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Abstract: Tobacco is an essential economic crop in China. The detection of tobacco plants in
aerial images plays an important role in the management of tobacco plants and, in particular,
in yield estimations. Traditional yield estimation is based on site inspections, which can be
inefficient, time-consuming, and laborious. In this paper, we proposed an algorithm to detect
tobacco plants in RGB aerial images automatically. The proposed algorithm is comprised of two
stages: (1) A candidate selecting algorithm extracts possible tobacco plant regions from the input,
(2) a trained CNN (Convolutional Neural Network) classifies a candidate as either a tobacco-plant
region or a nontobacco-plant one. This proposed algorithm is trained and evaluated on different
datasets. It demonstrates good performance on tobacco plant detection in aerial images and obtains
a significant improvement on AP (Average Precision) compared to faster R-CNN (Regions with CNN
features) and YOLOv3 (You Only Look Once v3).
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1. Introduction

Tobacco is native to South America [1] and it is widely cultivated in the southern and northern
provinces of China. Not only can it be made into cigarettes, it also has a variety of significant medical
properties [2]. Yield estimation plays an important role in the management of tobacco planting and in
the agriculture precision, thus motivating many studies [3,4].

Traditional yield estimation is based on manual identification and counting, which can be
time-consuming and laborious. In the last decade, there have been studies on how to estimate
production using remote sensing data [5,6] which can be costly and computationally expensive. For
these two reasons, finding a low cost and efficient method to automatically estimate the yield of tobacco
plants is both urgent and necessary. Taking advantage of aerial images, detection of tobacco plants in
them is a solution for automatic tobacco yield estimation. Aerial images provide useful resources to
get an outlook of a vast area from a direct-down position. Due to the popularization of technology,
aerial images captured by unmanned aerial vehicles are now both cost effective and of a guaranteed
quality. Therefore, there are now many researches on estimating production by treating it as an object
detection task in aerial images [4,7].

Object detection is one of the most exciting fields in computer vision. In 2009, Felzenszwalb et al.
proposed the DPM (Deformable Parts Model) [8] where HOG (Histograms of Oriented Gradients) [9]
are used as a feature extractor and SVM (Support Vector Machine) [10] is used as a classifier. Though
DPM achieves good results, it searches the input image with sliding window [11–13] which makes it
time-consuming and inefficient. Therefore, region proposal algorithms such as selective search [14] and
edge boxes [15], were proposed to replace the search stage. Selective search combines exhaustive search
with segmentation which sharply decreases the number of proposals and maintains proposals’ quality
at the same time. Edge boxes propose regions based on windows’ edge information, which is faster and
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more accurate. In 2014, on the background of rise of region proposal algorithms and CNN (Convolution
Neural Networks), R-CNN (Regions with CNN features) was proposed [16,17]. It arranges a detection
problem into three stages. (1) Get regions of interests by selective search, (2) extract features of these
regions with CNN, (3) classify these features by multiple SVM classifiers. Later versions of R-CNN
replaced selective search with RPN (Region Proposal Network) [18–20], which increases the detection
speed and also maintains its accuracy. YOLO (You Only Look Once) was proposed then in 2016 [21].
Compared with R-CNN, YOLO aborts the region proposal stage which makes it feasible for real
time detection but less accurate. Improvements of YOLO were proposed in [22,23] where YOLOv3
significantly improves the performance while maintaining its real-time properties.

Though these detection systems perform excellent on public datasets and competitions, they
are not quite suitable for our problem. For one thing, tobacco plants in aerial images are small in
size (37 × 37 pixels averagely). The systems we mentioned above tend to have poor localization
performances for small objects. For the other, unlike public datasets who have millions of images for
training, our dataset is not that sufficient. Therefore, in this paper, we proposed a method to detect
tobacco plants in aerial images. We continued to use the basic idea of R-CNN, however, we have
adjusted some of its parts to suit our problem. The differences are: (1) A tobacco plant region selecting
algorithm is proposed to replace selective search in the region proposal stage, and (2) CNN is used as
a feature extractor in R-CNN and the regions are classified by multiple binary SVM. In our method,
CNN is directly used as a classifier. An overview of our model is shown in Figure 1.
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Figure 1. An overview of our proposed model. (a) The model takes in an input, (b) regions are proposed
by our candidate selecting algorithm which is detailed in Section 3.1, (c) proposed regions are classified
by a trained network which is illustrated in Section 3.2, (d) the model outputs the positive regions.

2. Materials

We have got five datasets provided by Yunnan TianYi Inc. Each dataset has 88 colored aerial
images at a resolution of 72 ppi (pixels per inch) with 512 pixels in width and 512 pixels in height. These
images were taken at a shooting height of 46.3 m in Tuogu Village, Xuanwei City, Yunnan Province
which lies between 103◦ 06’ to 104◦ 13’ E and 26◦ 63’ to 27◦ 54’ N. We used two of the datasets to train
and the remainder to evaluate. There are 1013 tobacco plants in the dataset, 386 of them are in the
training set while 627 of them are in the testing set. Some aerial images in the datasets are shown
in Figure 2. The following paragraphs of this section will detail the preprocessing work we have done
on the datasets.
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2.1. Data Annotation

To ensure the data’s reliability, we have our datasets annotated by students from the School of
Ecology of Yunnan University who have better knowledge of tobacco plants. Ground truth bounding
boxes generate from annotations. A ground truth bounding box records an annotation by its top-left
and bottom-right coordinates, which can be denoted as (x1, y1, x2, y2). Ground truth bounding boxes
provide useful information both in the evaluation stage and in the training stage.

2.2. Data Augmentation

We need to provide sufficient training samples to help networks obtain better learning weights,
as well as prevent them from overfitting. Therefore, we augmented the dataset by rotation and
flipping [24]. Augmentation is not only the transformation of images, but also the change of the
corresponding ground truth bounding boxes. Denoted an original bounding box as (x1, y1, x2, y2),
transformations of it in different augmentations are as follows:(
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where the width and height refer to the size of image, which are both 512 in our case. Equations (1)–(5)
show the bounding box’s transformation formulas of rotation by 90, 180, 270◦, and flipping horizontally
and vertically, respectively.
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By rotating and flipping, an original image is augmented into 12 different ones. In other words, by
augmentation, we have 2112 images in the training set with 4632 target objects, which is now sufficient
to guarantee a good training result for networks.

3. Methods

Our model consists of two steps. Step one is selecting regions of interest by a candidate selecting
algorithm. The second step is classifying the resized candidates with a trained CNN. The details are
shown in this section.

3.1. Candidates Selecting Algorithm

The first stage of our model is extracting regions of interest using a candidate selecting algorithm,
which sharply shrinks the number of regions to which our network must pay attention. This algorithm
is composed of three steps: (1) Binarizing the image based on color, (2) grouping the pixels in the
binary image, and (3) extracting and resizing the regions. Figure 3 shows the process.
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3.1.1. Binarization

Aerial images were read in the color space of RGB, which has three color channels of red, green,
and blue. Different values in every channel form different colors to a naked eye. This binarizing
step reserves the green-looking pixels while discarding the others. Concretely, the green pixels are
changed to one while others are changed to zero, thus forming the binary image. We define a pixel as a
green one by thresholding the extent to which a pixel’s value in green channel is larger than its other
two channels. The corresponding equations are listed as follows:

Egr = I(r, c, G) − I(r, c, R) (6)

Egb = I(r, c, G) − I(r, c, B) (7)

B(r, c) =
{

1, i f Egr(r, c) > thresh and Egb(r, c) > thresh
0, else

(8)

where I(r,c) refers to the pixel that locates at row r and col c in the image matrix, and R, G, B refer to its
value in red, green, and blue channel, respectively. Egr(r,c) is the extent to which a pixel’s green channel
value is larger than its red channel value; Egb(r,c) is the extent to which a pixel’s green channel value is
larger than its blue channel value; and B(r, c) refers to the pixel in the binary matrix, which is assigned
a value of one if its Egr and Egb are larger than a threshold; otherwise it will be assigned a value of zero.
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3.1.2. Grouping

The binary image can be regarded as a one-hot matrix, and in this step, we need to group the
hot values. Connected hot points make a group. We have considered two methods for the grouping
process. One is based on a searching algorithm and the other is based on clustering.

The common searching algorithms’ ideas can be used here to ascertain a group, and we used BFS
(Breadth First Search) [25] in our case. A round of search begins at a hot point in the matrix, and every
search point has four search directions of left, top, right, and bottom if the corresponding point is hot,
as well. Visited points will be marked in case of duplicated visiting.

A density-based clustering algorithm is also suitable for the grouping problem and we used
DBSCAN (Density-Based Spatial Clustering of Application with Noise) [26] in our case. Concretely, we
clustered hot points based on their coordinates under the parameters of radius = 1 and minimumsamples =

5. Not only can this DBSCAN-based method solve the grouping problem, it will also remove some
anomaly hot points that do not satisfy the parameters which reduce the burden on the latter classification
process to a certain extent.

3.1.3. Extraction and Resizing

After the grouping is completed, in the third step, we are to extract regions from the original aerial
image according to groups. Regions are rectangles that can be ascertained by the coordinates of its
left-top and right-bottom points. A searched group is composed of points, among which we denote
the minimum value of its coordinate systems as xmin, ymin and the maximum ones as xmax, ymax, thus
the region of a searched group can be represented as (xmin, ymin, xmax, ymax).

Before these extracted regions are inputted into the latter neural network, they need to be resized.
That is because we aim to handle them with one specific classification model that accepts a fixed-size
input. The size that all the regions should be resized to can be regarded as a parameter that can be
adjusted. In our case, we resized each region to a squared shape of size 28× 28. We also discard regions
that are too small to be a tobacco plant. An extracting sample is shown in Figure 3.

3.2. Neural Network

Getting fixed-size regions from the former stage, in this stage, we are to tell whether each region
is a tobacco plant region or not using a CNN-based model. This section outlines three parts. In the first
part, we describe the functions of layers in CNNs. Then, we detail the architecture of our network and
why we built it that way. Additionally, the details of the training process are shown in this section.

3.2.1. Layers in CNNs

Although CNNs are becoming deeper ever since deep neural networks [16] got big success on
ImageNet [27,28], their architectures are quite similar. They are mostly composed of convolutional
layers, pooling layers, and fully connected layers and our model continued to use this basic architecture.

Filters form a convolutional layer. As shown in Figure 4, the filters walk through the input and
conduct convolution operations with the overlapping area each step they take. A convolutional layer
is often used to extract features and it works similarly to DPM [8]. Filters can be viewed as patterns
in DPM, they go through the input to determine whether it has a certain feature. Additionally, areas
that match a certain feature will get larger outputs. However, the weights of filter are learned in the
back-propagation process of the network while DPM’s patterns are calculated by HOG [9]. Many
state-of-the-art classification models [16,27,28] have shown convolutional layers’ powerful ability in
feature extraction.

Pooling layers are used to down sample the feature map. There are two major ways for pooling:
Max pooling and average pooling [29]. The pooling operation is also based on a sliding window which
is called a pool here. The pool goes through the inputted feature map, and the pooling operation is
conducted in the overlapping area of the pool. For max pooling, the pooling operation outputs the
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maximum value of a matrix while the average pooling operation outputs the average value of a matrix.
The effectiveness of a pooling layer indicates that the relative positions of features are much more
important than the absolute positions of them. Not only does the pooling layer down sample the
feature map, it also reduces the parameters of a neural network model. Typically, a pooling layer is
inserted into a set of convolutional layers periodically [16,27,28].
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There are 2–3 fully connected layers at the end of a classification model. The fully connected
layers are used to classify the features and the last layer is often activated by a SoftMax function [30].
The SoftMax function is defined in Equation (9), it normalizes an input vector into values ranging from
0 to 1 whose summation is 1. For this characteristic, a SoftMax function is often used to activate the
last layer of a classification model.

f
(
z j
)
=

ez j∑k
i=1 ezk

(9)

where z is the input vector of k dimension.

3.2.2. Network Architecture

Faced with our current problem, in this stage of the detection system, we required CNNs that
could accomplish a binary classification task of determining whether a proposed region is a tobacco
plant region or not. We are not using the state-of-the-art classification CNNs architectures [16,27,28]
given that the input we take here is much smaller. A shallow CNN that is built with the basic
layers we mentioned in the last paragraph can solve our problem well within reasonable time. We
take Lecun’s digit classification model [31] as a reference, considering its input size is close to ours.
Two modifications have done to it: (1) Replace the sigmoid activation function with ReLU (Rectified
Linear Unit) which has been proven to be more suitable for the neural network’s back-propagation
process [32]. (2) The number of neurons in the last fully connected layer is changed to two since we are
facing a binary classification problem. The network architecture is shown in Figure 5. The input of
network is fixed-size color images which are extracted regions from an aerial image. The subsequent
layers are defined as follows.

1. The convolutional layer has 20 filters of size 3× 3× 3 pixels. The inputs are padded with zero,
and the stride of filter is one. We use ReLU as its activation function. This layer is supposed to
extract features of the input.

2. The previous layer’s output is a matrix of size 28× 28× 20. It is processed here by a pooling layer
whose pool size is 2× 2, and its stride is two. After the pooling process we have mentioned in the
last paragraph, the feature map is down sampled to half of its original size.

3. Former max pooling layer outputs matrix of size 14× 14× 20. Before it is inputted into the fully
connected layer, it needs to be flattened. Thus, right after the max pooling layer is a layer that
flattens the matrix into a vector with a dimensionality of 3920.

4. The first fully connected layer contains 256 neurons. It is activated by ReLU, as well.
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5. The second fully connected layer contains two neurons and it is activated by SoftMax function. It
outputs a two-dimensional vector, where the first dimension indicates the input’s probability of
being a tobacco plant, and the second dimension indicates the probability of a nontobacco plant.
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3.2.3. Training of Network

The network is trained with regions proposed by the candidate selecting algorithm. In the training
process, we need to annotate the regions. Prior to the introduction of our annotation method, we need
to make clear the concept of IoU (Intersection over Union). IoU is a metric used to measure how good
a predicted bounding box is, and its calculation formula is shown in Equation (10). Figure 6 shows
a visualization of it.

IoU =
Bpred ∩ Bgt

Bpred ∪ Bgt
(10)

where Bpred is the area of a predicted bounding box, and Bgt is the area of a ground-truth bounding box.
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Figure 6. Visualizations of IoU (Intersection over Union): (a) The visualization of IoU calculation
formula, it is the fraction of the overlapping area and the union area of two bounding boxes, (b) the
ground truth bounding boxes are shown in red, predicted bounding boxes are shown in green, and
their IoUs are shown in the boxes.

The performance of network depends heavily on the training samples, so it is very important to
give network training samples with high quality. To ensure the samples’ quality, we do not manually
classify the regions, we explicit the IoU metric to decide whether a region is positive or not [19].
Concretely, a proposed region’s IoU can be calculated since we have got the manually annotated
ground truths in the preprocessing stage. A proposed region who has an IoU larger than 0.7 will be
classified as a positive sample. Additionally, a region with an IoU smaller than 0.3 will be classified as
a negative one. Regions with IoU between 0.3 and 0.7 are not involved in the training process. Figure 7
shows the training samples filtered by an IoU where the first row is the negative sample and the second
row is the positive one. We can see that this sample selecting method efficiently finds training samples
of high quality.
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Having a balanced number of positive and negative samples is also important. An imbalanced
training sample may cause an imbalanced result. In our case, the number of negative samples is much
larger than that of positive ones. To achieve a good performance, we must guarantee an adequate
number of samples for training. For these two reasons, we augmented the positive samples by rotation
and flipping in a way shown in the preprocessing stage (Section 2).

4. Experiments and Results

To evaluate our proposed method, we compared it with some state-of-the-art algorithms and
models in this section. For the tobacco region proposal algorithm, we compared it with selective
search and edge boxes. For the whole detection model, we compared it with faster R-CNN [19] and
YOLOv3 [22]. Details of the experiments and results will be shown following of this section.

4.1. Environment

Our experiment environment is a MacBook Pro 2017 (Apple Inc., Cupertino, California, CA, USA)
with a CPU of 2.3 GHz Intel Core i5 and 8 G memory. Selective search and edge boxes are implemented
with APIs (Application Programing Interfaces) provided by OpenCV. Faster R-CNN and YOLOv3 are
implemented by the code opened on Github [33,34]. In general, the image processing methods are
accomplished with OpenCV, the neural network models are built with Keras and TensorFlow, and the
matrix operation is performed by Numpy. Their specific versions are shown in Table 1. These open
source tools simplified the implementation of algorithms to a large extent.

Table 1. The software environment of our experiment.

Keras TensorFlow Numpy OpenCV

2.1.6 1.10.0 1.14.5 4.1.2

4.2. Metrics

A region proposal algorithm is always targeting at a good performance of detection, so the
performance of a region proposal algorithm can be evaluated by the detection results [11]. Therefore,
the region proposal algorithms and the detection models can be evaluated with the same metrics.
Before diving into those metrics, we first need to provide certain definitions: (a) Confidence Score:
The probability that a region is a tobacco plant, (b) IoU is the intersection area of a predicted box and
a ground truth one, (c) TP, true positive, refers to a correctly classified positive sample, (d) FP, false
positive, refers to a negative sample that is classified as positive, and (e) FN, false negative, refers
to a positive sample that is classified as negative. Confidence score and IoU are to decide whether
a detection is true positive or not. In our experiments, we continued to use the thresholds proposed
in faster R-CNN [19] and YOLOv3 [22]—a detection result is considered to be TP if its confidence
score is larger than 0.5 and IoU is larger than 0.4, otherwise the detection will be considered as a FP,
and a missing tobacco plant is a FN.
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One of our metrics is the PR (precision-recall) curve. (a) Precision is the fraction of samples
classified as positive that are actually positive. (b) Recall is the fraction of actually positive samples that
are classified as positive. A good model should have both high precision and high recall. However,
precision and recall have an inverse increasing tendency [35]. Additionally, the PR curve is a trade-off

between these two metrics. Concretely, the PR curve takes every sample’s confidence score as a split
point to reclassify samples where samples with a confidence score larger than the split point is classified
as positive otherwise negative. Therefore, taking each sample as a split point, we will get a set of
precision and recall values. Sorting the set in ascending order and taking recall values as horizontal
coordinates while precision as vertical coordinates will get the PR curve. The PR curve of a good model
will be convexed to the upper right, which means it remains a high precision at a high recall, and thus
a good model will have a large area under the PR curve. The other one is AP (Average Precision). AP
is based on the PR curve whose value is approximately the area under the PR curve. More concretely,
it is the precision averaged across all unique recall levels. A recall level’s precision is defined as the
highest precision found for any recall that is larger than it. They can be calculated as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

p(r) =
max

r > r′
p(r′) (13)

AP =
n∑

i=1

(ri+1 − ri)p(ri+1) (14)

4.3. Evaluation on Region Proposal Algorithms

As a region proposal algorithm is always targeting at promoting the performance of detection,
we firstly trained a binary classification CNN whose training data is the manually classified regions
outputted by our method, selective search, and edge boxes. Then, a region proposal method is
evaluated by the detection result. These three region proposal algorithms we compared here are all
unsupervised, therefore all of the datasets can be used to evaluate them.

Firstly, we compared our region proposal algorithm that using different grouping algorithms,
one is based on BFS and the other is based on DBSCAN. Their detection results on different datasets
and the time they take to select candidates in one image in shown in Table 2. We can see that the
BFS-based method and DBSCAN-based one were well matched in the detection performance. Generally,
the DBSCAN method has a slightly better AP because areas that do not match its parameters have
been removed in the proposal stage due to DBSCAN’s anomaly detection characteristic. However,
the BFS-based method was averagely 40 times faster than the DBSCAN based one. We determined that
the time difference should be caused by the time complexity of them, where the BFS-based method
has a time complexity of O(4n) and DBSCAN has a complexity of O

(
n2

)
. Moreover, BFS can directly

search on the input matrix whereas DBSCAN needs to transform the input into coordinate sets before
it starts to cluster. Above all, we considered the candidate selecting algorithm based on BFS as more
suitable for our current problem.
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Table 2. Breadth first search (BFS)-based and density-based spatial clustering of application with noise
(DBSCAN)-based candidate selecting algorithms’ AP (average precision) and the time they take to
select candidates in one image.

Datasets Algorithms AP Time(s)

Dataset1
BFS 0.4916 0.0049

DBSCAN 0.4964 0.2273

Dataset2
BFS 0.6393 0.0043

DBSCAN 0.6260 0.2264

Dataset3
BFS 0.5804 0.0043

DBSCAN 0.5613 0.1490

Dataset4
BFS 0.5104 0.0039

DBSCAN 0.5312 0.1791

Dataset5
BFS 0.5806 0.0036

DBSCAN 0.5958 0.1390

Average BFS 0.5604 0.0041
DBSCAN 0.5621 0.1841

Moreover, we have also compared the BFS-based candidate selecting algorithm with two
state-of-the-art region proposal algorithms: Selective search [14] and edge boxes [15]. For the
convenience of expression, the BFS-based candidate selecting algorithm is abbreviated as TCSA
(Tobacco Candidate Selecting Algorithm) in the following content.

Results on datasets with different region proposal algorithms are shown in Figure 8. Similar to
what we have mentioned in Section 4.2, a PR curve trades off between precision and recall and a larger
area under the PR curve means a better performance. It can be seen from the figure that TCSA proposes
regions of higher quality than selective search and edge boxes.

Table 3 shows the accurate numeric results of these region proposal algorithms in different datasets,
including TP, FP, FN, recall, precision, and AP.

• TCSA reaches the best recall over the five datasets. The average recall rate of our region proposed
method is 18% higher than selective search and 22% higher than edge boxes.

• TCSA also gets the best AP over the datasets. The average AP of TCSA is 18% higher than selective
search and 21% higher than edge boxes.

• The precision of TCSA is averagely 5% higher than selective search and 7 % better than edge boxes.
However, selective search reaches better precision on some of the datasets where selective search
outputs fewer predictions to guarantee its precision. Selective search’s precision is guaranteed
by its segmentation process and in further studies we will attempt to take that as a reference to
improve the precision of TCSA.

Above all, TCSA proposes better tobacco plant regions in aerial images than selective search and
edge boxes.
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Table 3. The TP (true positive), FP (false positive), FN (false, negative), AP (average precision) of TCSA
(tobacco candidate selecting algorithm), selective search and edge boxes.

Datasets Algorithms TP FP FN Recall Precision AP

Dataset1
TCSA 84 16 74 0.5316 0.8400 0.4916

Selective Search 60 11 98 0.3797 0.8451 0.3543
Edge Boxes 55 12 103 0.3481 0.8209 0.3205

Dataset2
TCSA 85 13 43 0.6641 0.8673 0.6393

Selective Search 71 31 57 0.5547 0.6961 0.4606
Edge Boxes 66 42 62 0.5156 0.6111 0.4586

Dataset3
TCSA 117 24 64 0.6464 0.8298 0.5804

Selective Search 76 14 105 0.4199 0.8444 0.4003
Edge Boxes 66 20 115 0.3646 0.7674 0.3368

Dataset4
TCSA 211 54 152 0.5813 0.7962 0.5104

Selective Search 107 24 256 0.2948 0.8168 0.2535
Edge Boxes 111 26 252 0.3058 0.8102 0.2874

Dataset5
TCSA 46 10 27 0.6301 0.8214 0.5806

Selective Search 36 16 37 0.4932 0.6923 0.4010
Edge Boxes 27 8 46 0.3699 0.7714 0.3492

4.4. Evaluation on Detection Systems

We compared our detection system with faster R-CNN [19] and YOLOv3 [22] whose codes are
opened on Github [33,34]. We trained a faster R-CNN with a backbone network of ResNet50 [28]
which has a better performance than VGG16 [27] on ImageNet. The YOLOv3 is trained with bottleneck
layers [28] in the backbone network, which sharply decreases its parameters and allows it to have faster
predictions. Since these detection systems are all based on supervised learning, we use two of the
datasets for their training, and the rest of the datasets for evaluation. For the convenience of expression,
our detection system is abbreviated as TPD (Tobacco Plant Detector) in the following content.

Figure 9 shows the PR curves of detection systems on three testing datasets. We can see that TPD
has a larger area under the PR curve than YOLOv3 and faster R-CNN which indicates that TPD has
both a higher precision and higher recall on the detection of tobacco plants in aerial images.
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Figure 9. PR (precision-recall) curves of detection systems in three testing datasets. Evaluation results
of testing datasets 3, 4, and 5 are shown in (a–c), respectively. TPD (tobacco plant detector) is presented
as red solid lines, faster R-CNN (regions with CNN features) is presented as dotted blue lines, and
YOLOv3 (you only look once v3) is presented as green dashed lines.

Table 4 shows the accurate numeric results of these detection systems in different testing datasets,
including TP, FP, FN, recall, precision, and AP.

• TPD reaches the best recall over all of the testing datasets. On average, the recall is 12.5% higher
than faster R-CNN and 21% higher than YOLOv3.

• The precision of TPD is averagely 8% higher than faster R-CNN and 7% higher than YOLOv3.
However, TPD has a slightly lower precision on dataset 3 than faster R-CNN which should be
caused by TCSA’s lower precision on this dataset.

• TPD gets the best AP over the datasets, as well. Averagely, it is 16% higher than faster R-CNN
and 23% higher than YOLOv3.

Overall, TPD has better performance in tobacco plants detection in aerial images when compared
with faster R-CNN and YOLOv3.

Table 4. The TP (true positive), FP (false positive), FN (false negative), AP (average precision) of
TPD (tobacco plant detector), faster R-CNN (regions with CNN features) and YOLOv3 (you only look
once v3).

Datasets Algorithms TP FP FN Recall Precision AP

TPD 254 11 109 0.6997 0.9585 0.6903
Dataset3 Faster R-CNN 221 9 142 0.6088 0.9609 0.5945

YOLOv3 207 25 156 0.5702 0.8922 0.5163

TPD 139 2 42 0.7680 0.9858 0.7646
Dataset4 Faster R-CNN 106 5 75 0.5856 0.9550 0.5791

YOLOv3 91 13 90 0.5028 0.8750 0.4574

TPD 56 0 17 0.7671 1.0000 0.7671
Dataset5 Faster R-CNN 51 2 22 0.6986 0.9623 0.6896

YOLOv3 44 1 29 0.6027 0.9778 0.6027

Finally, some example results in different datasets are visualized in Figure 10, where the predicted
bounding boxes are outlined in yellow. We can see from the figure that TPD has an effective performance
on tobacco plant detection in aerial images.
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5. Conclusions

Our proposed method is mainly inspired by ideas proposed in R-CNN. As proposed in R-CNN,
we select regions of interest rather than inputting the whole image into the network. We did not use
the region proposal algorithms that R-CNN recommended (such as selective search [14]), because we
are dealing with one specific object—the tobacco plant, which means our problem is easier. Therefore,
we propose a more targeted region selecting algorithm in the first place. R-CNN uses the convolutional
neural network as a feature extractor, we use it as a classifier. Experiments on different datasets have
demonstrated that our proposed algorithm performs well on tobacco plant detection in aerial images
generally. However, this proposed algorithm still needs to improve its precision especially in the
region of proposal stage. In future studies, we will work to improve the candidate selecting algorithm
in the hope that our proposed method can play a role in the counting stage of the tobacco plants’ yield
estimation and thereby contribute to the agriculture precision.
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