.2 times in HM-amended soil, 3.4 times in CM-amended NM soil,
7 times in SS-amended soil, and about 88 times increase in vermicompost-amended soil, four months
after the addition of amendments. In addition, biochar added to inorganic (InorgBio) and organic
(OrgBio) fertilizers significantly increased soil urease activity by 28% and 22%, respectively, four months
after biochar addition. Garcia et al. [16] reported an increase in soil urease activity following the
addition of organic materials that promoted microbial activity. This increase in soil urease revealed the
transformation of nitrogen in the soil from urea into ammonium ions (NH4

+). Biochar added to NM
native soil (NMBio) increased urease activity by 66%, compared to NM soil (Figure 1B), indicating the
role of biochar in increasing native soil urease activity.
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The electrical conductivity (EC) of vermicompost-amended soil was significantly higher by 30%,
compared to the NM soil (Table 1). The increased amount of ions in vermicompost was useful in
increasing the absorption of nutrients from soil, which promoted the activity of soil microorganisms
and the release of urease (Figure 1B). Figure 1B also indicates that biochar added to vermicompost
amended soil reduced soil urease activity.

Figure 2A indicates that soil invertase activity in CM-, HM-, CMBio-, and HMBio-amended
treatments was significantly greater, compared to other amendments used in this investigation (SS,
Vermi, Organic, Inorganic, NM, SSBio, VermiBio, OrganicBio, InorganicBio, and NMBio at the planting
time (beginning of the field experiment). Four months after the addition of soil amendments to NM
soil, significant increases in invertase activity were detected in HM-amended soil, compared to the NM
control treatments (Figure 2B), reaching a maximum increase (130%) in HM-amended soil, which was
superior in increasing invertase activity. In addition, biochar added to NM soil (NMBio) increased
invertase activity by 52%, compared to the no-biochar native soil.
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Investigators [38] reported that the increased concentrations of Cd and Pb have negative impacts
on soil microbes, and the effect of Cd on soil urease activity is more than that on invertase, while Pb has
more effect on invertase activity than Cd. Table 1 indicates that there were no significant differences
among the concentrations of Pb in HM-, organic fertilizer-, and CM-amended soils, indicating that the
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increased activity of invertase in HM-amended soil (Figure 2B) is related to one or more other factors
not investigated in our study.

Biochar is not biologically inert [20]. Aromatic carbon compounds formed during biomass
pyrolysis (the process used to make biochar) are resistant to microbial decomposition, and hence
the application of biochar increases the pool of carbon in the soil [39,40]. Ameloot et al. [41] and
Alburquerque et al. [42] reported that biochar is an excellent source of nitrogen available not only to
microorganisms, but also to plants.

SS was superior in increasing soil acid phosphatase activity. Differences among soil amendments
before (Figure 3A) and after soil amendments application (Figure 3B) revealed that SS amended with
native soil increased acid phosphatase activity by 8.3% and 17.7%, compared to NM no-biochar (control)
and NM biochar (NMBio) treatments, respectively. SS, also known as biosolids primarily derived
from domestic sources or discharges from commercial and industrial enterprises, has become less
contaminated with trace metals and organic compounds. Nutrients in most synthetic commercial
fertilizers are designed to be rapidly available to crops when applied to soil, which in turn increase
nutrient mobility into surface runoff and infiltration water following rainfall events, whereas the
organic nitrogen fraction in biosolids, such as SS, reduces the availability and mobility into runoff

and infiltration water, because of its slow release of nutrients. In addition, the chemistry of inorganic
nitrogen is prone to volatilization losses when surface applied; however, successful use of organic
fertilizer requires adjusting application rates to account for reduced nutrient availability.
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Alkaline phosphatase activity (Figure 4A) before the incorporation of soil amendments to native
soil revealed about 18% increase in CM treatment, compared to NM native soil. There were no
significant differences in alkaline phosphatase activity among soil treatments in amended soils four
months after treatments (Figure 4B). This could be due to the presence of other trace metals or other
analytes that inhibit alkaline phosphatase activity, and/or due to the low soil pH. Data in Table 1 reveals
that all soil amendments, including the NM soil, had low pH values that do not support the activity of
this enzyme.
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Investigators reported that some analytes in animal manures, or even in native soil, act as enzyme
inhibitors [43]. Berezhetsky et al. [44] indicated that the toxicity of the various metals tested toward
phosphatase activity was as follows: Cd2+ > Co2+ > Zn2+ > Ni2+ > Pb2+, due to direct interactions
between trace elements and enzyme molecules, or enzymes substrates that form substrate complexes.

Table 1 reveals that no significant differences were found in Cd, Ni, and Pb between CM and NM
treatments, whereas pH values were significantly greater in CM-amended soil, compared to NM soil.

In fact, many microorganisms multiplied and others were removed, due to a trace metal
contamination, which resulted in shifts in the quality and functionality of soils. The potential
for using recycled biosolids in agricultural production systems by adding lime (calcium carbonate) [45]
or biochar [46] has been successful, due to their impacts on increasing soil pH and reducing trace
metals availability to edible plants. Biosolids such as SS increased soil water retention, soil water
holding capacity, and crop yield [2].
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In addition, phosphatases released extracellularly by microorganisms often complex with humic
compounds. Dissolved humic substances form complexes with phosphatases of bacterial and algal
origin and reduce hydrolytic activity by non-competitive inhibition [47].

Tons of pharmacologically active substances are used annually in human and animal medicines
for treatment and prevention of diseases. Antibiotic residues in manure, SS, and soil mixed with animal
manure may affect soil microbial and enzyme activities [48]. Pharmaceutical substances used to treat
farm animals do not metabolize completely within their body, they excrete in urine and feces either in
their native form or as metabolites [5]. Increased fertilization of farmland with organic fertilizers such
as municipal SS, CM, and HM may contribute to the introduction of antibiotics into the soil, and this
might be the cause of soil phosphatase-reduced activity. There are relatively few studies on hydrolase
activity and polluted soils.

Renella et al. [49] reported a reduced hydrolase activity in Cd contaminated soils. Possible causes
of lower enzyme production in trace element-contaminated soils could be both microbial metabolic
stress and lower mineralization of low molecular weight organic acids complexed with trace elements
by soil microbial communities. More studies are needed on the effect of trace metals, hormones,
and antibiotics in animal manures in contaminated soils and soil microorganisms, the enzymes they
produce, and the hydrolytic activity of phosphatase in the rhizosphere of growing plants. Our data
revealed that not all the amendments tested increased all enzymes activities. Biochar was not consistent
in promoting all enzymes activities. We recommend the use of vermicompost to increase urease activity,
HM to increase invertase activity, and SS to increase acid phosphatase activity. Soil amendments
treated with biochar revealed no significant differences in alkaline phosphatase activity. Our future
objectives will include a mixture of the three amendments (vermicompost, HM, and SS) to investigate
their potential in elevating the activity of these three hydrolysis enzymes.

4. Conclusions

Soil microorganisms in the rhizosphere of growing tomato secrete a variety of extracellular
enzymes. These enzymes decompose dead plants and animals, and complex forms of organic
matter into accessible nutrient elements, such as C-, N-, and P-produced due to soil invertase,
urease, and phosphatase activity, respectively. The effects of soil amendments (sewage sludge
(SS), horse manure (HM), chicken manure (CM), vermicompost (Vermi), commercial organic (Org),
and inorganic (Inorg) synthetic fertilizers) mixed with no-mulch (NM) native soil, and biochar
(Bio) added to each of the soil amendments, on the activity of three soil enzymes was investigated.
Significant rises in urease activity were found after the addition of some soil amendments. Data showed
an increase in soil invertase activity after the addition of HM. HM was superior in increasing soil
invertase activity, compared to other soil amendments tested in this investigation. Variations in
amendment type and composition have a great impact on the soil microbial community and metal
concentration and availability. Some analytes in animal manures or native soil act as enzyme inhibitors.
Contaminated soils inhibit soil enzyme activities, especially phosphatases, which are sensitive to
various inhibitors. Our results reveal that the addition of vermicompost and HM significantly (P < 0.05)
increased the activity of urease and invertase compared to the NM treatments. The addition of biochar
to SS, HM, and NM soil reduced acid phosphatase activity four months after application. Biochar added
to soil amendments (CM, vermicompost, synthetic organic, and inorganic fertilizers) did not impact
acid phosphatase activity. No significant differences were found in alkaline phosphatase activity
among amendments treated with biochar. These results confirm the findings of other investigators,
who reported that biochar has positive [20] and negative effect [50] on soil enzymes activity that might
be due to the different characteristics of each of the amendments, such as variations in absorbing and
retaining water molecules that impact microbial secretions. Generally, organic amendments, such as
animal manures, are available at low or no cost to limited-resource farmers. For example, the total
cost of nutrients required to produce 1 kg biomass of Chlorella vulgaris (a green microalgae used as a
dietary supplement or protein-rich food additive) was estimated to be 2.5–3 USD and 60–85 USD for
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using organic and inorganic fertilizer, respectively. Accordingly, utilization of available and cheap
nutrient sources, such as organic fertilizers from animal manures and biosolids such as SS, rather than
inorganic synthetic fertilizers, will be beneficial in large-scale crop cultivation systems in terms of cost
saving and environmental quality [51].
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