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Abstract: Lodging stress seriously affects the yield, quality, and mechanical harvesting of maize,
and is a major natural disaster causing maize yield reduction. The aim of this study was to obtain
light detection and ranging (LiDAR) data of lodged maize using an unmanned aerial vehicle (UAV)
equipped with a RIEGL VUX-1UAV sensor to analyze changes in the vertical structure of maize
plants with different degrees of lodging, and thus to use plant height to quantitatively study maize
lodging. Based on the UAV-LiDAR data, the height of the maize canopy was retrieved using a canopy
height model to determine the height of the lodged maize canopy at different times. The profiles were
analyzed to assess changes in maize plant height with different degrees of lodging. The differences
in plant height growth of maize with different degrees of lodging were evaluated to determine the
plant height recovery ability of maize with different degrees of lodging. Furthermore, the correlation
between plant heights measured on the ground and LiDAR-estimated plant heights was used to
verify the accuracy of plant height estimation. The results show that UAV-LiDAR data can be used
to achieve maize canopy height estimation, with plant height estimation accuracy parameters of
R2 = 0.964, RMSE = 0.127, and nRMSE = 7.449%. Thus, it can reflect changes of plant height of
lodging maize and the recovery ability of plant height of different lodging types. Plant height can
be used to quantitatively evaluate the lodging degree of maize. Studies have shown that the use of
UAV-LiDAR data can effectively estimate plant heights and confirm the feasibility of LiDAR data in
crop lodging monitoring.
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1. Introduction

According to a report from the National Bureau of Statistics, China’s maize planting area in 2019
was 41.284 million hectares, with a total output of 260.77 million tons, which makes maize the largest
food crop in China [1]. In recent years, the frequent occurrence of extreme weather events caused by
global warming has increased the probability of maize lodging. The maize growing season is from
July to September every year. During this period, severe weather events such as strong winds and
rainstorms occur frequently, and are the main cause of maize lodging [2,3]. Maize lodging seriously
affects the normal progress of plant photosynthesis and nutrient transport. At the same time, it can
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easily lead to a variety of diseases and insect pests, resulting in a decrease in the number of grains per
ear and 1000-grain weight, and thus seriously affecting maize grain yield, quality, and mechanical
harvesting ability [4–6]. Lodging occurs in different periods and degrees, and the impact on output
differs. In mild cases, the output is reduced by about 12%, and in severe cases, it is reduced by
more than 75%, or even 100% with no harvest [7,8]. Lodging, as one of the major disaster stresses in
maize production, is a serious threat to food security. Understanding the scope and degree of lodging
disasters over time is of great significance for the agricultural sector to guide agricultural production
and disaster assessment in maize lodging [9,10].

At present, the main methods of monitoring crop lodging are field-based and remote sensing
methods [11]. In the field-based methods, relevant lodging information is recorded through field
investigation of lodged areas by investigators, which is time-consuming and inefficient. In the
remote sensing method, lodging information is extracted according to the specific values of various
characteristic remote sensing-derived variables (spectrum, hue, texture, etc.) of lodging and non-lodged
plots in remote sensing images [12–14].

Most crop lodging studies are based on field crop spectra or the use of multi-spectral, hyperspectral,
and other optical sensors to perform data analysis. Field crop spectra can be collected using an ASD
FieldSpec Pro spectrometer. Zhang et al. [15] collected ASD hyperspectral data on the ground, used a
wavelet transform to process and analyze the data, established a model to predict grain quality
parameters, and evaluated the differences of grain quality between non-lodging and lodging maize.
Shu et al. [16] used lodged winter wheat at the filling stage as the research object to classify the
lodged degree of lodged wheat (severe: lodged angle ≤ 15◦; moderate: 10◦ < lodged angle < 45◦;
mild: 45◦ < lodged angle < 70◦; non-lodging > 70◦), and explored the changes in canopy structural
characteristics of winter wheat and its canopy spectral response under different lodged intensities.
Although ground-based ASD hyperspectral data have high spectral resolution and can reflect the
subtle differences in the spectra of different lodging degrees, such data can only be measured at a fixed
point, are not suitable for large-scale lodging monitoring, and can only be used as a priori knowledge
of crop lodging stress in remote sensing monitoring. A variety of sensor images obtained through
remote sensing technology have wide coverage and can be used for large-scale crop lodging research.
Han et al. [17] used an unmanned aerial vehicle (UAV) to obtain multi-spectral and digital images,
extracted a variety of characteristic factors related to lodging (such as texture, canopy structure, spectral
features, etc.), and used the Nomogram diagram method to analyze the probability of maize lodging.
The results are suitable for extracting and analyzing phenotypic traits of large-scale breeding and
agronomic experiments. Singh et al. [18] used validated digital lodging measurements along with
association and genomic prediction analyses to provide evidence in support of a polygenic genetic
architecture of wheat lodging. Liu et al. [19] studied the canopy spectra of wheat with different lodging
angles and found that larger lodging angles were associated with greater canopy spectral reflectance.
Based on this finding, the degree of wheat lodging was successfully monitored. Liu et al. [20] used a
UAV to obtain visible and thermal infrared images of lodging rice, and found that the color and texture
features and canopy temperatures of lodging and non-lodging rice plants were different, and fused
these features to establish a comprehensive identification model of rice lodging using particle swarm
optimization and a support vector machine algorithm, which significantly improved the accuracy of
rice lodging recognition.

However, severe weather such as severe storms and rains is the main cause of lodging [21,22].
Affected by severe weather, the timely acquisition of optical remote sensing data in the lodged area
cannot be guaranteed, affecting the monitoring of lodged disasters. At the same time, interference by
factors such as soil conditions, water or nutritional stress, pests, and diseases will also cause differences
in the optical remote sensing data reflection spectrum, which will have a certain impact on the actual
change of the canopy spectrum caused by lodging [23,24]. Therefore, the use of optical data to monitor
crop lodging has some limitations. Synthetic aperture radar (SAR) data are not affected by bad weather,
can provide continuous time series data, and are very sensitive to structural changes. In theory, using
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SAR data to monitor lodging has advantages [25]. Yang et al. [26] successfully distinguished between
lodging and non-lodging wheat in the farmland of Shangkuli, Inner Mongolia, China, using continuous
time-series Radarsat-2 full-polarization image data covering the entire wheat growth period. Given
that SAR data are sensitive to structural changes, Han et al. [21] used the plant height ratio before and
after lodging as an evaluation index of the degree of lodging to realize the monitoring of the maize
lodging disaster level at the regional scale of Sentinel-1A radar image. Shu [22] and Chauhan [27]
respectively used SAR data to estimate crop lodging angles and quantitatively assess the degree of the
lodging disaster. However, at present, related research on the application of SAR data in crop lodging
monitoring are limited to fully polarized data, and has been oriented toward the plot scale or pixel
scale [24,25,28].

After lodging, the morphology of a maize plant can change drastically, and maize plants change
from upright to slight leaning to flat horizontal on the ground. The more serious the lodging, the lower
the plant height. Therefore, plant height can be regarded as an important index to characterize the
degree of crop lodging. Traditional manual measurement of plant height is too time-consuming and
labor-intensive, and is subject to human error; therefore, it cannot meet the needs of agricultural
production. The common method of crop height monitoring by remote sensing is to generate
three-dimensional (3D) point clouds from digital images of a UAV [29,30]. Although the cost of
UAV digital images is low, the accuracy and quality of the acquired point clouds are easily affected
by weather conditions [31,32]. Compared with optical sensors, light detection and ranging (LiDAR)
is an active remote sensing tool that can obtain the three-dimensional coordinate information of the
target, and can provide vegetation height and vertical structure information [33,34]. In addition, it is
not affected by light conditions [35]. Compared with that obtained from digital images, plant height
information obtained by LiDAR is more accurate [36]. At present, LiDAR has been applied to plant
height monitoring of different crops. For example, Crommelinck et al. [37] used a terrestrial laser
scanner (TLS) to obtain multi-phase maize plant height data, and used a crop height model to extract
maize plant heights, which provided a point cloud processing method for real-time monitoring of maize
plant height. Jimenez et al. [38] used LiDAR to measure wheat plant height, ground coverage, and
aboveground biomass. Of these parameters, the estimation results for wheat canopy height showed
R2 = 0.99 and RMSE = 0.017 m, which indicate higher plant height estimation accuracy. In addition,
rice [39], tomatoes [40], cotton [41], and other crops have been investigated in this manner. These
studies achieved satisfactory results in LiDAR monitoring of plant height.

To date, few applications have been presented for monitoring lodging using LiDAR data. In this
study, UAV-LiDAR was used to obtain lodging maize point cloud data at different growth stages,
and the acquired LiDAR point cloud data were processed and analyzed to obtain the height of lodged
maize at a single growth stage. The objectives of this study were: (1) to analyze the changes in plant
height of lodging maize and evaluate the plant height recovery for different lodging degrees, and (2) to
use LiDAR point cloud data to estimate the height of lodged maize, and (3) to evaluate the application
potential of LiDAR point cloud data in monitoring the height of lodged maize.

2. Materials and Methods

2.1. Study Area

This study was carried out at the National Experimental Station for Precision Agriculture, which
is in the Changping district of Beijing, China (40◦10.6’ N, 116◦26.3’ E, Figure 1). This site has a mean
annual rainfall of 508 mm and a mean annual temperature of 13 ◦C [42]. The regional terrain is
high in the northwest and low in the southeast, and mainly consists of cinnamon soil and tidal soil.
The Jinghua No. 8 maize variety was selected as the test material in the experiment; the growth period
of this variety is from July to October each year. At the time of sowing, the soil was loam, the ridge
spacing was 70 cm, the plant spacing was 30 cm, the sowing density was about 48,000 plants/ha,
the base fertilizer was pure nitrogen (180 kg/ha), and there was no topdressing.
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Figure 1. Study area location and experimental design. (a) Experimental area location. (b) Experimental
design. Note: CG: control group; ST: stem tilt; SF: stem folding; RL: root lodging.

2.2. Experimental Design

The maize lodging experiment started in 2018, and uniform field management was adopted for
the maize in the experimental area during the growing period. During the male tasseling period
(August 28), an artificial lodging experiment was carried out. Lodging is primarily of two kinds: root
and stem lodging. The degree of lodging is from severe to mild, the order was as follows: root lodging
(RL)—the main root is broken, the fibrous root on one side is not broken, and the entire anchorage
system was destroyed; stem folding (SF)—severe stem lodging, the plant is folded at 20 cm above
the ground, but not disconnected; stem tilt (ST)—mild stem lodging, the plant is tilted as a whole,
and the angle between the plant and the ground is 45◦. The type of lodging is shown in Figure 2. In the
east–west direction, there were three different types of lodging treatments, and in the north–south
direction, three repeated experiments were conducted for each lodging type; the control group (CG)
was located north of the lodging area. The size of the experimental area was 20 m × 25 m. A total of 12
plots were investigated. (Among them, the normal maize plot is regarded as a whole when obtaining
plant height data, as shown in Figure 1(a), each plot area was 5 m × 5 m, and protection lines were set
up between adjacent experimental plots. An experimental design diagram is shown in Figure 1. Field
irrigation treatment was carried out before lodging. The lodging direction of the plants was consistent
with the wind direction of the local summer storm weather. In each plot, 5 plants were randomly
selected, and the height of the canopy was measured with a telescopic leveling ruler, and 50 samples
were finally obtained.
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2.3. Data Acquisition

2.3.1. Flight Route Design

The UAV-LiDAR data were collected on August 28 (tasseling stage) and September 14 (filling
stage), 2018. Data were collected before and after artificial lodging on August 28; the first UAV flight
obtained the maize LiDAR data without lodging treatment, and the second flight obtained the maize
LiDAR data after artificial lodging. On September 14, the measured plant height data and LiDAR
data of the lodging maize were collected. The plant height of maize in the lodging plot was measured
manually with a telescopic leveling ruler, and the plant height was measured at five sampling locations
selected randomly in each plot. The same sensor parameters and flight path were set for flights on the
same day. The drone takes a cross flight, with six routes for each flight (Figure 3). Figure 3 show the
route design diagrams for the tasseling and filling stages, respectively, including the distance between
the routes, and the location relations between the experimental area and each route. The distance
between adjacent routes on August 28 (Figure 3a) was 25 meters, and on September 14 (Figure 3c) the
distance between adjacent routes was 15 meters. The point cloud densities (point cloud number in the
experimental area/(length ×width)) of different routes are shown in Table 1. The spot diameter was
0.0075 m, and the average ground point spacing was 0.0239 m [43].
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Figure 3. Description of the experimental design. (a) The experimental area and each flight route on
August 28. (b) Experimental area. (c) The experimental area and each flight route on September 14.
Note: R1 to R12 are the flight routes of the UAV-LiDAR. CG: control group; ST: stem tilt; SF: stem
folding; RL: root lodging.

Table 1. LiDAR point cloud densities of the different routes.

Direction Route Point Cloud Density
(pts/m2) Direction Route Point Cloud Density

(pts/m2)

EW

R1 112

NS

R4 228
R2 280 R5 496
R3 529 R6 417
R7 570 R10 321
R8 285 R11 466
R9 200 R12 366

Note: EW indicates the east–west direction, NS indicates the north–south direction, and R1 to R12 are the flight
routes of the UAV-LiDAR.

2.3.2. Sensor Parameter Settings

The laser scanner mounted on the drone was a RIEGL VUX-1UAV sensor (Figure 4). The related
performance parameter settings are shown in Table 2 [44,45]. The UAV had a flight height of 15 m and
a flight speed of 3m·s−1. The RIEGL VUX-1UAV sensor obtained data by scanning with a rotating
mirror, the laser pulse emission frequency was 550 kHz, and the data format was LAS. The flight
parameter settings were the same for both flights.



Agriculture 2020, 10, 146 6 of 14Agriculture 2020, 10, x FOR PEER REVIEW 6 of 14 

 

 

Figure 4. Schematic diagram of the RIEGLVUX-1UAV sensor. 

Table 2. Sensor related parameters. 

Parameter Value 
Wavelength (nm) 1550 

Flying speed (m·s−1) 3 
Flying height (m) 15 

Area coverage routes (lines) 6 
Scan overlap rate (%) 40 

Pulse frequency (kHz) 550 
Beam divergence angle (mrad) 0.5 

2.4. Data Processing 

Point cloud data processing mainly includes two parts: one is the trajectory data solution, 
including the original laser data processing and point cloud data preprocessing; the other is point 
cloud data analysis [46]. The processing steps include: trajectory calculation, raw laser data 
processing, point cloud and trajectory data matching, and point cloud data processing and analysis. 
The process flow is shown in Figure 5. First, the POSPac software (version 7.2, Applanix., Richmond 
Hill , Ontario, Canada) was used to perform precise orbit calculations on GPS base station data and 
the Position and Orientation System (POS) data. Then, the RiPROCESS software (version 1.7.2, 
RIEGL Co., Horn, Austria) was used to process the original laser data, including the waveform 
calculation, coordinate system, 3D point cloud data visualization, and output point cloud data in the 
LAS standard format after processing. Finally, the LiDAR360 software (version 3.0, GreenValley Co., 
Beijing, China) was used to analyze the point cloud data, which mainly included point cloud 
denoising, classification, filtering, and other steps. 

 

Figure 5. Point cloud data processing process. 

2.5. Canopy Height Model 

The canopy height model (CHM) was used to obtain the canopy height of lodged maize. The 
CHM is an expression of the height of a surface object and reflects the continuous surface 

Figure 4. Schematic diagram of the RIEGLVUX-1UAV sensor.

Table 2. Sensor related parameters.

Parameter Value

Wavelength (nm) 1550
Flying speed (m·s−1) 3

Flying height (m) 15
Area coverage routes (lines) 6

Scan overlap rate (%) 40
Pulse frequency (kHz) 550

Beam divergence angle (mrad) 0.5

2.4. Data Processing

Point cloud data processing mainly includes two parts: one is the trajectory data solution,
including the original laser data processing and point cloud data preprocessing; the other is point
cloud data analysis [46]. The processing steps include: trajectory calculation, raw laser data processing,
point cloud and trajectory data matching, and point cloud data processing and analysis. The process
flow is shown in Figure 5. First, the POSPac software (version 7.2, Applanix., Richmond Hill, Ontario,
Canada) was used to perform precise orbit calculations on GPS base station data and the Position
and Orientation System (POS) data. Then, the RiPROCESS software (version 1.7.2, RIEGL Co., Horn,
Austria) was used to process the original laser data, including the waveform calculation, coordinate
system, 3D point cloud data visualization, and output point cloud data in the LAS standard format
after processing. Finally, the LiDAR360 software (version 3.0, GreenValley Co., Beijing, China) was
used to analyze the point cloud data, which mainly included point cloud denoising, classification,
filtering, and other steps.
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2.5. Canopy Height Model

The canopy height model (CHM) was used to obtain the canopy height of lodged maize. The CHM
is an expression of the height of a surface object and reflects the continuous surface distribution of
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the object in the horizontal direction, as well as the three-dimensional structure and height change
in the vertical direction. To determine the maize canopy height of the lodging plots, a CHM was
constructed used in the LiDAR360 software, a triangulated irregular network (TIN) was used for spatial
interpolation, and the pixel resolution was set to 0.05 m [47,48]. First, the ground point cloud data were
extracted to obtain a digital elevation model (DEM). For the DEM, digital terrain simulation is realized
based on limited terrain elevation data. It is a solid ground model that represents ground elevation
in the form of an ordered numerical array, and is a branch of the digital terrain model. Secondly,
the digital terrain model (DSM) is established according the canopy point cloud data. The DSM is
based on the DEM and further covers the elevation information of other surfaces in addition to the
ground. For example, it includes the height of buildings, bridges, and trees. In contrast, the DEM
contains only the elevation information of the terrain, not other surface information. The relationship
between the two is shown in Figure 6. The CHM can be obtained by subtracting the DEM from the
DSM. The calculation formula is shown in Equation (1) [49]:

CHM = DSM−DEM (1)
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2.6. Evaluation of Accuracy

In this study, the maize plant height estimated by LiDAR and the measured plant height were
verified. The coefficient of determination (R2), root mean square error (RMSE), and normalized root
mean square error (nRMSE) were calculated to evaluate the accuracy of LiDAR for estimating plant
height [50]. The R2 value was used to evaluate the coincidence between the estimated values and the
measured value. The RMSE was used to measure the deviation between the estimated values and the
measured values. The nRMSE represents the degree of difference between the estimated values and the
measured values (nRMSE <10% indicates no difference, 10%≤ nRMSE <20% denotes a small difference,
20%≤ nRMSE <30% is moderate, and nRMSE ≥30% represents a large difference) [51]. Among them,
a larger R2 value indicates better data fit, and smaller RMSE and nRMSE values indicate higher
estimation accuracy. The calculation formulas of R2, RMSE, and nRMSE are shown in formulas (2), (3),
and (4):

R2 = 1−

∑n
i=1 (yi − x)2∑n
i=1 (xi − x)2 , (2)

RMSE =

√∑n
i=1 (yi − xi)

2

n
, (3)

nRMSE =
RMSE

x
(4)

where xi and x represents the measured value and the average of the measured values, respectively,
yi represents the estimated value, and n represents the number of samples.
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3. Results and Analysis

3.1. Profile Analysis of the Study Area

The most apparent effect of maize lodging was that the plant heights changed greatly, and the
point cloud data directly reflect these changes in plant height. The point cloud data processed on
August 28 and September 14 were analyzed in the LiDAR360 software, and the results are shown in
Figure 7. The three profiles were selected at the same location, and the profile buffer was set to 0.5 m.
Figure 7a shows a profile view of the experimental plot before lodging on August 28. The heights of the
maize plants before the lodging were uniform without significant difference. Figure 7b shows a profile
view of the experimental plot after the artificial lodging treatment on August 28. Compared with those
of the control group, the plant heights of the plot were changed after the lodging treatment, and more
severe lodging resulted in lower plant heights. Figure 7c shows the profile of the experimental plot
on September 14 after a period of artificial lodging. Because lodging occurred during the tasseling
stage, the maize was in the vegetative growth stage at that time, and the maize itself had the ability to
recover after lodging. Compared with those immediately after artificial lodging, the plant heights in
the lodging area changed significantly. The three profiles (a), (b), and (c) in Figure 7 reflect the time
series of maize plant height, and the changes of plant height could be clearly observed using the point
cloud data.
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3.2. Canopy Height Change

The maize canopy height of each flight was obtained from the CHM, and the results are shown
in Figure 8. Figure 8a is the maize canopy height without lodging on August 28. When there was
no lodging, the maize canopy height was more uniform and the texture features were more regular.
The range of maize canopy height estimated by LiDAR is 2.01~2.28 m. Figure 8b shows the maize
canopy height after artificial lodging treatment on August 28. Compared with the normal plant heights,
the ST, SF, and RL plant heights were significantly reduced. The plant heights of SF and RL were
close to zero. The height range of the canopy of lodged maize estimated by LiDAR is: ST 1.21~1.47 m;
SF 0.06~0.17 m; RL 0.08~0.18 m. Figure 8c shows the maize canopy heights on September 14. Compared
with those shown in Figure 8b, the maize plant heights in each lodging area had recovered to a certain
extent. Because of the inconsistent recovery ability of each maize lodging type, the plant heights were
different, and the textures were less even. The height range of the canopy of lodged maize estimated
by LiDAR is: CG 2.04~2.42 m; ST 1.70~2.18 m; SF 1.05~1.32 m; RL 1.17~1.59 m.
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3.3. Plant Height Verification

The plant height of the maize measured on September 14 and the plant height estimated by
UAV-LiDAR were verified. To verify the accuracy of the canopy heights obtained from the UAV-LiDAR
data. A total of 50 plant height data were used for verification (including 15 RL, 15 SF, 15 ST, and 5 CG),
and the results are shown in Figure 9. There was a significant positive correlation between the measured
maize plant heights of lodged maize and the estimated plant height of UAV-LiDAR, and the correlation
was 0.98 (P < 0.01). The verification results are R2 = 0.964, RMSE = 0.127, and nRMSE = 7.449%, and the
plant height estimation accuracy was very high.
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As shown in Figure 9, compared with the measured maize height, the overall plant height
estimated by UAV-LiDAR was relatively small. The plant heights of ST were significantly higher than
those of SF and RL. Among them, the plant heights of SF were the lowest among the three lodging
treatments, indicating that in terms of the restoration capacity of lodging maize plant height, RL > SF.
Compared with RL and SF, ST was the least affected by lodging stress, and plant height recovery was
not particularly obvious.

4. Discussion

UAV remote sensing technology has the advantages of high timeliness, high spatiotemporal
resolution, low-altitude flight under clouds, and high maneuverability. The acquired remote sensing
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images have advantages such as high resolution, high overlap rate, low cost, and good universality,
and can provide additional remote sensing information, such as the fine crop textures, that satellite
remote sensing cannot [17,20,52]. It is non-invasive and non-destructive in measurement, and can
quickly obtain crop information, which can be well applied to the field of precision agricultural remote
sensing monitoring [29,30,36]. Plant height is one of the main types of data describing crop growth
status. Being able to obtain crop plant height data quickly and accurately has great significance for
monitoring crop growth and fine management of modern agriculture [38,53].

After the lodging of crops, the stems and leaves overlap with each other, which disrupts the
normal distribution order of leaves in space, destroys the spatial structure of the plants, and leads
to increased population density and ground coverage. UAV digital images (RGB) often use the
structure-from-motion method for 3D reconstruction to calculate plant height. When the same point
is viewed from two different directions, if blocked, structure from motion will not penetrate into the
dense canopy [54–56]. The structure-from-motion technique generally provides a good description of
the digital surface model, but accessing the digital terrain model is only possible when the ground
is clearly visible [57]. Therefore, there are many limitations in using UAV digital images to monitor
the plant height of lodging maize. For example, Esther et al. [58] used UAV RGB images to estimate
canopy heights of grasslands in northern Hessen, Germany, and the estimation accuracy of plant height
showed R2 = 0.56 and RMSE = 0.13 m. LiDAR is not affected by external light conditions, and provides
a method to accurately estimate crop heights [35,36,38]. It can penetrate the crop canopy and reach
the ground, providing both a crop surface model and a digital terrain model, and the plant height
can then be calculated based on the difference between the crop surface model and the digital terrain
model. Thus, the plant height can be measured directly [36]. The accuracy of using LiDAR to measure
plant height can reach several centimeters [59,60]. For example, Tilly et al. [39] used terrestrial laser
scanner (TLS) technology to monitor plant height in rice fields, and there was a strong correlation
between TLS estimated plant height and measured plant height. The results showed that TLS has
obvious advantages in measuring crop plant height. Sun et al. [41] developed a cotton high-throughput
phenotype (HTP) system based on LiDAR data for estimating cotton plant height, and in terms of the
average accuracy of plant height estimation, R2 was 0.98 (RMSE = 65 mm), which indicates accurate
plant height measurements.

In many studies, whether RGB images or LiDAR data are used, the estimated plant height is
lower than the measured plant height. For example, Niu et al. [61] used UAV RGB images to extract
maize plant height, and found that compared with the measured plant heights, the estimated values
of plant heights obtained from the UAV RGB images were relatively low. The reason may be that
the highest position of maize appeared in the leaf tip during the study period, but because of the
limitation of point cloud accuracy, the leaf tip position may have been difficult to detect. Walter et
al. [62] found that LiDAR is suitable for measuring relative plant height. As the plant height increases,
LiDAR will underestimate the plant height, usually with a decrease of about 10 cm. This decrease
is likely caused by the data cleaning process and the lidar crop height (LCH) algorithm function,
and although it is not an issue if relative crop height (CH) is desired, if an absolute measurement of
CH is required, this discrepancy needs to be accounted for. In this study, there is a similar situation
for maize plant height based on CHM extraction. It was found that with increased height of maize
plants, the error of the plant height retrieved from LiDAR compared with the actual height increased.
There may be two reasons for this increased error. (1) When plant height is measured in the field,
there is no lodging maize height higher than the height of the surveyor. When a telescopic leveling
ruler is used, the leveling ruler is placed behind the maize plant, and the surveyor looks up at the
reading, which leads to a large reading. (2) When the plant height of maize is measured, the highest
point selected is the male tassel, and the corresponding spatial structure is small. When the CHM was
used to invert plant height, information on the spatial structure of the tassel was lost, resulting in low
plant height. With more severe the lodging, the spatial structure of the tassel is denser, and the loss of
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spatial structure information is smaller. Therefore, compared with that of CG and ST, the plant height
estimation accuracy of RL and SF is higher.

After lodging in the tasseling stage, and in the vegetative growth stage, the maize itself has a
certain ability to recover. An intuitive manifestation of this ability is that the plant height shows a
certain recovery, but this plant height recovery is only reflected in the maize canopy; the rhizome
recovery is weak. Therefore, after lodging for a period of time, the height of the maize plants changed
significantly only at the canopy position. Consequently, in the canopy height change chart (Figure 8),
only a portion of the plant heights changed significantly. Because the plant height recovery of the
lodged maize stalks is not obvious and is difficult to distinguish, it will affect the judgment of maize
disasters with different lodging degrees. How this can be distinguished will be the focus of our next
work. In addition, this study found that the plant height recovery ability of maize with different types
of lodging differed. After lodging, the lodging severity of RL was higher than that of SF, and the plant
height was lower. However, according to the measured data and LiDAR estimation data after a period
of lodging, the plant height of RL was significantly higher than that of SF (Figure 9). The reason is that
SF destroyed the transport system of the crops, resulting in blocked transportation of water, nutrients,
and other materials, affecting plant growth and leading to lower plant heights [63,64].

5. Conclusions

In this study, based on field experiments of artificial lodging maize, multi-stage UAV-LiDAR data
were obtained. The plant height changes of different lodging types of maize were analyzed, and the
maize canopy height was estimated. The accuracy was verified using ground-based measured data.
The results show the following.

(1) Lodged maize has the ability to restore plant height, and canopy recovery is apparent, but the
stem and root recovery is weak.

(2) The UAV-LiDAR data can reflect the temporal changes of lodged maize plant height and the
plant height restoration ability of different lodging types, and in terms of plant height restoration
ability, RL > SF.

(3) The UAV-LiDAR data can provide accurate estimated of lodged maize plant height. The plant
height estimated accuracy parameters were R2 = 0.964, RMSE = 0.127, and nRMSE = 7.449%.

In contrast with optical sensors, LiDAR is not limited by the surrounding environmental conditions,
has stronger penetrating ability, can obtain the vertical structure information of vegetation, can more
accurately extract crop height, can more intuitively reflect lodging, and can provide new methods for
maize lodging monitoring. However, because of the high cost of LiDAR and the short UAV flight time,
it is currently only applicable to small-scale lodging monitoring. Application in large-scale lodging
monitoring is still a difficult problem to solve. In addition, how LiDAR data can be used to extract
changes in other structural parameters of lodging maize will be the focus of further research.
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