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Abstract: Crop culture conditions are one of the important interfaces between food, the environment,
and health, and an essential research area for maintaining social-ecological integrity. In recent years, it
has been reported that the difference in culture conditions between monoculture with external inputs
(in cultura) and self-organized ecological niches (in natura) is significant for the resulting physiological
property of plants. It has also been suggested that there exist metabolic proxies in various foods that
can separate these two culture conditions, which does not depend on a single component but on the
distribution of various compounds. However, little has been studied in a time series of replicated
production to quantify the reproducibility of these metabolomic features associated with culture
conditions. In this study, we obtained metabolome data of coarse green tea (Camellia sinensis) grown
in the same region in Japan under both in cultura and in natura culture conditions over the course of
six years, and constructed a list of multiple components that separated the effects of culture conditions
by statistical analysis, and estimated the metabolic functions of the compounds that contributed
to the separation. The results suggest that naturally grown samples are rich in allelochemicals,
such as phytochemicals, alkaloids, phenylpropanoids, steroids, as well as the compounds related to
microorganisms and vitamin B6 that imply the interactions with the soil microbiome. The estimated
physiological functions of the distinctive compounds suggest that the in natura crop production is
not only beneficial with known properties of maintaining ecosystem health such as soil functions
and pathogen control, but also for the augmentation of the plant secondary metabolites that support
long-term health protective effects.
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1. Introduction

Crop culture conditions represents one of the essential subjects for social-ecological sustainability,
which links human and ecosystem health through affecting the plant’s metabolic state [1]. According to
previous researches, two categories of culture condition are distinguished as a dominant parameter
on plant metabolites: (1) in cultura condition based on the monoculture with external inputs that
maximizes the individual plant growth known as the physiological optimum, and (2) in natura condition
based on the self-organization of ecological niches known as the ecological optimum [2–4]. Although
dominant in present crop production, the in cultura culture conditions are inevitably associated with
biodiversity loss and imposing a heavy burden on the global environment. This tendency has evolved
since prehistoric times, and there are some reports that it could lead to the sixth mass extinction in
Earth’s history [5,6]. A globally imminent crisis such as the planetary state shift and massive loss
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of biosphere integrity is anticipated to occur by 2045 [7]. Recently increasing forest fires, outbreaks
of pandemics, and locust plagues could be considered as the symptoms arising from the functional
disorder of ecosystems. At the same time, our internal environment such as human health is also
sharing the common ground with external ecosystems: systematic disorder of human metabolic state
such as non-communicable disease is related to modern dietary habits, which is associated with
the development of monoculture exploitation through the use of pesticides, increased consumption
of over processed food, and nutrition deficiency due to soil depletion [1,8]. To resolve such an
environment-diet-health trilemma, we need a comprehensive approach at the social-ecological system
level that contains all inter-related domains, instead of problem-wise symptomatic treatments [3,9].

Agriculture is at the core of such an open complex system problem, in which in natura food
productions are likely to play a fundamental role in resolving the global trilemma among food
production, environmental protection and improvement in public health [1]. Plants that are grown
naturally interact with diverse other species and environments through the enhancement of various
nutrient cycles and producing various secondary metabolites, which not only serves for plant’s own
survival through physiological and allelopathic effects, but also exerts health-protective functions in
the metabolism of the plant consumers.

On the contrary, when plowing, fertilizers, and chemicals are continuously applied under in cultura
culture conditions, the interactions between plants, animals, and soil microorganisms are known to be
simplified by the loss of diversity in these organisms(e.g., [10]), therefore various regulating services
are also reduced [11]. Regulating services provided by the ecosystems include disease control, climate
disaster mitigation and pollination, among others [11,12]. In cultura culture condition is also known to
increase the risk of infectious diseases due to weakened ecological suppression effects of pathogens
and virulent viruses [13–19].

Despite its ecological importance and potential effects on the nutritional profile, there are few
comparative studies of the metabolic difference induced by the in natura and in cultura conditions.
Although a previous study has pointed out the existence of statistical invariant features of metabolic
profiles that distinguish between these culture conditions across different databases [2], there is little
study on the reproducibility of such physiological differences over the course of several years under
identical culture methods.

Here, we conducted metabolome analysis of coarse green tea (Camellia sinensis) with six sets
of samples over six years (Syneco 2014–2019), produced under in natura culture conditions called
Synecoculture [4], and with five sets of samples over five years produced under in cultura conditions of
a standard conventional farming (Conv 2015–2019). We focused on the compounds that most reflected
the differences of culture conditions between in natura and in cultura, and analyzed their estimated
metabolic functions with the use of chemical ontology databases [20,21].

2. Materials and Methods

All coarse green tea samples used in this study were produced by traditional tea farms at
Watarai-Cho, Mie prefecture in Japan. Harvest and processing of coarse green tea leaves were
homogenized with a conventional method: 2nd cropping (foliage lower than shoots) of the yearly 1st
harvest during late May to early June between 2014 and 2019, followed by the standard processing of
steaming, kneading, and drying in a local mechanized factory. Leaves from more than 7000 m2 culture
within 2 km distance were blended for averaging plot-wise variation and to compare samples from
different culture methods with a common geographical range.

Two culture conditions of tea were differentiated to examine the metabolomic difference of tea
extract: 1. in cultura conventional monoculture condition following the standard protocol of Japan
Agricultural Cooperatives Ise branch, with the routine application of inter-crop cultivation, synthetic
and organic fertilizers, pesticides, fungicides, and herbicides. 2. in natura mixed polyculture condition
without the application of tillage, fertilizer, and chemicals, defined as Synecoculture [4]. Intercropping
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with a variety of vegetables and fruit trees was introduced, along with spontaneous generation of
weeds [22].

The conventional condition is controlled in physiological optimum range of production, while
Synecoculture is based on ecological optimum dominant in natural vegetation. These qualitatively
different growing conditions are biologically termed as in cultura and in natura conditions of field
culture, respectively, in relation to the definition of sustainable diet [2].

Then, eleven sets of samples of dried coarse green tea were produced, from the Synecoculture
fields from 2014 to 2019 and conventional tea culture from 2015 to 2019. We hereafter call these
samples as Syneco 2014, Syneco 2015, Syneco 2016, Syneco 2017, Syneco 2018, Syneco 2019, Conv 2015,
Conv 2016, Conv 2017, Conv 2018 and Conv 2019, respectively.

2.1. Metabolome Analysis

2.1.1. Metabolite Extraction

Briefly, 3.0 g of dried tea leaves stuffed in a teabag was boiled with 1l of ultrapure water (Milli-Q)
at 90–93 ◦C for 10 min in a glass beaker and left at room temperature for 2 h. Each set of samples
Syneco 2015–2019 and Conv 2015–2019 were extracted simultaneously in each year, and Syneco 2014
was extracted together with 2015 samples. Organic compounds were further extracted for the samples
of metabolome analyses:

For 2014–2017 samples: Each 100 µL sample was mixed with 300 µL methanol and centrifuged
with 10,000× g, 10 min, 4 ◦C. The supernatant was filtered with PTFE filter (Millipore, Cat.SLLGH04NK)
and centrifuged through Monospin C18 spin columns with 5000× g, 2 min, 4 ◦C in order to remove
insoluble matters and low polarity components. A mock sample of ultrapure water was prepared with
the same procedure, and was used to evaluate and remove background noise contained in the sample
preparation and/or LC-MS analysis.

For 2018–2019 samples: Each 100 µL sample was mixed with 300 µL methanol and centrifuged
with 15,000 rpm, 10 min. 100% methanol centrifuged through Monospin C18 spin columns with
5000× g, 2 min. Then, 75% methanol centrifuged through the same columns with 5000× g, 2 min.
These processes were pretreatment for column equilibration. Then, the supernatant of the sample
was centrifuged through the same columns with 5000× g, 2 min. After that, the supernatant of the
sample was filtered with a 0.2-µm filter. A mock sample of ultrapure water was prepared with the
same procedure, and was used to evaluate and remove background noise contained in the sample
preparation and/or LC-MS analysis.

All of the methanol was obtained from FUJIFILM Wako Pure Chemical Corporation.

2.1.2. LC-MS Analysis of 2014–2017 Samples

LC−MS analysis was performed with a combination of Agilent 1200 series [23] and Thermo fisher
scientific LTQ ORBITRAP XL [24]. The parameters of measurement are summarized in Supplementary
Materials File S1.

After converting raw data (obtained from LTQ ORBITRAP XL) to a text file with the use of
ProteoWizard [25], LC-MS data were analyzed using PowerGet ver. 3.5.7 [26] with the following
procedure to attribute each MS peak to a chemical formula:

1. Empirical detection of compound peaks, calculation of accurate mass, calculation of compound
peak intensity.

2. Differentiation of simultaneous elution peaks with respect to the profile of adduct ion peaks,
ionization mode, and natural 13C isotopic compound peaks.

3. Matching between MS peaks and MS/MS data, calculation of 13C/12C isotope ratio with ion
intensity in order to estimate C number in each compound, and estimation of ionization mode.

4. Aggregation and sorting of compound peaks with respect to the elution time, accurate mass,
and MS/MS patterns for all samples.
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5. Matching of calculated mean accurate mass with monoisotopic compounds in public
databases [20,21] with the use of MF Searcher [27] and derivation of a corresponding
chemical formula.

6. Truncate the compound peaks with less than 2 times intensity of the mock sample.

The parameters of these analyses are summarized in Supplementary Materials File S1 and Table 1.

Table 1. Summary of the sample replicates and LC-MS analysis method.

Measurement Parameters w.r.t. Sampling Year

Replicate Method 2014 2015 2016 2017 2018 2019

Biological
replicate

Plant-wise
Area-wise Averaged Averaged Averaged Averaged Averaged Averaged

Product
replicate Teabag-wise 3 3 3 3 3 3

Technical
replicate

Photospectrometry
(absorbance error)

3
(1/100–1/10,000)

3
(1/100–1/10,000)

3
(1/40–1/1000)

3
(1/50–1/1000)

3
(1/40–1/10,000)

3
(1/100–1/10,000)

LC-MS
(intensity error)

1 (estimated
CV: 10–20%)

1 (estimated
CV: 10–20%)

1 (estimated
CV: 10–20%)

1 (estimated
CV: 10–20%)

3 (measured
CV: 16.2%)

3 (measured
CV: 16.8%)

HPLC Agilent 1200 series Ultimate 3000 RSLC

Tea Sampling and Processing Same protocol

2.1.3. LC-MS Analysis of 2018–2019 Samples

LC−MS analysis was performed with a combination of Ultimate 3000 RSLC (Thermo Fisher
Scientific) [28] and Q Exactive (Thermo Fisher Scientific) [29]. Samples were analyzed 3 times for
each sample.

After converting raw data (obtained from Q Exactive) to a text file with the use of ProteoWizard,
LC-MS data were analyzed using PowerGetBatch [30] with the following procedure to attribute each
MS peak to a chemical formula:

1. Empirical detection of compound peaks, calculation of accurate mass, calculation of compound
peak intensity

2. Ionization status judgment
3. Alignment of compound peaks
4. Matching of calculated mean accurate mass with monoisotopic compounds in public database

with the use of MF Searcher and derivation of a corresponding chemical formula

The parameters of these analyses are summarized in Supplementary Materials File S1 and Table 2.

Table 2. KEGG BRITE compound classification. The numbers of different chemical formulae
(# Formulae) associated with the Syneco- and Conv-distinctive loadings for each category of chemical
ontology in KEGG BRITE were shown. Uncertainty Score is the sum of inverse numbers of structural
isomers for each chemical formula. The smaller the number, the greater the number of structural
isomers, indicating the higher uncertainty of compound identification. See the Supplementary Materials
Files S6–S8 for more details.

Syneco Conv

# Formulae Uncertainty Score # Formulae Uncertainty Score

Flavonoid 10 4.075 13 6.751587
Phytochemical 41 15.98387 25 12.61299

Alkaloid 4 3.125 3 1.47619
Phenylpropanoid 17 3.904167 4 1.821429

Steroid 2 1.083333 0 -
Total 74 28.17137 45 22.662196
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As a premise, this metabolome analysis is a result of projecting measured exact masses
onto the public database, so there is not sufficient resolution for the accurate distinction between
structural isomers.

2.1.4. Integration of Metabolite Data of 2014–2019 Samples

Based on the exact mass detected, MF Searcher [27] was used to match the same compound every
year with an error of 1 ppm in KEGG database, and integrated the metabolomic data of all years.
The same procedure was also performed in Flavonoid Viewer [31] to compare the total estimated
amount of flavonoids (see Supplementary Materials File S5). When multiple structural isomers were
detected from the KEGG database, the intensity was taken as the average value for each detected year,
because these cannot be distinguished at the present resolution of LC-MS.

2.1.5. Biological and Technical Replicate

The sample tea leaves were obtained from the mixed harvest over entire fields, at a total of 3 times
mixing (triple homogenization) at the time of harvesting, kneading, and drying, so it was not possible
to sample each small area or individual tea tree as biological replicates. Therefore, this was regarded
as a representative of the entire field for each year, and biological variance was greatly averaged
through harvesting and processing in this study. Since the tea leaves were inevitably homogenized
through the processing, it was not possible to take plant-wise or area-wise biological replicates for the
product analyzed.

LC-MS analysis was performed once for the 2014–2017 and three times for the 2018–2019 samples.
To assess the homogeneity of the tea products and reproducibility of measurement, the 2014–2019
samples were extracted three times with the same procedure of sample extraction as “product replicate”,
and the temporal changes in absorbance of the samples were measured with a spectrophotometer.
There was almost no difference in the extraction and no change after a certain period of time, 6 h at the
maximum (1/40–1/10,000 error of the absorbance). The summary of the sample replicates and LC-MS
analysis method are shown in Table 1.

2.2. Statistical Analysis

Normality of all the formulae were tested with the Shapiro-Wilk test, and 41 out of 342 Syneco
formulae and 51 out of 342 Conv formulae had passed under 5% significance threshold. The Welch’s
t-test (applicable even if the normally distributed data do not have homoscedasticity) and the
Brunner-Munzel test [32] (that does not assume either homogeneity of variance nor normality) were
performed with Syneco 2014–2019 and Conv 2015–2019 for the LC-MS raw and logarithmic intensity
values of the identified compounds. For the 2018 and 2019 samples, the mean values of the three
measurements on the same samples were used. Welch’s t-test was performed with Microsoft Excel ver.
16.16.21, and a Brunner–Munzel test was performed with statistical analysis software R ver. 3.5.0.

The variance value representing the magnitude of the year-to-year variation of each compound
was calculated, and the distribution of the variances was compared by F-test between Syneco and
Conv samples. For the 2018 and 2019 samples, the mean values of the three measurements on the
same samples were used. F-test was performed with Microsoft Excel ver. 16.16.21. These results were
summarized in Figure 1.

In order to investigate the overall effects of culture conditions on the metabolic state, we performed
the principal component analysis (PCA) after the renormalization of the intensity values for each
compound. Then, PCA was applied repeatedly by increasing the number of compounds having a
high positive/negative loading to a PC to see the separability of Syneco and Conv samples on the
PC plane (hereafter denoted as LS-PCA, meaning linear separation with PCA). As a result, the top
65 compounds of positive/negative loadings concerning PC3 were extracted (in total 130 compounds),
which were enough to thoroughly separate the two culture conditions (Figures 2 and 3). The LS-PCA
was performed by a statistical analysis software R ver. 3.5.0.
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The yellow and light blue hollow circles represent Syneco-distinctive loadings and Conv-distinctive 
loadings, respectively, which are the top 130 loadings that can completely separate the two culture 
conditions with PCA (see Figure 3). The saltires represent the compounds with p < 0.01 in the F-test 
of Syneco vs. Conv, and the crosses represent the compounds with p < 0.05. 

Figure 1. Results of metabolome analysis of coarse green tea samples. The log(Syneco/Conv) values of
mean intensity (LRM) and variance (LRV) of 342 peaks obtained by LC-MS are plotted. The horizontal
axis represents the LRM, and the vertical axis represents the LRV (see Methods). So if these values are
positive, it means that the Syneco sample is larger than the Conv sample in the mean intensity or the
variance. The green circles represent PC3 negative loadings in PCA (as shown in Figure 3), and the
orange circles represent PC3 positive loadings. As an exception, in the t-test of the intensity of Syneco
vs. Conv, a compound with p < 0.05 is represented by a triangle instead of a circle. The yellow and light
blue hollow circles represent Syneco-distinctive loadings and Conv-distinctive loadings, respectively,
which are the top 130 loadings that can completely separate the two culture conditions with PCA (see
Figure 3). The saltires represent the compounds with p < 0.01 in the F-test of Syneco vs. Conv, and the
crosses represent the compounds with p < 0.05.
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Figure 2. Principal component analysis (PCA) plot based on the intensity of the compounds in coarse
green tea samples. (a) PCA plot of PC1-PC2. (b) PCA plot of PC2-PC3. S14, S15, S16, S17, S18, S19, C15,
C16, C17, C18, and C19 correspond to the samples Syneco 2014, Syneco 2015, Syneco 2016, Syneco 2017,
Syneco 2018, Syneco 2019, Conv 2015, Conv 2016, Conv 2017, Conv 2018, and Conv 2019, respectively.
The 2014–2017 samples are based on a single measurement, while the 2018 and 2019 samples consist of
3 different measurements of intensity data.
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Figure 3. PC3 loading plot of the intensity of the compounds in coarse green tea samples. For negative
and positive loadings of PC3 (left Y-axis) aligned in ascending order (X-axis), the 65 smallest and
65 largest loadings of the compounds are separated by 2 vertical lines (green and orange, respectively).
The top border of the grey area represents the number of overlaps of Syneco and Conv samples
(right Y-axis) when LS-PCA is performed, which means the degree of inseparability between the two
culture conditions. When the top 65 negative and positive loadings or more were applied to LS-PCA,
the number of overlap is equal to 0, which means the Syneco and Conv samples were completely
separated. Hereafter we call these 65 negative and positive loadings “Syneco-distinctive loadings” and
“Conv-distinctive loadings” which are plotted with yellow and light blue hollow circles, respectively.

These analyses were performed with 2014–2019 samples, along with the subsets of 2014–2017 and
2018–2019 samples, because LC-MS parameters are different. We call these groupings as three PCA
groups 2014–2017, 2018–2019, and 2014–2019. See the PCA plot of 2014–2017 and 2018–2019 samples in
Supplementary Materials File S3 for the complete result.

All structural isomers of the 130 distinctive loadings on KEGG were projected onto the “map01110
Biosynthesis of secondary metabolites” of KEGG PATHWAY(see the Supplementary Materials File S17).

In addition, the logarithmic ratio of mean intensity LRM: = log (mean intensity of Syneco
compounds)—log (mean intensity of Conv compounds) was calculated for all compounds, and these
data were divided into the following three sets in Figure 4.

D1: Compounds expressed only in Syneco (hereafter Syneco-intrinsic compounds). The mean value
of LRM is positive.

D2: Compounds expressed only in Conv (hereafter Conv-intrinsic compounds). The mean value of
LRM is negative.

D3: Compounds expressed in both Syneco and Conv (hereafter the common compounds). The mean
value of LRM can be either positive or negative)



Agriculture 2020, 10, 632 8 of 23

Agriculture 2020, 10, x FOR PEER REVIEW 10 of 30 

 

 
Figure 4. Normalized relative frequency histogram and kernel density estimation of D1 (compounds 
expressed only in Syneco; green histogram and line), D2 (compounds expressed only in Conv; orange 
histogram and line), and D3 (compounds expressed in both Syneco and Conv; blue histogram and 
line). The horizontal axis represents LRM: = log (mean intensity of Syneco/mean intensity of Conv). 
The vertical axes represent normalized relative frequency of the histograms (left) and estimated 
probability density (right). 

3.3. Metabolome Categorization 

We projected the top 130 (65 positive and 65 negative) of PC3 loadings to KEGG BRITE (Table 2 
and Figure 5) and KEGG PATHWAY (Table 3), and looked to the KEGG BRITE compound 
classification. The negative PC3 loadings that characterized Syneco samples expressed more diversity 
of allelochemicals than Conv samples such as phytochemicals, alkaloids, phenylpropanoids, and 
steroids. The “Phytochemicals” include the subcategories of alkaloids, flavonoids, 
phenylpropanoids, shikimate/acetate-malonate pathway derived compounds, terpenoids, 
polyketides, fatty acids related compounds, amino acid related compounds, and others, according to 
the notation in KEGG BRITE database. 
  

Figure 4. Normalized relative frequency histogram and kernel density estimation of D1 (compounds
expressed only in Syneco; green histogram and line), D2 (compounds expressed only in Conv; orange
histogram and line), and D3 (compounds expressed in both Syneco and Conv; blue histogram and
line). The horizontal axis represents LRM: = log (mean intensity of Syneco/mean intensity of Conv).
The vertical axes represent normalized relative frequency of the histograms (left) and estimated
probability density (right).

The Shapiro-Wilk test was performed on the three distributions D1, D2, and D3, to examine
their normality.

Besides LRM, the logarithmic ratio of intensity variance LRV: = log (intensity variance of Syneco
compounds)—log (intensity variance of Conv compounds) was calculated for all compounds, and used
for the characterization in Figure 1.

2.3. Metabolome Categorization

The list of 130 chemical formulae obtained with LS-PCA was projected to KEGG (Kyoto
Encyclopedia of Genes and Genomes) [20,21] databases to annotate possible physiological functions.
KEGG API [33] was used to mine the KEGG BRITE [34] database and KEGG PATHWAY [35] in order
to categorize the compounds according to the functional classification. Each chemical formula was
attributed to the hierarchical ontology of these databases including the matching with structural
isomers, as an extensive interpretation of obtained metabolome data on known physiological functions.

Welch’s t-test and Brunner-Munzel test were performed in each category of KEGG BRITE and
KEGG PATHWAY, with Syneco 2014–2019 and Conv 2015–2019 compounds intensity and logarithmic
intensity, in order to investigate compound category-wise intensity differences between Syneco and
Conv. The mean value of the intensity of the same compound and each value of the intensity were
used for each test.

3. Results

3.1. Metabolome Analysis

Exact mass and intensity data of 1055, 815, 714, 1080, and 843 compound peaks were obtained in
the Syneco and Conv samples of the years 2015 (including 2014), 2016, 2017, 2018, and 2019, respectively.
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3.2. Statistical Analysis

Using the MF searcher, the exact masses of 342 compound peaks were matched with known
compounds in the KEGG database (see Supplementary Materials File S4). Among them, the average
raw intensity of each 125 compounds was greater for Syneco samples than Conv samples, and 217
compounds for Conv samples than Syneco samples. The result of Welch’s t-test for the raw intensity
showed that only one compound (C19H32O8) was significantly different with a 5% significance
level (p = 0.0143), but the others were not significant. The result of Brunner-Munzel test for the raw
intensity showed that only four compounds (C33H40O21, C19H32O8, C5H11N3O2, C16H18O8) was
significantly different with a 5% significance level (p = 0.0123, 0.00852, 0.0161, 0.0336, respectively),
but the others were not significant.

The result of Welch’s t-test for the logarithmic intensity showed that only one compound
(C5H11N3O2) was significantly different with a 5% significance level (p = 0.0166), but the others were
not significant. The result of the Brunner–Munzel test for the logarithmic intensity showed that only
4 compounds (C33H40O21, C19H32O8, C5H11N3O2, C16H18O8; the same as for the raw intensity)
were significantly different with a 5% significance level (p = 0.0123, 0.00852, 0.0161, 0.0336, respectively),
but the others were not significant.

The results of F-test between the yearly variances of the samples for each of the 342 compounds
showed that 58 compounds were significantly different between the Syneco and Conv samples with
the significance level of 5%.

In terms of the variance values representing the yearly fluctuation for each compound,
132 compounds in Syneco were greater than Conv, and 210 compounds in Conv were greater than
Syneco. The F-test comparing the variances between Syneco and Conv for the intensity distribution of
342 compounds for all years of sampling showed a statistically significant difference (p = 7.84 × 10−49).
Welch’s two-sided t-test was also performed on the difference between the mean values of the variances,
but there was no significant difference (p = 0.651).

The result of PCA in Figure 2 revealed that PC3 could linearly separate Syneco and Conv
completely (horizontal axis in Figure 2b). PC1 seemed to represent the differences between the two
LC-MS analysis conditions that changed between 2014–2017 and 2018–2019 samples (Figure 2a). PC2
mainly represented the yearly fluctuation of all samples that showed three distinctive clusters of
2014–2017, 2018, and 2019 (refer to Supplementary Materials File S2 for the importance and cumulative
proportion of the components, and Supplementary Materials File S3 for other PC plots within the
subsets 2014–2017 and 2018–2019). In other words, the errors that can occur in our method were
aggregated in PC1 and PC2, and PC3 was considered to represent a robust characteristic that separates
Syneco and Conv samples.

As shown in Figure 3, The Syneco and Conv samples were completely separated with LS-PCA
using the top 65 compounds of PC3 negative/positive loadings (in total 130 compounds). Hereafter we
call these top 130 negative and positive loading parameters as Syneco and Conv-distinctive parameters,
respectively. We used these 130 distinctive compounds for the ontological categorization using KEGG
BRITE and KEGG PATHWAY databases.

Using the MF searcher, 97 flavonoid compounds were listed by matching the metabolome data
to the Flavonoid Viewer (see Supplementary Materials File S5). The total intensity of the detected
flavonoids in all 2014–2019 samples were compared between Syneco and Conv samples. Although
Conv samples tended to contain more flavonoids, it showed no statistically significant difference
(p = 0.786, two-sided Welch’s t-test) in total intensity of flavonoids.

With the distribution analysis of LRM, the distribution of Syneco-intrinsic compounds D1 and
Conv-intrinsic compounds D2 were regarded as normal distribution with the normality test, and the
common compounds D3 was not (p-value of D1: 0.9691, D2: 0.4873, D3: 3.498 × 10−9, Shapiro-Wilk
test). The histograms and estimated probability density of D1, D2, and D3 are drawn in Figure 4.
The compounds that were expressed only in Syneco or Conv (D1, D2) showed distinctive offsets of mean
values compared to D3 (with Welch’s two-sided t-test p = 6.193 × 10−26 for D1 > D3; p = 3.829 × 10−38
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for D2 < D3; Brunner–Munzel test is not applicable because D1, D2, and D3 are completely separated),
which implies that D1 and D2 are based on the qualitative shift of gene expressions compared to the
quantitative difference in D3.

3.3. Metabolome Categorization

We projected the top 130 (65 positive and 65 negative) of PC3 loadings to KEGG BRITE
(Table 2 and Figure 5) and KEGG PATHWAY (Table 3), and looked to the KEGG BRITE compound
classification. The negative PC3 loadings that characterized Syneco samples expressed more diversity of
allelochemicals than Conv samples such as phytochemicals, alkaloids, phenylpropanoids, and steroids.
The “Phytochemicals” include the subcategories of alkaloids, flavonoids, phenylpropanoids,
shikimate/acetate-malonate pathway derived compounds, terpenoids, polyketides, fatty acids related
compounds, amino acid related compounds, and others, according to the notation in KEGG
BRITE database.
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Among the three PCA groups 2014–2017, 2018–2019, and 2014–2019, we identified common
chemical formulae that were sufficient for the separation of Syneco and Conv samples with
LS-PCA (see the Supplementary Materials Files S11–S16). Among the three groups, “C13H20O2”,
“C14H21NO8”, “C27H30O16” and “C11H16O2” were the common formulae in Syneco samples.
Through the metabolome categorization with KEGG databases, these are considered to be
heptyloxyphenol, glucosylpyridoxine, rutin, and methylcatechol. Moreover, “C44H34O22”,
“C9H11NO3”, “C5H11N3O2”, “C14H16O10”, “C21H20O10”, “C16H18O8”, “C9H11NO2” and
“C14H20O3” were detected as common formulae in Conv samples. These were considered to
be theasinensin A, l-tyrosine, guanidinobutyric acid, theogallin, isovitexin, coumaroylquinic acid,
l-phenylalanine and heptylparaben.

The common 4 compounds of Syneco tended to have larger variance values in Syneco than Conv
samples (F-test, p = 0.0795), while the common 8 compounds of Conv had significantly larger variance
values in Conv than Syneco samples (F-test, p = 2.576 × 10−13).

In addition, epigallocatechin gallate, aromadendrin, pesticide compounds (framprop, aldicarb or
butocarboxim), and amino acids that might potentially be derived from fertilizers were detected as
Conv-distinctive compounds.

The two-sided Welch’s t-test and Brunner-Munzel test were performed in each category of KEGG
BRITE and KEGG PATHWAY (KEGG category-wise tests), with the use of total intensity and total
logarithmic intensity of Syneco2014–2019 and Conv2015–2019 samples. The mean value of intensity of
the same chemical formula and each value of the intensity were used for the tests.
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Table 3. KEGG PATHWAY compound classification. The numbers of different chemical formulae (# Formulae) associated with the Syneco- and Conv-distinctive
loadings for each category of chemical ontology in KEGG PATHWAY hierarchy were shown. The pathway related to microbial metabolism is typed in red. See the
Supplementary Materials Files S6, S7, S9 and S10 for more details.

Culture Condition Syneco Conv

Category # Formulae Uncertainty Score # Formulae Uncertainty Score
All Categories 152 39.32423687 226 56.47841953

1. Metabolism 147 38.19923687 168 42.42704868
1.0 Global and overview maps 57 15.5296398 56 17.70079175

map01100 Metabolic pathways 18 5.601724664 20 8.437734488
map01110 Biosynthesis of secondary metabolites 21 5.025534188 17 5.276477178
map01120 Microbial metabolism in diverse environments 9 2.84702381 5 1.382539683
map01200 Carbon metabolism 1 1 1 0.071428571
map01210 2-Oxocarboxylic acid metabolism 2 0.333333333 6 1.166305916
map01230 Biosynthesis of amino acids 1 0.166666667 6 1.166305916
map01220 Degradation of aromatic compounds 5 0.555357143 1 0.2

1.1 Carbohydrate metabolism 0 0 4 0.285714286
map00020 Citrate cycle (TCA cycle) 0 0 1 0.071428571
map00040 Pentose and glucuronate interconversions 0 0 1 0.071428571
map00053 Ascorbate and aldarate metabolism 0 0 1 0.071428571
map00630 Glyoxylate and dicarboxylate metabolism 0 0 1 0.071428571

1.2 Energy metabolism 2 1.125 2 0.182539683
map00720 Carbon fixation pathways in prokaryotes 1 1 1 0.071428571
map00680 Methane metabolism 1 0.125 1 0.111111111

1.3 Lipid metabolism 2 1.5 1 0.2
map00061 Fatty acid biosynthesis 1 0.5 0 0
map00073 Cutin, suberine and wax biosynthesis 0 0 1 0.2
map00140 Steroid hormone biosynthesis 1 1 0 0

1.4 Nucleotide metabolism 0 0 2 0.666666667
map00230 Purine metabolism 0 0 2 0.666666667

1.5 Amino acid metabolism 11 1.476190476 18 6.015151515
map00250 Alanine, aspartate and glutamate metabolism 0 0 1 0.071428571
map00260 Glycine, serine and threonine metabolism 0 0 1 0.142857143
map00270 Cysteine and methionine metabolism 0 0 1 1
map00310 Lysine degradation 0 0 1 1
map00220 Arginine biosynthesis 0 0 2 0.75
map00330 Arginine and proline metabolism 0 0 2 1.25
map00350 Tyrosine metabolism 5 0.580357143 2 0.611111111
map00360 Phenylalanine metabolism 3 0.3125 2 0.202020202
map00380 Tryptophan metabolism 1 0.25 3 0.642857143
map00400 Phenylalanine, tyrosine and tryptophan biosynthesis 2 0.333333333 3 0.344877345

1.6 Metabolism of other amino acids 0 0 4 1.702020202
map00410 beta-Alanine metabolism 0 0 1 1
map00440 Phosphonate and phosphinate metabolism 0 0 1 0.5
map00460 Cyanoamino acid metabolism 0 0 2 0.202020202
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Table 3. Cont.

Culture Condition Syneco Conv

Category # Formulae Uncertainty Score # Formulae Uncertainty Score
1.8 Metabolism of cofactors and vitamins 4 2.666666667 3 1.222222222

map00730 Thiamine metabolism 0 0 1 0.111111111
map00770 Pantothenate and CoA biosynthesis 0 0 1 1
map00785 Lipoic acid metabolism 1 0.5 0 0
map00790 Folate biosynthesis 1 1 0 0
map00670 One carbon pool by folate 1 1 0 0
map00130 Ubiquinone and other terpenoid-quinone biosynthesis 1 0.166666667 1 0.111111111

1.9 Metabolism of terpenoids and polyketides 8 1.825213675 12 3.258363712
map00900 Terpenoid backbone biosynthesis 0 0 1 0.052631579
map00902 Monoterpenoid biosynthesis 2 1.076923077 0 0
map00909 Sesquiterpenoid and triterpenoid biosynthesis 1 0.011111111 2 0.14354067
map00904 Diterpenoid biosynthesis 0 0 1 0.125
map00981 Insect hormone biosynthesis 1 0.166666667 2 0.14354067
map00908 Zeatin biosynthesis 0 0 1 1
map00903 Limonene and pinene degradation 1 0.076923077 0 0
map00281 Geraniol degradation 1 0.076923077 0 0
map01059 Biosynthesis of enediyne antibiotics 1 0.25 1 0.111111111
map01057 Biosynthesis of type II polyketide products 0 0 2 1.5
map01053 Biosynthesis of siderophore group nonribosomal peptides 0 0 1 0.071428571
map01055 Biosynthesis of vancomycin group antibiotics 1 0.166666667 1 0.111111111

1.10 Biosynthesis of other secondary metabolites 33 9.054700855 36 6.420779221
map00232 Caffeine metabolism 1 1 0 0
map00333 Prodigiosin biosynthesis 1 0.076923077 0 0
map00940 Phenylpropanoid biosynthesis 8 1.2875 4 0.785353535
map00945 Stilbenoid, diarylheptanoid and gingerol biosynthesis 0 0 2 0.583333333
map00941 Flavonoid biosynthesis 5 1.625 6 1.242063492
map00944 Flavone and flavonol biosynthesis 5 2.45 3 0.485714286
map00942 Anthocyanin biosynthesis 0 0 1 0.5
map00943 Isoflavonoid biosynthesis 1 0.125 3 0.325396825
map00901 Indole alkaloid biosynthesis 0 0 1 0.142857143
map00950 Isoquinoline alkaloid biosynthesis 3 0.354166667 1 0.111111111
map00960 Tropane, piperidine and pyridine alkaloid biosynthesis 0 0 1 0.090909091
map00232 Caffeine metabolism 1 1 0 0
map00965 Betalain biosynthesis 0 0 1 0.111111111
map00966 Glucosinolate biosynthesis 0 0 3 0.344877345
map00332 Carbapenem biosynthesis 0 0 1 0.25
map00261 Monobactam biosynthesis 1 0.166666667 1 0.111111111
map00401 Novobiocin biosynthesis 2 0.416666667 1 0.111111111
map00404 Staurosporine biosynthesis 0 0 1 0.142857143
map00999 Biosynthesis of various secondary metabolites—part 1 1 0.011111111 0 0
map00998 Biosynthesis of various secondary metabolites—part 2 4 0.541666667 5 1.011544012
map00997 Biosynthesis of various secondary metabolites—part 3 0 0 1 0.071428571
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Table 3. Cont.

Culture Condition Syneco Conv

Category # Formulae Uncertainty Score # Formulae Uncertainty Score
1.11 Xenobiotics biodegradation and metabolism 14 1.802380952 7 1.520634921

map00627 Aminobenzoate degradation 0 0 1 0.5
map00623 Toluene degradation 1 0.0625 0 0
map00622 Xylene degradation 3 0.305357143 0 0
map00633 Nitrotoluene degradation 1 0.166666667 0 0
map00642 Ethylbenzene degradation 2 0.205357143 0 0
map00643 Styrene degradation 1 0.0625 0 0
map00363 Bisphenol degradation 1 0.0625 0 0
map00626 Naphthalene degradation 3 0.354166667 1 0.2
map00624 Polycyclic aromatic hydrocarbon degradation 1 0.083333333 2 0.311111111
map00980 Metabolism of xenobiotics by cytochrome P450 0 0 2 0.342857143
map00982 Drug metabolism—cytochrome P450 1 0.5 1 0.166666667

1.12 Chemical structure transformation maps 16 3.219444441 23 3.252164502
map01060 Biosynthesis of plant secondary metabolites 4 0.854166667 5 1.416305916
map01061 Biosynthesis of phenylpropanoids 6 1.416666667 6 0.737734488
map01062 Biosynthesis of terpenoids and steroids 1 0.011111111 1 0.071428571
map01063 Biosynthesis of alkaloids derived from shikimate pathway 3 0.354166667 4 0.416305916
map01064 Biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid 1 0.08333333 2 0.162337662
map01065 Biosynthesis of alkaloids derived from histidine and purine 0 0 1 0.071428571
map01066 Biosynthesis of alkaloids derived from terpenoid and polyketide 1 0.5 1 0.071428571
map01070 Biosynthesis of plant hormones 0 0 3 0.305194805

2. Genetic Information Processing 0 0 3 0.344877345
2.2 Translation 0 0 3 0.344877345

map00970 Aminoacyl-tRNA biosynthesis 0 0 3 0.344877345
3. Environmental Information Processing 2 0.208333333 9 2.662337662

3.1 Membrane transport 0 0 3 0.924242424
map02010 ABC transporters 0 0 3 0.924242424

3.2 Signal transduction 1 0.083333333 5 1.404761905
map02020 Two-component system 0 0 1 0.071428571
map04071 Sphingolipid signaling pathway 0 0 1 0.333333333
map04024 cAMP signaling pathway 0 0 1 0.333333333
map04022 cGMP-PKG signaling pathway 0 0 2 0.666666667
map04152 AMPK signaling pathway 1 0.083333333 0 0

3.3 Signaling molecules and interaction 1 0.125 1 0.333333333
map04080 Neuroactive ligand-receptor interaction 1 0.125 1 0.333333333

4. Cellular Processes 0 0 1 0.333333333
4.3 Cellular community—eukaryotes 0 0 1 0.333333333

map04540 Gap junction 0 0 1 0.333333333
5. Organismal Systems 3 0.791666667 31 8.173881674

5.1 Immune system 0 0 1 0.333333333
map04611 Platelet activation 0 0 1 0.333333333

5.2 Endocrine system 0 0 9 2.293650794
map04922 Glucagon signaling pathway 0 0 1 0.071428571
map04923 Regulation of lipolysis in adipocytes 0 0 2 0.666666667
map04917 Prolactin signaling pathway 0 0 1 0.111111111
map04921 Oxytocin signaling pathway 0 0 1 0.333333333
map04916 Melanogenesis 0 0 1 0.111111111
map04924 Renin secretion 0 0 2 0.666666667
map04925 Aldosterone synthesis and secretion 0 0 1 0.333333333
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Table 3. Cont.

Culture Condition Syneco Conv

Category # Formulae Uncertainty
Score # Formulae Uncertainty Score

5.3 Circulatory system 0 0 2 0.666666667
map04270 Vascular smooth muscle contraction 0 0 2 0.666666667

5.4 Digestive system 3 0.791666667 8 2.245310245
map04970 Salivary secretion 0 0 1 0.333333333
map04976 Bile secretion 2 0.666666667 1 0.333333333
map04974 Protein digestion and absorption 1 0.125 3 0.344877345
map04977 Vitamin digestion and absorption 0 0 1 1
map04978 Mineral absorption 0 0 2 0.233766234

5.6 Nervous system 0 0 4 0.753968254
map04728 Dopaminergic synapse 0 0 1 0.111111111
map04726 Serotonergic synapse 0 0 2 0.30952381
map04730 Long-term depression 0 0 1 0.333333333

5.7 Sensory system 0 0 4 1.071428571
map04744 Phototransduction 0 0 1 0.333333333
map04744 Phototransduction—fly 0 0 1 0.333333333
map04740 Olfactory transduction 0 0 1 0.333333333
map04742 Taste transduction 0 0 1 0.071428571

5.8 Development and regeneration 0 0 1 0.142857143
map04361 Axon regeneration 0 0 1 0.142857143

5.10 Environmental adaptation 0 0 2 0.666666667
map04713 Circadian entrainment 0 0 1 0.333333333
map04714 Thermogenesis 0 0 1 0.333333333

6. Human Diseases 0 0 14 2.536940837
6.1 Cancer: overview 0 0 5 0.616305916

map05204 Chemical carcinogenesis 0 0 1 0.2
map05230 Central carbon metabolism in cancer 0 0 4 0.416305916

6.4 Neurodegenerative disease 0 0 2 0.444444444
map05012 Parkinson disease 0 0 2 0.444444444

6.5 Substance dependence 0 0 5 1
map05030 Cocaine addiction 0 0 1 0.111111111
map05031 Amphetamine addiction 0 0 1 0.111111111
map05032 Morphine addiction 0 0 1 0.333333333
map05034 Alcoholism 0 0 2 0.444444444

6.10 Infectious disease: parasitic 0 0 2 0.476190476
map05143 African trypanosomiasis 0 0 2 0.476190476
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The categories of “1. Metabolism,” “1.4 Nucleotide metabolism,” “1.5 Amino acid
metabolism,” “1.6 Metabolism of other amino acids,” “Abietanes,” “Drugs with new active
ingredients,” “Guaianolide,” “M MUSCULO-SKELETAL SYSTEM,” “M01 ANTIINFLAMMATORY
AND ANTIRHEUMATIC PRODUCTS,” “M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC
PRODUCTS, NON-STEROIDS,” “map00300 Lysine biosynthesis,” “map00310 Lysine degradation,”
“map00330 Arginine and proline metabolism,” “map00830 Retinol metabolism,” “map01100 Metabolic
pathways,” “N-glycosides,” “New drug approvals in Japan [br08318],” “PR0109 Retinoids,” and
“Sinapate derivatives,” were significantly different(p < 0.05) in at least one of the tests (Tables 4 and 5).
Notably, the results showed that Conv samples expressed significantly greater total intensity in the
categories of amino acids- and nucleotide- related primary metabolites.
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Table 4. Results of KEGG PATHWAY category-wise tests with p < 0.05: The difference of intensity in each KEGG PATHWAY category (column “Category in KEGG
PATHWAY”) is tested with two-sided Welch’s t-test and Brunner-Munzel test (“Test”). The signs of p-values (in “p-Value”) represent the magnitude relationship of
mean intensity between Syneco and Conv (“Magnitude Relationship”); negative sign means Conv was greater than Syneco, and positive sign means Syneco was
greater than Conv. The column “Scale” indicates whether the intensity was used in linear or logarithmic scale for the tests. The intensity value was used both as
chemical formula-wise aggregated mean and as separated intensity peaks (indicated as Formula and NA, respectively, in the column “Averaging”). The column
“# Formulae” represents the number of chemical formulae estimated in each category.

Category in KEGG PATHWAY # Formulae Magnitude
Relationship Scale Test Averaging p-Value

1. Metabolism 199 Syneco < Conv Logarithmic Brunner-Munzel Formula −0.047539
1.4 Nucleotide metabolism 6 Syneco < Conv Linear Brunner-Munzel Formula −0.047815

1.5 Amino acid metabolism 56 Syneco < Conv

Linear Brunner-Munzel
Formula −0.017334

NA −0.017518

Logarithmic
Welch NA −0.018299

Brunner-Munzel
Formula −0.010095

NA −0.017518
map00300 Lysine biosynthesis 7 Syneco < Conv Linear Brunner-Munzel Formula −0.021277

map00310 Lysine degradation 7 Syneco < Conv

Linear
Welch NA −0.007608

Brunner-Munzel
Formula −0.024978

NA −0.014387

Logarithmic
Welch

Formula −0.016583
NA −0.01523

Brunner-Munzel
Formula −0.000144

NA −0.014387

map00330 Arginine and proline metabolism 8 Syneco < Conv
Linear Brunner-Munzel

Formula −0.035047
NA −0.026784

Logarithmic Welch NA −0.026253
Brunner-Munzel NA −0.026784

1.6 Metabolism of other amino acids 17 Syneco < Conv Linear Brunner-Munzel Formula −0.048187
1.8 Metabolism of

cofactors and vitamins
map00830 Retinol metabolism 2 Syneco < Conv Linear Welch Formula −0.004966

Logarithmic Welch Formula −0.000541
1.0 Global and
overview maps map01100 Metabolic pathways 127 Syneco < Conv Logarithmic Brunner-Munzel Formula −0.04356
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Table 5. Results of KEGG BRITE category-wise tests with p < 0.05: The difference of intensity in each KEGG BRITE category (column “Category in KEGG BRITE”) is
tested with two-sided Welch’s t-test and Brunner-Munzel test (“Test”). Other notations follow those of Table 4.

Category in KEGG BRITE # Formulae
Magnitude

Relationship Scale Test Averaging p-Value

Compounds
and

Reactions

Compounds
(C numbers)

Phytochemical
compounds
[BR:br08003]

Terpenoids
Diterpenoids (C20) Abietanes 2 Syneco <

Conv
Linear Welch Formula −0.004966483

Logarithmic Welch Formula −0.000540986

Sesquiterpenoids (C15) Guaianolide 3 Syneco <
Conv Logarithmic Welch Formula −0.042426416

Phenylpropanoids Monolignols Sinapate derivatives 2
Syneco >

Conv Linear Welch Formula 0.02822976

Syneco <
Conv Logarithmic Welch Formula −0.032450817

Glycosides
[BR:br08021]

N-glycosides
3

Syneco <
Conv Linear Welch Formula −0.042604306

Lipids
[BR:br08002]

PR Prenol lipids PR01 Isoprenoids PR0109 Retinoids 2 Syneco <
Conv

Linear Welch Formula −0.004966483
Logarithmic Welch Formula −0.000540986

Drugs

Drug
information
(D numbers)

New drug approvals in Japan [br08318] 4 Syneco <
Conv

Linear
Welch NA −0.039762524

Brunner-Munzel
Formula −0.002578598

NA −0.019485081

Logarithmic Welch
Formula −0.014647994

NA −0.026673591
Brunner-Munzel NA −0.019485081

Drugs with new active ingredients 4 Syneco <
Conv

Linear
Welch NA −0.039762524

Brunner-Munzel
Formula −0.002578598

NA −0.019485081

Logarithmic Welch
Formula −0.014647994

NA −0.026673591
Brunner-Munzel NA −0.019485081

Drug
classifications
(D numbers)

Anatomical
Therapeutic

Chemical
(ATC)

classification
[BR:br08303]

M MUSCULO-SKELETAL SYSTEM 2 Syneco >
Conv

Linear Welch NA 0.049488163
Logarithmic Welch Formula 0.022529231

M01 ANTIINFLAMMATORY AND
ANTIRHEUMATIC PRODUCTS 2 Syneco >

Conv
Linear Welch NA 0.049488163

Logarithmic Welch Formula 0.022529231

M01A
ANTIINFLAMMATORY
AND ANTIRHEUMATIC

PRODUCTS,
NON-STEROIDS

2 Syneco >
Conv

Linear Welch NA
0.049488163

Logarithmic Welch Formula
0.022529231
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4. Discussion

In the pre-analysis with a Welch’s t-test and Brunner–Munzel test for each compound, only one
and four over 342 detected compound peaks had significant differences between Syneco and Conv
samples, respectively, concerning the 5% threshold on the p-value. Therefore, the simple comparison of
compound-wise intensity does not support any statistically significant differences, since about 17 peaks
(5% of 342) could stochastically take p-values under the 5% threshold in random data. Considering
also biological fluctuations and technical errors, the results of compound-wise statistical tests did not
seem relevant enough to require further investigation.

However, the variation between different years for each compound measured with F-test was
significantly different between the two categories (for 58 compounds, about 17% of 342), suggesting
that the in cultura samples had larger yearly variance. This result supports the relative consistency
of metabolic profile in ecological optimum compared to the larger deviation in monoculture data,
as pointed out in a previous study [2]. It means that the human intervention under the in cultura
culture conditions introduces larger fluctuations in the metabolic state of the crop than the in natura
self-organized growth under ecological optimum conditions. The observed facts may be relevant to
the general relationship between biodiversity and ecological resilience: the in cultura culture condition
with low biodiversity may behave less stable in the consistency of its metabolic profile because of
insufficient ecological feedbacks that are abundant in the in natura culture condition.

Previous study has pointed out that there exist statistical invariant features of metabolic profiles
that distinguished between the in cultura and in natura culture conditions [2]. The principal component
analysis in this study, which reflected the entire LC-MS measurements over six years of repeated
production, also supports this notion. The distinctive metabolic profiles were found with respect to the
PC3 loading section, which was classified with the ontologies in KEGG BRITE and PATHWAY databases.

Syneco samples produced in the in natura condition contained a larger number of allelochemicals
such as phytochemicals, alkaloids, phenylpropanoids, and steroids, according to the classification
in KEGG BRITE (Table 2), especially for the compounds with top 130 PC3 loadings that provided
complete linear separation between the in cultura and in natura samples (Figure 2b).

As for the KEGG PATHWAY classification of the top 130 PC3 loadings (Table 3), 9 compounds
of in natura samples and five compounds of in cultura samples were categorized into “map01120
Microbial metabolism in diverse environments” (see the Supplementary Materials Files S9 and S10).
This category is related to the metabolism of microorganisms, which implies that the in natura samples
were raised in more complex microbiological interactions than in cultura samples. In this study,
the microbiological interaction of tea plants should mainly come from soil microbiota. Indeed, it is
reported that Synecoculture largely promotes soil microbial diversity and activities [36]. These results
suggest that the in natura samples tend to contain more diverse compounds related to the interaction
with soil microorganisms.

Plants are known to synthesize repellent and attractant substances called allelochemicals in
competitive and cooperative interactions with other plants and insects [37]. Allelochemicals such as
alkaloids, phenylpropanoids, steroids, and flavonoids, may be harmful to the human body in excessive
amounts, but are known to have anti-inflammatory, anti-cancer, and antioxidant effects with appropriate
dose [38]. Our results suggest that the in natura culture condition associated with rich interactions
between species could support a more diverse production of such health-protective compounds.

Concerning the diversity of allelochemicals, the only exception in this study was the total intensity
of flavonoids that was larger in Conv than in Syneco in the total comparison of 2014–2019 samples.
This result was different from the previous study that reported larger flavonoids expression in Syneco
2014–2015 samples [39]. Actually, the total amount of flavonoids was superior in Syneco 2014–2016 to
Conv 2015–2016 samples (results not shown). For the Syneco 2017–2019 and Conv 2017–2019 samples,
the total amount of flavonoids was not effective as a distinctive parameter that constantly separates the
two culture conditions. Since flavonoids can be enhanced not only by ecological interactions but also
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by physical environmental stress such as sunlight, various flavonoids may have been produced in
response to the environmental particularity in Syneco 2014–2015 samples.

Among the three PCA groups (2014–2017, 2018–2019, and 2014–2019), compounds such as
glucosylpyridoxine, rutin, heptyloxyphenol, and methylcatechol were mutually estimated in Syneco
samples. Glucosylpyridoxine, a glycoside of vitamin B6, was detected as an exclusively characteristic
compound of in natura samples. Furthermore, rutin is known as an allelopathic chemical that improves
plant disease resistances and inhibits the growth of other competing plants [40,41]. These in natura
distinctive compounds can be interpreted as the results of the enhanced ecological interactions
in Synecoculture.

Vitamin B6 is known to be synthesized by soil microorganisms of the genus Aspergillus. It is
required for controlling the immune response, and its deficiency is known to cause immune system
disorders and a decrease in antibody production [42,43]. In recent years, the diversity of human gut
microbiota in city environments has been reduced due to the abuse of antibiotics and pesticides [44–46],
and non-infectious immune-related diseases have become serious in many countries around the world.
Also, the risk of vitamin B2 and B6 deficiency has been reported in vegan populations [47]. Vitamin B6
and B12 have been reported to be effective in treating Alzheimer’s disease [48–50]. Our results suggest
that vitamin B6 is contained more in the tea samples cultivated under the in natura culture condition in
which the topsoil ecosystem is not disturbed.

On the other hand, theasinensin A, l-tyrosine, guanidinobutyric acid, theogallin, isovitexin,
coumaroylquinic acid, l-phenylalanine and heptylparaben were detected as the characteristic
compounds common to conventional samples. Amino acids were detected as a strong characteristic
of in cultura samples, which may be derived from the application of synthetic fertilizers. This is in
line with the previous study that also reported amino acids were one of the characteristics of the
conventionally cultured tea product [39]. The results of the KEGG category-wise tests in Tables 4 and 5
also support this notion.

The overall results suggest that the distinction between in natura and in cultura conditions only
becomes possible at the distribution level of metabolome, beyond single-component comparison: in the
results of the normality test for the distribution of the intrinsic and common compounds for each
culture condition (Figure 4), both in cultura and in natura intrinsic compounds showed normality in the
distribution of intensity, with distinctive offsets of mean values. Each culture condition thus comprised
the qualitatively different expression of culture-specific compounds.

5. Conclusions

Culture conditions strongly relate to the health of both environment and humans through our
diet as an interface. In this article, the results suggest that the tea plants grown in in natura condition
produce more diverse and abundant allelochemicals than in in cultura conditions, which is expected to
contribute to the health of the plants themselves and those consumers. Such enhancement of secondary
metabolite in tea plant may be considered as an example of the generic interaction between crops and
field biodiversity, especially soil microbiota.

In the formation of ecological niches, it is known that some species specifically rely on the
symbiosis with other species and does not tolerate single isolated culture (e.g., [51]). This implies
the presence of the “in natura effects” that maintain the coexistence of various species in natural
environments and associated particular expression patterns of metabolite, which occurs only within the
complex interactions of the self-organized plant and animal communities. Similarly, our results suggest
that there exists a metabolite-level property that is particularly based on the in natura state of culture
condition, which has been generally treated as the irreplaceable support of the whole food quality
that cannot be produced with synthetic nutritional supplements. Generally, the health effects of plant
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products cannot be totally evaluated with a single component, but should be considered within the
whole diet composed of many compounds acting synergistically on human health [52,53]. The intrinsic
distribution of compounds particular to in natura metabolite should further be considered when
evaluating the sustainability of food systems toward the resolution of the health-diet-environment
trilemma [3].
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