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Abstract: Particle filter has received increasing attention in data assimilation for estimating
model states and parameters in cases of non-linear and non-Gaussian dynamic processes.
Various modifications of the original particle filter have been suggested in the literature,
including integrating particle filter with Markov Chain Monte Carlo (PF-MCMC) and, later,
using genetic algorithm evolutionary operators as part of the state updating process. In this work,
a modified genetic-based PF-MCMC approach for estimating the states and parameters simultaneously
and without assuming Gaussian distribution for priors is presented. The method was tested on two
simulation examples on the basis of the crop model AquaCrop-OS. In the first example, the method was
compared to a PF-MCMC method in which states and parameters are updated sequentially and genetic
operators are used only for state adjustments. The influence of ensemble size, measurement noise,
and mutation and crossover parameters were also investigated. Accurate and stable estimations of
the model states were obtained in all cases. Parameter estimation was more challenging than state
estimation and not all parameters converged to their true value, especially when the parameter value
had little influence on the measured variables. Overall, the proposed method showed more accurate
and consistent parameter estimation than the PF-MCMC with sequential estimation, which showed
highly conservative behavior. The superiority of the proposed method was more pronounced when
the ensemble included a large number of particles and the measurement noise was low.

Keywords: AquaCrop-OS; crop growth models; genetic algorithm; Markov Chain Monte Carlo;
particle filter

1. Introduction

Crop development and geophysical and hydrological processes can be represented by
simulation models, which are used to predict the process state. One of the usages of such dynamic
models is the development of decision support systems (DSS). Since an imperfect model may lead to
incorrect decisions, model imperfectness is often cited as one of the main drawbacks of model-based DSS.
The crop-soil-atmosphere model AquaCrop developed by the Food and Agriculture Organization
(FAO, Rome, Italy) [1,2] is one of the models commonly used in DSS studies that focus on irrigation
management [3–6], mainly due to its relative simplicity, robustness, and reasonable accuracy for a
wide range of crops. However, very little literature is available on data assimilation in AquaCrop,
especially with Bayesian approaches (e.g., particle filter) [7]. The scope of the present study was to
develop a data assimilation framework for crop-soil-atmosphere models on the basis of particle filter,
and analyze its performance with AquaCrop.

Data assimilation methods were originally developed for state estimation, but various studies
have extended them to the estimation of the model parameters as well. One of the commonly
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used methods is the ensemble Kalman filter (EnKF) [8,9], which uses the Monte Carlo approach to
estimate the state covariance on the basis of the ensemble covariance. This covariance is used as
state covariance within the equations of Kalman filter [10]. However, EnKF suffers from several
limitations that might result in sub-optimal performance, such as non-Gaussian state distribution and
physical violation update. Therefore, some modifications might be applied to EnKF to alleviate
these problems, such as covariance inflation, relaxation, and estimation modification [11–16].
However, these methods are case-dependent and involve user-defined tuning parameters that strongly
influence the assimilation performance. Hence, in the literature, EnKF-based methods are increasingly
replaced by approaches based on particle filter (PF) [17–19]. Generally speaking, PF relies less heavily
on tuning parameters and uses Bayesian estimations by resampling rather than updates based on
correlations that, as noted above, might be spurious when the tuning parameters are not set properly.
DeChant and Moradkhani [13] compared the performance of EnKF and PF, showing more robust
and effective uncertainty reduction by PF-based approaches than by EnKF-based ones in terms of
state distribution and parameter estimations. More recently, Chen and Cournède [20] compared the
performance of two Kalman filter (KF)-based approaches (unscented Kalman filter (UKF) and EnKF)
and a PF-based approach with the log-normal allocation and senescence model for sugar beet.
Their results showed that KF-based approaches suffered from the significant nonlinearity of the model,
in contrast to PF-based methods.

In particle filters, estimation is based on running in parallel an ensemble of models (so-called
particles) and weighting them on the basis of the measurements. One limitation of PF is
particle degeneracy, as some particles become associated with negligible weights. This might cause
involving unimportant particles in the assimilation process, resulting in a non-representative ensemble
and low computational efficiency. Several methods have been suggested to alleviate this problem.
Moradkhani et al. [21], who worked with a hydrological model, suggested perturbing the parameters
using Gaussian noise after resampling the state. The Gaussian noise was calculated on the basis
of the particle ensemble. Similar methods have been used in other studies related to land surface
models and soil hydrology [22,23]. Recently, Berg et al. [19] suggested resampling particles by
stochastic universal resampling, in which some particles are discarded and new particles are generated
using Gaussian distribution to maintain the ensemble size. The Gaussian distribution parameters
were calculated on the basis of a weighted augmented state ensemble (i.e., ensemble that consists
of state and parameters). However, in this approach the new particles might be worse than the
original ones since the sampling from the Gaussian distribution is random and not based on
deductive sampling. Another limitation is that the method involves a tuning parameter that might affect
the method performance, and, in some cases, numerical problems might arise when calculating the
eigenvalues of the ensemble covariance matrix, which is needed for calculating the tuning parameters,
especially when the state vector is large [19].

Another method suggested to reduce weight degeneracy is the combination of PF with Monte Carlo
Markov Chain (MCMC) [24,25]. Integrating MCMC with PF can help replacing low probability particles
with particles that have higher probabilities to survive. However, this method by itself only determines
whether to accept or reject particles, without suggesting alternative (better) particle candidates.
So-called intelligent search and optimization methods categorized as metaheuristic algorithms
(MAs) have also been used to mitigate the degeneracy problem. Among these, combining genetic
algorithm (GA) with PF has received increasing attention in recent years. However, due to the high
computational cost, the literature suggests incorporating only the evolutionary concept of the GA instead
of formulating the PF into a full GA optimization problem. For instance, Kwok et al. [26] suggested
an evolutionary PF in which some prior particles were generated using the crossover operator only,
i.e., new children particles were generated from couples of parent particles. Yin and Zhu [17] used
crossover and mutation within PF and concluded that utilizing GA operators improves PF estimations.
However, the generated particles should be selected properly so that the shuffled particles do not
move outside of the posterior distribution. Abbaszadeh et al. [18] suggested incorporating MCMC
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together with GA evolutionary operators (crossover and mutations) in PF in order to form what
they termed an ‘evolutionary particle filter MCMC (EPFM)’, which assured proper particle selection
and avoided filter degeneracy. At each assimilation step, the states were crossed-over and mutated,
and state selection was performed by MCMC. Finally, on the basis of the selected states, the parameters
were updated using MCMC. However, this process of estimating sequentially the states and then the
parameters (using the previously obtained states) might lead to sub-optimality, as both states and
parameters should be evaluated simultaneously. In addition, the parameters were determined using
only MCMC without exploiting the potential of using GA evolutionary operators at that step.

In the present work, a modified formulation of EPFM, referred to below as genetic-based PF
combined with MCMC (GPFM), is introduced. This formulation enables simultaneous estimation
of the states and parameters and exploits genetic operations and MCMC for both state and
parameter estimations. This method improves the existing methods (specifically [18]) by
applying (at each time step) simultaneous (optimal) rather than sequential (sub-optimal) state and
parameter estimation. The GPFM is illustrated on two synthetic examples using a slightly modified
version of the crop model AquaCropOS [27], which is an open-source version of the AquaCrop model.
In the first example, GPFM is compared with the method described in [18].

2. Materials and Methods

2.1. Background

Nonlinear dynamic systems are often described by the following finite difference equations:

xt = f (xt−1, ut,θ) +ωt, (1)

yt = h(xt) + υt, (2)

where f () denotes the model, h() denotes the measurements operator, xt ∈ Rn denotes the state vector
at time t, ut is the (uncertain) forcing data, θ ∈ Rd is the vector of model parameters, and yt ∈ Rm is the
vector of measurements. ωt and υt are the process and measurements noise, respectively, which are
assumed to be white noises with zero mean and covariance Qt and Rt, respectively. In addition, they are
assumed to be independent. On the basis of Bayesian estimation, given a measurement yt at time t,
the posterior distribution of the state at time t is as follows:

p(xt
∣∣∣yt) = p(xt

∣∣∣y1:t−1, yt) =
p(yt

∣∣∣xt)p(xt
∣∣∣y1:t−1)

p(yt
∣∣∣y1:t−1)

=
p(yt

∣∣∣xt)p(xt
∣∣∣y1:t−1)∫

p(yt
∣∣∣xt)p(xt

∣∣∣y1:t−1)dxt
, (3)

p(xt
∣∣∣y1:t−1) =

∫
p(xt, xt−1

∣∣∣y1:t−1)dxt =

∫
p(xt|xt−1)p(xt−1

∣∣∣y1:t−1)dxt−1 (4)

where p(yt
∣∣∣xt) is the probability of the observed measurement given the estimated state at time t,

p(xt
∣∣∣y1:t−1) is the prior distribution of the state, and p(yt

∣∣∣y1:t−1) is a normalization factor. The analytical
solution of Equation (3) cannot be obtained due to the non-linearity of the process and the
multi-dimensionality of the problem. Hence, the posterior distribution is often approximated using
an ensemble of models. In PF terminology, the states and parameters associated with each model
form a particle. Each particle is associated with a weight, which quantifies its likelihood on the basis
of the observations. Both particles and weights evolve dynamically. In [18], each particle is divided
conceptually of two components that correspond to the model states and parameters, respectively.
At each assimilation step, these two components are updated sequentially as follows (Figure 1 in [18]):

i. State adjustment

a. The current states are propagated to time t + 1 using the corresponding models,
yielding so-called prior states.



Agriculture 2020, 10, 606 4 of 22

b. The weights corresponding to these prior states are calculated.
c. New states are generated by applying cross-over and mutations to the current states.
d. The new states are propagated to time t + 1 using the corresponding models,

yielding so-called proposal prior states.
e. The weights corresponding to these proposal prior states are calculated.
f. The MCMC Metropolis Hastings ratio of the proposal prior states to prior states is used

to determine which particle is accepted.

ii. The parameters are adjusted using MCMC Metropolis Hastings [25]. Conceptually, this consists
of generating proposal parameters by adding random noise to the current parameters and
calculating MCMC Metropolis Hastings ratio to accept or reject the proposal parameters.

Figure 1. Overall genetic-based particle filter combined with Monte Carlo Markov Chain (GPFM)
framework, which consists of six stages (labeled (A–F)).
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2.2. Proposed Approach

The flowchart of the present procedure is shown in Figure 1. Whereas in the procedure developed
in [18], the states and parameters are updated in a serial fashion, in the present procedure, the 2 halves
of the particles (states and parameters) are adjusted simultaneously. More specifically, crossover and
mutation operations are applied to each half particle (Figure 1C). Both operators are applied over
particles previously selected by Roulette wheel selection (Figure 1B). The basic idea behind the Roulette
wheel selection is the same as the roulette in casino. First, a fitness value is associated to each
candidate particle. Second, the fitness values are normalized so that their sum is 1. Third, the fitness
values are arranged in a vector in random order. Fourth, a random number between 0 and 1 is
generated from a uniform distribution and chosen particle is the particle that the random number
points to. This way, candidates with high fitness values are more likely to be selected. Step 4 is repeated
until the appropriate number of particles have been obtained.

Numerous crossover methods have been proposed in literature (e.g., arithmetic and discrete
crossovers) [28,29]. Arithmetic crossover is a widely used method in the context of evolutionary
PF [17,30], and is adopted here for simplicity. Other crossover operations could be used in a
similar fashion. For the states, the crossover operation corresponds to

xi′
t−1 = axi

t−1 + (1− a)x j
t−1, (5)

x j′

t−1 = (1− a)xi
t−1 + ax j

t−1 (6)

where xi
t−1 and x j

t−1 denote the states of the parent particles with indices i and j, respectively, and a is a
user-defined crossover parameter for state.

The parameters are adjusted in a similar fashion:

θi′
t−1 = bθi

t−1 + (1− b)θ j
t−1 (7)

θ
j′

t−1 = (1− b)θi
t−1 + bθ j

t−1 (8)

where b is a user-defined crossover parameter for parameters.
In addition to crossover, mutation is performed to increase the diversity of the particles,

i.e., increase the chances of covering a wider span of the parameters and state space. More specifically,
one gene of the state vector and one gene of the parameter vector (both chosen randomly) are mutated:

xi′
t−1,ks = xi

t−1,ks + ηs, ηs ∼ N(0, σ2
s ) (9)

θi′
t−1,kp = θi

t−1,kp + ηp, ηp ∼ N(0, σ2
p) (10)

where the ks and kp subscripts denote the number of the gene within the particle, ηs and ηp represent
random Gaussian noises, and σ2

s and σ2
p denote the variances of state and parameters. σ2

s and σ2
p could

be chosen according to the gene within the particle, e.g., large number could be chosen as the variance
of the gene is small and vice versa. After executing crossover and mutation for states and parameters,
the new crossed-over and mutated state, together with crossed-over and mutated parameters,
are propagated to obtain proposal state:

xi,p
t = f (xi,cm

t−1 , ut−1,θi,cm
t−1 ) (11)

where xi,cm
t−1 and θi,cm

t−1 are the state and parameters obtained by crossover and mutation, and xi,p
t is the

proposal state. The combination of the proposal state with the corresponding parameters form the
proposal particle (Figure 1D).
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The probability distribution function (PDF) of the proposed joint state parameters is approximated
as (without dividing with the probability of the measurements):

p(xi,p
t ,θp

t

∣∣∣∣y1:t ) ∝ p( yt

∣∣∣∣xi,p
t ,θp

t )p(xi,p
t

∣∣∣∣θp
t , y1:t−1 )p(θ

p
t

∣∣∣y1:t−1 ) (12)

where θp
t = θcm

t−1 because the parameters are not dynamic. p( yt

∣∣∣∣xi,p
t ,θp

t ) is calculated on the basis of the
likelihood as follows:

L( yt

∣∣∣∣xi,p
t ,θi,p

t ) ∝ exp
[(

yt − h(xi,p
t )

)T
R−1

t

(
yt − h(xi,p

t )
)]

(13)

where Rt is the measurements covariance.
Each proposal particle is examined by MCMC Metropolis Hastings in order to determine whether

to accept or reject it (Figure 1E). Basically, the proposal particles are compared with prior particles
which consist of the parameters before crossover and mutation and state which is obtained by running
the simulation model with these parameters (Figure 1A).

In order for one to calculate the prior probabilities, p(xi,p
t

∣∣∣∣θp
t , y1:t−1 ) and p(θp

t

∣∣∣y1:t−1 ), an assumption
is often made about the distribution of the priors of the parameters and state (e.g., Gaussian distribution).
Then, the PDF of the proposal and priors are compared via the Metropolis acceptance ratio:

α = min

1,
p
(
xi,p

t ,θp
t

∣∣∣∣y1:t
)

p
(
xi−

t ,θi−
t

∣∣∣y1:t
)
 (14)

where xi−
t and θi−

t are, respectively, the prior state and parameters for particle i at time t. To avoid
assuming Gaussian distribution of the state and parameters and to exploit the ability of PF to deal
with non-Gaussian distributions, we assume heuristically that the distributions of the proposal state
and parameters are equal to the prior distributions of the state and parameters. In order to minimize
the violation of this assumption, in the examples below, we impose that the changes of the state and
parameters due to crossover and mutation remain small. The Metropolis acceptance ratio is then
approximated as follows:

α ≈ min

1,
p
(
yt

∣∣∣∣xi,p
t ,θp

t

)
p
(
yt
∣∣∣xi−

t ,θi−
t

)
 (15)

In other words, if the Metropolis acceptance ratio is above a specified threshold, then the proposal
particle as accepted, otherwise it is rejected. This acceptance or rejection process ensures that, at each
assimilation step, particles with higher probability to represent the posterior are accepted, resulting in
a more reliable posterior distribution (Figure 1F). It is worth mentioning that the weights of the
particles are initialized as 1/N in each assimilation step, since otherwise small weights are obtained
de facto after a large number of assimilation steps. A resampling step can be applied after the
assimilation step. In this step, particles with high weights are replicated and those with low weights
are dropped to obtain more representative particles. However, in the present study, since the roulette
wheel selection and the MCMC are based on the weights of the particles, only particles with high
weights (i.e., highly representative particles) are selected, and therefore such a resampling step was
found to be not essential.

It is worth mentioning that Equations (7), (8), and (10) were not used in previous works and form
the core of GPFM, using GA operators for both states and parameters estimations.

3. Examples

The method described above was tested over two synthetic examples. In both cases, the (optional)
resampling step was found to have only negligible impact on the results (details not shown), and the
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results presented below were obtained without implementing this step. This lack of need for resampling
can be explained by the fact that the roulette wheel selection (used in Step B in Figure 1) led to discarding
most particles with small weights while keeping the particles with high weights. Since most of the
resulting particles were characterized by high weights, subsequent application of resampling eliminated
very few particles and hence had only marginal influence.

The examples were based on a slightly modified version of the crop model AquaCrop-OS v5.0a [27],
an open-source version of the model AquaCrop. AquaCrop is daily time-step water-driven simulation
model that simulates crop development and soil water dynamics. A full description of this model
is beyond the scope of this paper and can be found in [1], as well as in the documentation available
on the FAO AquaCrop website. Only some key elements pertinent to the present work are briefly
described here.

Crop development involves four main processes: canopy growth and decline, transpiration,
biomass accumulation, and partitioning of biomass into yield. These processes are influenced by water
availability on the root zone, which is obtained by simulating water flow within the user-defined
soil layers.

1. Simulation of canopy growth and decline:

Canopy development is split into three periods:

• Exponential growth as long as CC ≤ CCx/2

CC(tk) = CC0·eCGC·tk (16)

• Exponential decay, when CC > CCx/2 and until senescence

CC(tk) = min

CCx − 0.25·
(CCx)

2

CC0
·e−tk·CGC, CCx

 (17)

• Canopy decline, after the onset of senescence:

CC(tk) = CCx·
(
1− 0.05·

(
etk·(

CDC
CCx ) − 1

))
(18)

In these equations, CC0 is initial canopy cover; CGC and CDC are the canopy growth and
decline coefficients, respectively; CCx is the maximum canopy cover; and tk denotes day k from
planting/sowing.

2. Estimation of crop transpiration
Tr = Kcb·(CCadj)·ET0 (19)

where Kcb is a crop-dependent coefficient used to express the impact of stress, CCadj is the canopy
size (adjusted for micro-advective effects), and ET0 is the reference evapotranspiration.

3. Simulation of above-ground biomass:

B(tk) = B(tk−1) + WP·
(

Tr
ET0

)
·Ksb (20)

where B(tk) is the above-ground biomass, WP is the water productivity, and Ksb expresses the
influence of temperature stress on biomass accumulation.

4. Partitioning of biomass into yield (Y):

Y(tk) = B(tk)·HI(tk) (21)

where HI(tk) is the harvest index at tk.
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The soil is modeled as a series of layers with user-specified thickness, texture, and hydraulic
properties. The water content in each layer is computed via a simple water balance equation:

∆Wi = Fin
i − Fout

i (22)

where ∆Wi denotes the difference in the water amount in layer i, Fin
i denotes the water flowing into

layer i from the previous layer (irrigation and rain in top layer), and Fout
i denotes the sum of the

water flowing from layer i into the next layer and the water removed by the roots (and evaporation in
top layer). These terms depend on soil-dependent parameters (among them, water content at field
capacity and saturation θ f c and θsat, respectively, and hydraulic conductivity at saturation, Ksat) as
well as on crop parameters (e.g., maximum flux extractable by roots). The impact of water availability
on crop development is expressed through relationships that involve water content in the root zone
and various crop-specific parameters.

For the sake of the present work, the main observation of the above description is that canopy
cover (CC) is modeled via algebraic equations (i.e., hard-coded relationship between CC and time).
In other words, canopy cover is not a state variable in the model, and data assimilation is not possible.
This is rather regretful, as canopy cover (or leaf area index) is currently the only canopy measurement
that can be performed relatively easily in the field [31–33]. Therefore, in the present study, we re-coded
canopy cover development with the equivalent difference equations:

Equation (16) was replaced by

CC(tk) = CC(tk−1) + CC0·CGC·eCGC·tk ·(tk − tk−1) (23)

Equation (17) was replaced by

CC(tk) = min

CC(tk−1) − 0.25CGC
(CCx)

2

CC0
e−t CGC(tk − tk−1), CCx

 (24)

and Equation (18) was replaced by

CC(tk) = CC(tk−1) − 0.05·CDC·etk·(
CDC
CCx )·(tk − tk−1) (25)

It can be easily verified that if data assimilation is not performed (i.e., CC and the parameters
are not adjusted), Equations (16)–(19) and (23)–(25) are strictly equivalent. The advantage of the new
formulation is that CC is now described by dynamic equations, and thus CC is a state variable to which
data assimilation can be applied.

3.1. Case Study #1

A hypothetic cotton crop in Greece was used as first case study. The soil profile consisted of three
layers of sandy loam, clay loam, and clay, with respective thicknesses of 0.4, 0.3, and 1.3 m. The soil
water content was assumed to be at field capacity on the sowing date (1 May 2015). The simulation
was run with climatic data (temperature, precipitation, and potential evapotranspiration ET0) obtained
from the Democritus University of Thrace meteorological station in northern Greece. Irrigation was
applied according to irrigation schedule in Table 1.
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Table 1. Irrigation schedule in case study #1.

Day Amount (mm)

3 32
12 26
56 27
69 48
75 36
81 26
87 30
88 41
96 34
103 53
111 31
114 55

Two models that differed in terms of the crop parameters listed in Table 2 were used—a ‘true’
model and a ‘biased’ model that was used as starting point for the assimilation process. All other
parameters were as listed in [4].

Table 2. Crop parameters of the true and biased models (case study #1).

Parameter Description True Biased

SxTopQ Maximum root water extraction at top of the root zone (m3 m−3 day−1) 0.052 0.04
SxBotQ Maximum root water extraction at the bottom of the root zone (m3 m−3 day−1) 0.015 0.025
CCx Maximum canopy cover 0.98 0.9
CGC Canopy growth coefficient ( f raction per growring degree days) 0.07618 0.1

When testing GPFM, each of the parameters listed in Table 2 was estimated at each time step (daily),
while all other parameters were kept constant. These parameters were chosen as they influence the
calculations of soil water content, canopy cover, and/or biomass and, ultimately, yield. The virtual
measurements consisted of canopy cover and water content at 20, 40, 60, 80, and 100 cm, which were
generated using the true model. The state vector consisted of the water content at 5 cm incremental
depths along the 200 cm depth soil profile and the canopy cover. This state vector (size 21) was updated
at each assimilation step. During the assimilation process, the following lower and upper boundaries
were imposed to avoid unrealistic values:

upper boundary = (Ptrue − Pbiased)·2 + Ptrue

lower boundary = Pbiased − (Ptrue − Pbiased)·2
(26)

where Ptrue and Pbiased are the true and biased parameters, respectively. Estimations that were not
inside the boundaries were set to the corresponding boundary values. These boundaries were applied
in the second case study as well.

As detailed below, several tests were conducted to analyze the influence of various tuning
parameters: the parameters controlling state and parameters crossover (Equations (5)–(8) and mutation
(Equations (9) and (10)), measurement noise, and ensemble size. GPFM was compared to the EPFM
method of [19], in which the state and parameters are adjusted sequentially in two separate steps.

3.2. Case Study #2

The second case study was conducted with a hypothetic quinoa crop in Israel. The soil profile
consisted of three 0.2 m depth layers of sandy clay soils. The quinoa sowing date was 1 February 2017,
and the simulation was performed from this date until 1 August 2017. The soil water content
was assumed to be at field capacity on the sowing date. The simulation was run with climatic
data (temperature, precipitation, and potential evapotranspiration ET0) obtained from the Technion
meteorological station and the Ein HaHoresh station of the Israel Meteorological Service, Bet-Dagan,
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Israel. Interpolations were conducted to fill in a few missing records. Irrigation was applied weekly
from 1 March until 24 July in 50 mm amounts. As in case study #1, ‘true’ and ‘biased’ models were used,
but here the models differed in terms of both crop and soil parameters, as detailed in Table 3. Crop
parameters not listed in Table 3 were kept at the default values provided in the quinoa model included
in the AquaCrop package.

Table 3. Soil and crop parameters of the true and biased models (case study #2).

Parameter Description True Biased

Soil

0–10 cm layer
Ksat
θsat
θfc

Hydraulic conductivity at saturation (mm day−1)
Water content at saturation

Water content at field capacity

380.4
0.47
0.27

320.4
0.44
0.23

11–20 cm layer
Ksat
θsat
θfc

Hydraulic conductivity at saturation (mm day−1)
Water content at saturation

Water content at field capacity

750.4
0.48
0.19

650.4
0.45
0.14

21–30 cm layer
Ksat
θsat
θfc

Hydraulic conductivity at saturation (mm day−1)
Water content at saturation

Water content at field capacity

310.4
0.46
0.30

340.4
0.44
0.24

Crop

MaxRooting Growing days from sowing to maximum rooting 180 165
Maturity Growing days from sowing to maturity 180 170

HIstart Growing days from sowing to start of yield
formation 70 65

Flowering Duration of flowering in (day) 20 18
CGC Canopy growth coefficient 0.1 0.08
CCx Maximum canopy cover 0.75 0.71

Each of the parameters listed in Table 3 were estimated by assimilation process at each time
step (daily), while all other parameters were kept to their nominal value [1]. The virtual measurements
consisted of canopy cover and water content at 5, 15, and 25 cm, which were generated using the true
model with 5% standard deviation white Gaussian noise.

The crossover factor for state (a) and parameters (b) were set to 0.05 and 0, respectively (i.e., no
crossover for the parameters). For mutation (σ2

s and σ2
p), 5% standard deviation was chosen. In each

assimilation step, the water content at 2 cm increments along the 60 cm depth soil profile and the
canopy cover were updated (the state size was 31). The ensemble size used in this case study was 500,
and the particles were initialized with the biased parameter values perturbated with 5% standard
deviation (STD) white Gaussian noise. The standard deviation of the measurement noise was 0.05 and
0.005 for water content and canopy cover measurement, respectively.

4. Results and Discussions

4.1. Case Study #1

4.1.1. Accuracy of Parameters Estimations

The discrepancies between estimations (at the current time step) or predictions (of the future time
steps) and measurements can be reduced in two ways: by improving the parameter estimates and by
adjusting the states. According to Equations (5)–(10), the extent of the adjustments of the parameters
and states are controlled by σp and b, and σs and a, respectively. Intuitively, relatively larger values
of σp and b are expected to force the filter to reduce the modeling errors by improving the parameter
estimates, while relatively larger values of σs and a should enable the filter to reduce the modeling
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error mostly by state adjustments, while not necessarily promoting convergence of the parameters
toward their true value. To validate this intuitive reasoning, we investigated three combinations of
these two parameters, corresponding to stronger adjustments of the parameters, stronger adjustments
of the states, and similar adjustments of parameters and state. This analysis was conducted with an
ensemble consisting of 1500 particles. The results obtained with these three combinations are shown in
Figures 2 and 3 (the tuning parameters used in each of the combinations A1–A3 appear in Table 4).
These Figures show the average value of the relevant state/parameters calculated over the whole
ensemble. It can be observed in Figure 2 that data assimilation improved CC estimations drastically,
and almost perfect estimations were achieved with all three parameter combinations. Similar results
were observed for estimation of soil water content profile in all three cases (not shown). As expected,
these improvements led to overall improvement of yield estimates. Whereas without data assimilation
the predicted yield was 4.92 t ha−1, data assimilation led to yield estimates ranging from 4.31 to
4.33 t/ha, significantly closer to the true value (4.49 t ha−1).

Figure 2. Canopy cover for the true (bold line) and biased (solid line) cases and for GPFM using
various tuning parameters (broken lines) in case study #1.

Table 4. Average relative errors in parameter estimation (Equation (27)) for various values of the
crossover and mutation parameters.

Combination
Number

Crossover and
Mutation Parameters

for Parameters
(b and σp,

Respectively)

Crossover and
Mutation Parameters

for State (a and σs,
Respectively)

CGC SxbotQ SxtopQ CCx

A1 0.01 0.05 0.93 0.90 1.01 0.59
A2 0.05 0.05 0.65 0.78 1.13 0.84
A3 0.05 0.01 0.44 0.63 0.52 1.04
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Figure 3. Absolute relative error (relative to the true values) for the crop parameter estimations with
GPFM using various tuning parameters in case study #1. The error of the biased model (without
data assimilation) is also shown for comparison (solid line). Frame (a) shows the error for the canopy
growth coefficient; Frame (b) shows the error for the maximum root water extraction at the bottom of
the root zone; Frame (c) shows the error for the maximum root water extraction at top of the root zone
and Frame (d) shows the error for the maximum canopy cover.

Improvements in parameter estimations can be seen in Figure 3, which shows the absolute error
between the actual and estimated values of the four parameters included in the analysis. As can
be seen in Equation (16), the parameter CGC controlled early canopy development, which in turn
determined transpiration (water uptake) and biomass accumulation, so that its value influenced all
states most strongly. However, it must be noted that CGC did not enter the calculations until CCx
was reached (see Equations (18) and (19)), which occurred around day 72, and thus the error in this
parameter beyond that date is irrelevant. Until then, data assimilation led to significant improvement
in the estimation of this parameter (Figure 3a). As expected, larger values of σp and b compared
to σs and a led to faster convergence and greater overall improvement. Data assimilation also led
to consistent improvement in the estimation of SxBotQ (maximum root water extraction at top of
the root zone) (Figure 3b), with again greater and faster improvements obtained for larger values
of σp and b compared to σs and a. It is noteworthy that these two parameters had the largest initial
relative errors. For the parameters SxTopQ (maximum root water extraction at the bottom of the root
zone) and CCx, the behavior was more erratic. SxTopQ affected the computations mostly during the
early stages of crop development, when the rooting depth was still limited. The erratic behavior of
CCx could be due the fact that it had direct influence of the canopy cover estimations during part
of the growth period. In case of low adjustment of the parameters relative to the state adjustment,
the CCx was estimated more accurately (Figure 3d). The overall improvements achieved for all three
combinations are summarized in Table 4, which shows the average error (relative to the error of the
biased model) in parameter estimate (over the ensemble) averaged over time as follows:

E =

∑end
t=1

∑N
i=1

∣∣∣∣θi
t|t − Ptrue

∣∣∣∣
N·tend|Pbiased − Ptrue|

(27)

where θi
t|t is the posterior parameter within particle i at time t, tend is the length of the growing period,

and N is the ensemble size.
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On the basis of these results that showed better performance when favoring parameter adjustments
over state adjustments, we conducted most of the subsequent analyses with such a configuration.

Decreasing the ensemble size was expected to negatively impact the overall performance
of the filter, especially since, compared to sequential estimations of the state and parameters,
simultaneous estimation enlarged the problem substantially. The results shown in Table 5 show
that this was indeed the case. It is noteworthy that for CGC, which, as discussed above, influences the
computations strongly but only for a limited period, a significant improvement was obtained even
with small ensemble sizes. For less influential parameters such as SxtopQ and SxbotQ, significant
improvements were obtained only with large ensemble sizes.

Table 5. Average errors in parameter estimation (Equation (27)) for various ensemble sizes. The results
obtained with evolutionary particle filter Monte Carlo Markov Chain (EPFM) are given in parentheses
for comparison.

Combination
Number

Crossover and Mutation
Parameters for

Parameters (b and σp,
Respectively)

Crossover and Mutation
Parameters for State

(a and σs, Respectively)

Ensemble
Size CGC SxbotQ SxtopQ CCx

E1 0.05 0.01 100 0.29
(0.76)

1.69
(0.97)

1.25
(0.98)

0.69
(1.02)

E2 0.05 0.01 500 0.31
(0.77)

1.41
(0.81)

0.75
(0.88)

0.96
(1.10)

E3 0.05 0.01 1200 0.33
(0.83)

1.12
(0.80)

0.95
(0.89)

1.11
(1.08)

E4 0.05 0.01 1500 0.23
(0.75)

0.99
(0.82)

1.01
(0.95)

0.67
(1.09)

E10 0.01 0.05 500 0.97
(1.00)

1.02
(1.00)

1.02
(0.99)

0.56
(0.99)

E20 0.01 0.05 1000 0.92
(1.00)

1.03
(0.99)

0.94
(1.00)

0.46
(1.05)

When comparing the results of GPFM with the results of the EPFM method of
Abbaszadeh et al. [17], we can observe that the influence of the ensemble size on the parameters
improvements was much stronger and consistent for the present method. With EPFM, a 10-fold increase
of the ensemble size only marginally improved the estimations of most parameters. This conservative
behavior can be attributed to the fact that the parameter estimation was based on random perturbation
rather than mutation and crossover, which are based on roulette wheel selection. As mentioned,
roulette wheel selection is most likely to choose the particles with high weights.

This behavior was further observed in a second analysis, in which the state adjustments were
favored over parameter adjustment (Table 5, bottom rows). In this case, EPFM did not result in any
parameter improvements due to the low adjustment of the parameters. It worth mentioning that in
this case GPFM improved CCx estimations significantly.

A final analysis investigated the impact of the measurement noise on the parameter estimations.
The ensemble size used in this case study was 1000. Lower measurement noise is equivalent to greater
confidence in the measurements, which leads to high likelihoods of the particles, which are close to the
measurements (Equation (13)), high weights, high acceptance ratio (Equation (15)), and ultimately
stronger adjustments of the parameters and/or states towards the true values. The results shown in
Table 6 show that this was indeed the case for GPFM, which showed overall good estimations in low
measurement noise. On the other hand, the results obtained with EPFM were only marginally affected
by the amplitude of the measurement noise. As with ensemble size, an additional test was conducted
under low parameter adjustment relative to the state adjustment. In this case, GPFM estimations
remained satisfactory, while EPFM failed to achieve good results (Table 6, bottom rows). It worth
mentioning that in this test, CCx became the parameter most significantly improved. This agrees with
the results presented above and strengthens the observation that CCx has to be adjusted moderately
due to its high influence on the canopy cover.
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Table 6. Average errors in parameter estimation (Equation (27)) for various measurement noise values.
The results obtained with EPFM are given in parentheses for comparison.

Combination
Number

Crossover and Mutation
Parameters for

Parameters (b and σp,
Respectively)

Crossover and Mutation
Parameters for State

(a and σs, Respectively)

Noise
STD CGC SxbotQ SxtopQ CCx

N1 0.05 0.01 0.01 0.27
(0.69)

0.69
(0.79)

0.87
(0.95)

0.71
(1.11)

N2 0.05 0.01 0.02 0.26
(0.73)

0.87
(0.75)

0.85
(0.93)

0.71
(1.11)

N3 0.05 0.01 0.03 0.33
(0.79)

0.88
(0.78)

1.02
(0.92)

0.83
(1.13)

N4 0.05 0.01 0.04 0.40
(0.72)

1.12
(0.76)

1.06
(0.94)

0.79
(1.09)

N5 0.05 0.01 0.05 0.44
(0.82)

1.04
(0.78)

1.30
(0.96)

0.98
(1.09)

N10 0.01 0.05 0.01 0.92
(1.00)

1.03
(0.99)

0.94
(1.00)

0.46
(1.05)

N20 0.01 0.05 0.05 0.93
(0.99)

1.10
(1.00)

1.12
(1.00)

0.37
(1.02)

In summary, the largest improvements were obtained for the estimation of CGC, which influences
canopy development strongly and directly and indirectly influences other crop processes.
The estimation of CCx was better in cases where the parameters were adjusted moderately, due to
its large influence of the measured state. The influence of the parameters SxbotQ and SxtopQ on
crop development was much more limited, and the estimated parameters remained close to their
original values. These results emphasize the relation between the accuracy of the parameter estimation
and their influence of the measured state, as discussed in literature [34–36].

Overall, the three factors investigated affected the performance of GPFM as expected.
More accurate parameter estimations were obtained with larger ensembles; lower measurement noise;
and, when favoring parameters, adjustments over state adjustments. By comparison, these three
factors had a much weaker impact on the performance of EPFM. Two factors can explain the lower
sensitivity of EPFM to the factors investigated. First, EPFM changes the parameters only through
perturbation and no crossover is applied, as is the case in GPFM. Second, EPFM changes parameters in
particles that are chosen randomly, while GPFM changes parameters in particles that are chosen by
roulette-wheel selection. These particles are supposed to be with high weights and hence have high
influence on the ensemble distribution.

The superiority of GPFM for parameter estimation can be attributed partly to the integration
of genetic operators in the parameter estimation process. In contrast, the state estimation process is
similar in both methods. Hence, both methods resulted in accurate state estimation in all the tests
(details not shown).

4.1.2. Prediction Capability of the Adjusted Models

Although convergence of the model parameters toward their true values is an indication of the
capability of the adjusted model to provide accurate predictions (assuming that the driving inputs
are known), the ability of the adjusted model to accurately predict future crop development and soil
water content was further quantified as follows: on each day, t0, the average particle was calculated
according to

x =

∑N
i=1 xi

t0 |t0

N
θ =

∑N
i=1 θ

i
t0 |t0

N
(28)

where xi
t0 |t0

is the posterior state within particle i at time t0.
The corresponding model was used to simulate the crop development and soil water content until

the end of the season:
xt+1 = f

(
xt, ut,θ

)
for t = t0..tendxt=t0 = x (29)



Agriculture 2020, 10, 606 15 of 22

and the average prediction error was then calculated as

E =

∑tend
t=t0
|Vt − xt|

tend − t0
(30)

where Vt denotes the true value of the state variable of interest (CC, biomass, or soil water content).
In the case of water content, the error, which is a vector with size equal to the number of sub-layers,
was averaged. The end-of-season yield predicted by each model was also recorded.

The results for CC are presented in Figure 4. Only some of the combinations investigated are
shown for clarity. It can be seen that data assimilation with either method significantly improved
the ability of the model to correctly predict CC development. GPFM showed superior prediction
performance in the period between day 50 and day 110, which corresponds to the critical period during
which canopy develops at a fast rate (See Figure 2). This ability to predict CC development more
accurately had a direct impact on the ability to predict yield (Figure 5). The yield predicted by both
methods is close, except during days 50–110, during which there was a clear advantage to GPFM.

Figure 4. Prediction error of the proposed method (GPFM) of canopy cover (compared to the true
model values) averaged over time for selected combinations in case study #1. The prediction errors of
the biased model (solid line) and EPFM (blue lines) are also shown for comparison.Agriculture 2020, 10, x FOR PEER REVIEW 16 of 22 
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The water content predictions were barely improved by either method in all the tests (not shown),
which can be explained by the fact that, as noted above, the two parameters related to root
water extraction, SxBotQ and SxTopQ, were adjusted only marginally.

4.2. Case Study #2

Case study #1 was somewhat unrealistically simplistic in the sense that the soil was
perfectly modeled. By comparison, in this second case study, the ‘true’ and ‘biased’ models differed in
terms of six crop parameters and six soil parameters.

Compared to the ‘no-assimilation’ case, GPFM improved the estimation of canopy cover dramatically,
as early as a few days after emergence, similarly to what was observed in Figure 2. Data assimilation
also led to a much more accurate estimation of water content throughout the whole soil profile. This can
be appreciated visually in Figure 6, which shows snapshots of the estimated water profile for three
series of four consecutive days. Quantitative results are presented in Figure 7, which shows the sum of
squared errors (SSE) between estimated and actual water content in each soil layer. The cyclic behavior
observed for the biased model was due to the weekly irrigation events and is a clear indication of the
inability of the model to correctly represent the system dynamics. By comparison, data assimilation
reduced the modeling errors drastically in all three layers. Convergence toward the correct profile was
notably faster in the bottom layer, which exhibited the slowest dynamics.

The convergence of the soil hydraulic parameters toward their true values can be appreciated
in Figure 8. For the top and middle layers, data assimilation led to significant improvement in the
estimations of θfc and θsat, and negligible improvement in the estimation of Ksat. For the bottom layer,
significant improvement was achieved only for θfc, while Ksat estimate worsened. These results can
be explained by the fluctuations caused by irrigation in each layer (see also Figure 6)—in the top layer,
the water content exhibited very large variations; in the middle layer, the water content fluctuated
around field capacity; and in the bottom layer, the water content remained very close to field capacity.
Overall, accurate estimation of Ksat appears to be much more challenging than that of the
other parameters, which may be due to the influence of this parameter being low compared to
other parameters, as observed in [37].Agriculture 2020, 10, x FOR PEER REVIEW 17 of 22 
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The time evolution of the estimation errors for the crop parameters is shown in Figure 9.
Overall, the estimations of the crop parameters appeared to be more erratic than for the soil parameters
(Figure 8). However, this was not entirely surprising, as not all the parameters chosen had a direct
impact on the measured variables, and some of them were involved in the computations only during a
certain period. On the other hand, the soil parameters influenced the water content along the whole
simulation period. CCx and MaxRooting improved as they are influential parameters. CGC was
not improved, despite its high influence on canopy cover. Both the large improvement of CCx and the
low improvement of CGC agreed with the previous case studies where the parameter adjustments were
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small relative to state adjustment. Flowering, maturity, and HIstart have low influence of canopy cover,
and hence poorer estimations were obtained for these parameters.
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As in the previous case study, improved estimations of canopy cover and soil water content led to
improved estimates of the final biomass and yield, as summarized in Table 7.

Table 7. Yield and final biomass for the true model, the biased model without assimilation, and the
biased model with data assimilation. (The number of parenthesis correspond to the relative error as a
percentage.)

Method Yield (t ha−1) Biomass (kg ha−1)

True 5.86 1171
Biased 3.64 (−37) 776 (−34)
GPFM 5.16 (−12) 1086 (−7)

5. Conclusions

A framework integrating GA, PF, and MCMC for estimating parameters and state simultaneously
was introduced. This framework, which was illustrated on two simulation examples with the crop
model AquaCropOS, is generic and could be applied to any data assimilation application with any
simulation model. The method was compared in two case studies with EPFM, in which the state and
parameters were adjusted sequentially rather than simultaneously as in the present procedure. In the
first case study, the proposed method led to more accurate estimations of the parameters and state,
and improved the capability of the model to predict future crop development. Compared to EPFM,
the superiority of the proposed method was more pronounced when used with large ensembles,
as simultaneous estimation of the parameters and state enlarged the problem significantly. In the second
case study, the method led to improved predictions of canopy cover, water content, final biomass,
and yield. With respect to model parameters, whether or not a specific parameter was estimated
accurately or not mostly depended on the influence that this parameter had on the measured variables.
This indicates that rather than selecting parameters for adjustment “blindly”, as was done in this study
(and in the literature), one should in fact select these parameters via sensitivity analysis.
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Symbols

a User-defined crossover parameter for state
b User-defined crossover parameter for parameters
B Above-ground biomass
CC Canopy cover
CC0 Initial canopy cover
CCx Maximum canopy cover
CDC Canopy decline coefficient
CGC Canopy growth coefficient
CCadj Canopy size (adjusted for micro-advective effects)
E Average prediction error
E Error in parameter estimate (over an ensemble) averaged over time
ET0 Reference evapotranspiration
f ( ) Model
Fin

i Water flowing into layer i from the previous layer
Fout

i Water flowing from layer i into the next layer and removed by the roots
h( ) Measurements operator
HI Harvest index
Ksat Hydraulic conductivity at saturation
Ksb Influence of temperature stress on biomass accumulation
Kcb Crop-dependent coefficient used to express the impact of stress
kp Number of the gene in the parameter vector within the particle
ks Number of the gene in the state vector within the particle

L
(
yt

∣∣∣∣xi,p
t ,θi,p

t

)
Likelihood

Ptrue True parameters
Pbiased Biased parameters
Qt Process noise covariance
Rt Measurements noise covariance
SxBotQ Maximum root water extraction at the bottom of the root zone
SxTopQ Maximum root water extraction at top of the root zone
tend Length of the growing period
Tr Crop transpiration
ut Forcing input
Vt True value of the state variable
WP Water productivity
xt State vector at time t
xi,cm

t−1 State obtained by crossover and mutation at time t− 1
xi

t−1 State of the parent particles with index i
xi,p

t The proposal state within particle i at time t
xi

t0 |t0
Posterior state within particle i at time t0

Y Yield
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yt Vector of measurements
∆Wi Change in water amount in layer i
ηp Gaussian noise for parameters mutation
ηs Gaussian noise for state mutation
θ Vector of model parameters
θfc Water content at field capacity
θsat Water content at saturation
θi,cm

t−1 Parameters within particle i obtained by crossover and mutation at time t− 1
θi

t|t Posterior parameter within particle i at time t
υt Measurements noise
σ2

p Variance of parameters mutation noise
σ2

s Variance of state mutation noise
ωt Process noise
Acronyms
DSS Decision support system
EKF Extended Kalman filter
EPFM Evolutionary particle filter combined with Monte Carlo Markov Chain
FAO Food and Agriculture Organization
GA Genetic algorithm
GPFM Genetic-based particle filter combined with Monte Carlo Markov Chain
KF Kalman filter
MA Metaheuristic algorithm
MCMC Monte Carlo Markov Chain
PF Particle filter
UKF Unscented Kalman filter
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