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Abstract: African countries such as Nigeria are anticipated to be more susceptible to the impacts of 
climate change due to reliance on rainfed agriculture. In this regard, the impacts of climate change 
on crop water requirements (CWR), yields and crop water productivity (CWP) of soybean in the 
Ogun-Ona River Basin, Nigeria, were evaluated for the baseline period (1986–2015) and future 
period (2021–2099) under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios using 
AquaCrop Version 6.1. Future climate projections from the Swedish Meteorological and 
Hydrological Institute’s climate models (HadGEM2-ES and RCA4) were used in simulating the 
future scenarios. The results show that for the baseline period, CWR and yield are increasing while 
CWP shows a slight increase. For the future period, the CWR is projected to fluctuate and depend 
on the rainfall pattern. Meanwhile, carbon dioxide fertilization has positive effects on yield and is 
projected to increase up to 40% under RCP 8.5. The results of this study certainly offer useful 
information on suitable adaption measures which could be implemented by stakeholders and 
policymakers to improve soybean productivity in Nigeria. 

Keywords: crop water requirements; AquaCrop; crop water productivity; carbon dioxide 
fertilization; Ogun-Ona River Basin; Nigeria 

 

1. Introduction 

Africa is projected to be more vulnerable to climate change impacts due to reliance on natural 
resources, the high level of climate variability, the vast rainfed agriculture, and the low institutional 
and economic capacity to manage and adapt to climate change [1–3]. The connection between 
agriculture and climate change is interwoven. It is predicted that agriculture will be greatly affected 
by climate change and agriculture will contribute to climate change. According to Food and 
Agriculture Organization (FAO), a 60% increase above the 2006 global food demand levels is 
expected by 2050 as a result of rapid population growth, increase in urbanization, as well as income 
growth [4]. Water use for agriculture amounts to about 70% of all water withdrawals from rivers, 
lakes, streams and aquifers [5]. However, water resources, which are the basis for food production 
are finite and currently under serious pressure. Despite this pressure, water resources need to meet 
up with current and future demands for agricultural, domestic and industrial uses. 

The main biophysical processes involved in agricultural crop production such as evaporation 
from soils, transpiration from plants, nutrient cycles and growth of plants are altered by climate 
change [6]. Thus, the climate is a vital factor in crop production and could directly influence crop 
productivity. Studies have shown that climate change will affect water and crop productivity 
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differently depending on location, crops and climatic zone [6–13]. While some crops will benefit, 
other crops will be affected negatively [7]. Some crops will perform optimally with hotter 
temperatures and long growing seasons [5]. However, studies have shown that the negative effects 
might exceed the positive effects across different locations [8–13]. The interaction among water, food 
and climate change shows that it is important to examine the impacts of climate change on water and 
crop productivity. Meanwhile, one of the means of examining these impacts is through the use of 
crop models coupled with future climate projections. Recently, crop modelling and crop model 
applications have gained more interest in examining the impacts of climate change on water and crop 
productivity. Due to the threats of climate change on agricultural water use and other demanding 
uses, simulation models have been found to be significant tools in evaluating the water needs of crops 
[9–15]. These models are developed to estimate crop growth, development, yield, water use 
efficiency, water consumption and irrigation schedules under different climatic conditions, soil 
textures, field management, conservation practices and soil fertility. 

Several studies in Nigeria have shown that the increase in temperature will affect water and crop 
productivity [9,16–20]. The predicted changes in temperature, consecutive dry and wet days will 
likely have huge impacts on water and crop productivity in Ogun-Ona River Basin and Nigeria at 
large. Crop development, water requirements and growth are highly dependent on the number of 
consecutive dry and wet days. Most agricultural production in Nigeria depends on rainfall. 
Therefore, significant changes in rainfall patterns, the number of consecutive dry and wet days will 
greatly impact crop production and might lead to food insecurity if proper and urgent actions are not 
taken. Crop water requirement (CWR) is the total amount of water that crops need for growth 
throughout the season [21–23]. In addition, there are uncertainties in future crop yield and crop water 
productivity (CWP). Yield is the harvestable quantity of crops [24] and CWP is the ratio of crop yield 
to the quantity of water consumed by the crop during a growing season [24]. Hence, it is important 
to examine the impact of climate change on water and crop productivity due to the fact that the 
impacts of climate change vary across locations and activities. 

Soybean is one of the common staple foods grown in Nigeria. Soybean is a profitable crop that 
is grown in all parts of Nigeria but predominant in the sub-humid and savannah agro-ecological 
zones which cover the Ogun-Ona River Basin [9]. Nigeria and South Africa are the two leading 
African countries in the production of soybean and responsible for 29% and 40% of total African 
production respectively [25]. Soybean production is expected to rise due to population growth, an 
increase in food demand and a shift in food consumption. Currently, there is an increased demand 
for soybean globally and production is expected to double by 2050 compared to the rate of production 
in 2010. Soybean is a typical C3 plant. C3 plants are the type of plants that their first products of 
photosynthesis give a 3-carbon compound i.e., phosphoglyceric acid (PGA). Other features of C3 
plants are that the optimal temperature required for photosynthesis is really low, photorespiration 
rate is high, the plants perform more efficiently when the temperature decreases and CO2 fixation is 
really low in C3 plants [26]. Additionally, soybean is highly sensitive to changes in climate and soil 
properties [27]. Also, Kumagai et al. [28] found that the plasticity of biomass and pod production at 
a low planting density reveals suitable parameters to maximize soybean yield under elevated 
atmospheric carbon dioxide (eCO2). 

In Ogun-Ona River Basin, soybean is predominantly cultivated under rainfed agriculture which 
means that irregularities in rainfall pattern and rise in temperature can cause water stress for crops 
and significantly affect yields and water requirements. Soybean has been reported to be highly 
sensitive to climate change [25]. Just as other crops, there are a lot of uncertainties on the responses 
of soybean to rise in temperature, changes in rainfall patterns and an increase in atmospheric CO2 
concentration. However, there are some studies that have been carried out to predict this 
phenomenon. A significant increase in soybean yield was projected in Cameroon when simulated 
with a process-based crop model (CropSyst) coupled with two global climate models (GCMs) under 
different climate change scenarios [29]. The growing season of soybean is also projected to shorten 
by 2 days to 23 days [29]. Similarly, studies have shown that due to carbon fertilization of C3 plants 
such as soybean, there are tendencies that crop yield might increase especially under extremely high 
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atmospheric CO2 concentration [13]. In contrast to the projected yield increase by [13], soybean yield 
is predicted to reduce when simulated based on global climate models [25]. Still, there are several 
uncertainties regarding soybean water and crop productivity globally. 

Since rainfed soybean production is predominant in Ogun-Ona River Basin, it is becoming 
increasingly difficult to grow it as climate change impacts on agriculture intensifies. However, will 
soybean perform optimally under various climate change scenarios in Ogun-Ona River Basin? With 
the current growing water demands and the threats of climate change, how will soybean behave 
under a changing climate? What will be the future water requirements of this crop? Will soybean 
yields increase or decrease? These uncertainties pose great challenges to crop productivity, irrigation 
and water allocation for agriculture. In order to provide more clarity, it is imperative to conduct more 
studies to examine how soybean will respond to various locations since the impact of climate change 
is spatially distributed. Therefore, this study seeks to: 

(1) Estimate the seasonal CWR, yield and CWP of soybean during the baseline period (1986–2015) 
within the study area based on different soil textures. 

(2) Simulate the future seasonal CWR, yield and CWP of soybean for various soil textures under 
different climate change scenarios (2021–2099). 

(3) Compare the future seasonal CWR, yield and CWP of soybean for various soil textures to the 
baseline period under different climate change scenarios. 

2. Materials and Methods 

Figure 1 presents the flowchart of the methodology and describes how the study was carried 
out. 

 
Figure 1. The flowchart of the methodology employed. 

2.1. The Study Area 

The study area of this research is the Ogun-Ona River Basin located in the south-western region 
of Nigeria. The basin is located between latitude 6°33′–9°00′ N and longitude 2°40′–4°00′ E, Figure 2, 
and covers about 29,040 km2. Ogun and Ona rivers, from which the basin derives its name, are the 
major rivers in the basin. This basin is a sub-basin of the Ogun-Osun River Basin within the 
jurisdiction of the Ogun-Osun River Basin Authority. The study area is located in the derived 
savannah agro-ecological zone of the country which is characterized by tropical climate as well as 
wet and dry seasons. The temperature of the region ranges from 21 °C to 34 °C and average rainfall 
is 1340 mm between March and September. This region is largely agrarian, and the population 
heavily depends on agriculture as the source of income. 
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Figure 2. The geographical location of the study area. 

2.2. AquaCrop 

AquaCrop is a crop water productivity model used with decision support systems. The model 
was developed by the Land and Water Division of the Food and Agriculture Organization (FAO) 
[24,30]. This model is user-friendly, not complex and requires relatively few parameters for 
calibration compared to other crop models [31]. The parameters describe the soil, crop and 
atmosphere interactions that are highly crucial for crop growth. AquaCrop Version 6.1 which is the 
latest version of the model was used in this study. The model was selected based on the following: 

(1) Process-based crop models such as AquaCrop are superior to the statistical crop models 
especially in the assessment of the impact of climate change on crop growth, yields, and water 
requirements [10]. 

(2) AquaCrop simulates crop growth based on a water-driven mechanism which is more suitable 
for climate change studies because it normalizes the water productivity for evaporation and 
carbon (iv) oxide concentration [24,26,30]. 

(3) AquaCrop has been widely used and validated in various climatic conditions for the assessment 
of climate change impacts on crop growth, development and water requirements with reliable 
outputs. 

(4) The algorithms and equations are well documented [24,26,30,31]. 

Based on these points, the model fits into the objectives and scope of this study. 
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2.2.1. Evapotranspiration, Crop Yield and Water Productivity 

Reference evapotranspiration (ET0) is estimated in AquaCrop from inputted climate data using 
the Penman-Monteith equation [32] which has been reported as the most effective method of 
estimating evapotranspiration [33]. CWR is estimated in the model as given in Equation (1). 

0ETKET cc ×=  (1) 

=cK  Crop coefficient, describes the impacts of crop height, crop cover, canopy resistance, and 
soil evaporation. The value differs throughout the growing season; =cET  Crop 
evapotranspiration (mm/day). 

In terms of calculating crop yield, AquaCrop uses the multiplication of biomass and harvest 
index as given in Equation (2) [24,34]. 𝑌 = 𝐻𝐼 × 𝐵 (2) 

where: Y = Crop yield (kg/ha or t/ha), HI = Harvest index (fraction or percent), B = Biomass (t/ha or 
kg/ha). 

In the model, daily transpiration is calculated by multiplying the crop coefficient with ET0 and 
soil coefficient as given by [30] in Equation (3). 𝑇 = 𝐾𝑠 𝐾𝑐 . × 𝐶𝐶∗ 𝐸𝑇  (3) 

where Tr = Crop transpiration (mm/day), Ks = stress factor (Kssto or Ksaer) (fraction), CC * = adjusted 
green canopy cover (fraction), 𝐾𝑐 .  × 𝐶𝐶∗ = crop coefficient. 

In estimating yield, the model automatically adjusts the harvest index to respond to temperature 
changes and water stress conditions which is very crucial for this study. The daily biomass 
production in the model is estimated as given by [30] in Equation (4). 𝐵 = 𝐾 × 𝑊𝑃∗ × 𝑇𝐸𝑇  (4) 

where B = daily aboveground biomass (t/ha or kg/m2), Tr = daily crop transpiration (mm/day), ET0 = 
daily reference evapotranspiration (mm/day), WP* = water productivity of the crop variety 
normalized for atmospheric CO2 concentration levels and evaporation (kg/m3), Ksb = Cold 
temperature stress factor for biomass (fraction). 

In AquaCrop, the modification coefficient for the atmospheric CO2 concentration is estimated by 
using Equation (5) for the normalization of CO2 concentration which is essential for normalizing 
water productivity [24,30]. 
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where 
2COf  = Modification coefficient for CO2 (dimensionless), aC  = Atmospheric CO2 (µL/L), 

0,aC  = Baseline CO2 recorded in 2000 at Mauna Loa Observatory Centre, Hawaii which is 369.47 

µL/L. 
Meanwhile, CWP is the ratio of crop yield to the quantity of water consumed by the crop during 

a growing season, Equation (6) [9,31]. 𝐶𝑊𝑃 =  𝑌𝑖𝑒𝑙𝑑𝐸𝑇  × 100 (6) 

CWP = crop water productivity in kg/m3, Yield in t/ha and ETa in mm/season. ETa accounts for 
water that is consumed and, in the model, it consists of soil evaporation and plant transpiration. The 
unit conversion factor is 100. 
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In addition, when it rains, not all rainwater is available for crops. Some water losses occur 
through runoff and deep percolation. The amount of water from rainfall available for crops within 
the crop root zone after loses is known as effective rainfall. In AquaCrop, the United States 
Department for Agriculture (USDA, Washington, DC, USA) Soil Conservation method is used to 
estimate the effective rainfall so as to consider water loss through runoff and deep percolation which 
are components of water balance. The formulas are given in Equations (7) and (8). 





 ×−×=

125
)6.0125( decdec

eff
PPP  for decP  ≤ 250/3 mm (7) 

deceff PP ×+





= 1.0

3
125 for decP  > 250/3 mm (8) 

where effP  = Effective rainfall (mm/day), and decP  = 10-day rainfall (mm/decadal) 

2.2.2. Soil Water Balance 

Soil water balance is an integral component of AquaCrop since the model operates on a water-
driven mechanism with the biomass production linked with transpiration. The model simulates soil 
water balance on a daily basis by adjusting the soil water content throughout a given soil profile [30]. 
In order to cater for the fluctuations in soil water content such as incoming water fluxes (rainfall 
irrigation and capillary rise) and outgoing water fluxes (evaporation, runoff, transpiration and deep 
percolation), the root zone of the soil is regarded as a reservoir [30]. Drainage and infiltration within 
the root zone are simulated by a series of equations in terms of the dependent variable (θ) through a 
unitless drainage factor usually obtained from Ksat [24]. It is also possible to consider groundwater 
movement in soil water balance in areas where there is a shallow groundwater table to the root zone. 

2.3. Data Collection 

2.3.1. Climate Data 

The climate data from 1976–2015 (40 years) of the basin were acquired from the Nigerian 
Meteorological Agency (NIMET). The datasets of 1976–1985 (10 years) were only daily rainfall, 
maximum and minimum temperatures used for climate model evaluation while the datasets of 1986–
2015 (30 years) were daily rainfall, maximum and minimum temperatures, relative humidity, wind 
speed and solar radiation used for historical simulations. The mean monthly values and trend of the 
climatic parameters from 1986–2015 are shown in Table A1, Figures A1 and A2 in Annex. The figures 
reveal that the rainy season starts from April to July before a short dry period in August known as 
August break. The peak is around June, July and September with around 200 mm while the lowest 
rainfall is usually in January and December with less than 10 mm. Meanwhile, the annual mean 
temperature of the basin is 26.7 °C. The months of February and March are usually the hottest periods 
with a maximum temperature of 34.8 °C and 34.4 °C, respectively. 

2.3.2. Soil Data 

Soil physical and chemical properties of the basin were obtained from the Harmonised World 
Soil Database (HWSD) which has a resolution of 1 km (30 arcs second). The data was downloaded 
from the FAO website (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases) [35]. 
The soil in the basin is dominantly Ferric Luvisols and Lithosols [36]. The textures of the agricultural 
soils (0–100 cm) are predominantly sandy loam, loamy sand and sandy clay loam. The soil data was 
validated with data obtained from the Ogun-Osun River Bain Authority and field experiments. 
Thereafter, the percentages of sand, silt and clay particles were used to obtain the hydrological 
properties such as permanent wilting point (PWP), field capacity (FC), saturation (SAT), total 
available water (TAW) and hydraulic conductivity (Ksat) using SPAW model (Version 6.02) 
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(https://hrsl.ba.ars.usda.gov/soilwater/index.htm) which is a soil water properties model previously 
employed by [9,11,37]. The soil properties used for calibration and modeling are given in Table 1. 

Table 1. Calibrated soil properties and descriptions in the model. 

Soil Texture (0–100 cm) 
PWP FC SAT TAW Ksat 

(vol. %) (vol. %) (vol. %) (mm/m) (mm/Day) 
Loamy sand 8.0 14.0 46.0 60.0 1560.0 

Sandy clay loam 17.7 27.5 43.0 98.0 214.0 
Sandy loam 11.5 19.0 43.3 75.0 804.4 

2.3.3. Crop Data 

Four years of experimental crop data (2012–2015) were obtained from the Agricultural 
Development Programme (ADP). The data which contains crop parameters from different soil 
textures were obtained during experiments and farming seasons that were done in various locations 
within the basin. The information reveals the planting spacing of soybean spacing was 25 cm and 65 
cm intra and inter-row spacing, respectively. The variety of soybean used in experiments was TGX 
1448-2E. The data for 2012 and 2013 growing seasons were used for calibration while validation was 
done using data for 2014 and 2015 growing seasons. 

2.3.4. Future Climate Projections 

The future climate data were obtained from the Coordinated Regional Downscaling Experiment 
(CORDEX) project and downloaded from the Earth System Grid Federation server (https://esgf-
index1.ceda.ac.uk/search/cordex-ceda/). In the CORDEX project, multiple GCMs have been 
downscaled using different regional climate models (RCMs) to regional levels including Africa. The 
CORDEX-Africa datasets are available in daily, 10-day and monthly periods at a spatial resolution of 
0.44° × 0.44° which is approximately 50 km × 50 km for the period of 1951–2005 (historical) and 2006–
2099 (future). Based on an extensive literature review, the Rossby Centre Regional Climate Model 
(RCA4), which is one of the RCMs developed by the Swedish Meteorological and Hydrological 
Institute (SMHI) under nine GCMs in CORDEX-Africa, was selected. RCA4 has been assessed with 
highly satisfactory results in some studies [38,39]. MOHC-HadGEM2-ES under RCA4 can effectively 
capture the future climate of West Africa with satisfactory results [38]. In addition, the projections of 
MOHC-HadGEM2-ES under RCA4 for Ogun-Osun River Basin (where the study area is located) 
performed satisfactorily when compared with other models [9]. Hence, MOHC-HadGEM2-ES under 
RCA4 was selected. MOHC-HadGEM2-ES datasets were evaluated with the historical dataset of the 
study area. Climate models simulate climate parameters at each grid point depending on its 
resolution. Historical daily rainfall, minimum and maximum temperatures of the basin simulated by 
the RCM for 1976–2005 (30 years) were downloaded for evaluation with the observed data. 

2.4. Performance Evaluation and Bias Correction of Future Climate Model 

In order to access the performance and ability of the climate model to capture the observed data, 
four statistical indicators which are coefficient of determination (R2), root mean square error (RMSE), 
mean absolute error (MAE) and Nash-Sutcliffe modeling efficiency (NSE) were employed. R2 is a 
dimensionless indicator that expresses the fit between observed and simulated values. It ranges from 
0 to 1.0 for which a value of 1 shows a perfect fit between the observed and simulated values. RMSE 
is a measure of the entire and mean deviation between simulated and observed values. It has the unit 
of the parameter that is being simulated, which implies that the closer the value to zero, the better the 
performance of the model. MAE gives the mean of the deviation between simulated and observed 
values and has the unit of the parameter that is being simulated. The closer the value of MAE to zero, 
the better the performance of the model. NSE is a unitless coefficient that ranges from −∞ to 1 which 
measures the general deviation between simulated and observed values. An efficiency of 1.0 reveals 
a perfect match between simulated and observed values. The closer the efficiency is to 1.0, the better 
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the performance of the model. When NSE is less than zero, it means that the observed mean is a better 
predictor. 

The daily observed and simulated climatic data for the historical period of 1976–2005 were used 
for the evaluation. The results of the evaluation as given in Table 2 reveals that HadGEM2-ES 
downscaled by RCA4 performed satisfactorily. The negative value of NSE for rainfall depicts that the 
observed mean is a better predictor than the model. In order to correct this and improve the 
performance of the model, the rainfall dataset for HadGEM2-ES was bias-corrected. 

Table 2. Statistical evaluation of HadGEM2-ES downscaled by RCA4 on historical data (1976–2005). 

Statistical Parameters R2 RMSE (mm) MAE (mm) NSE 
Rainfall (before bias correction) 0.54 3.27 2.25 −0.11 
Rainfall (after bias correction) 0.75 0.52 0.43 0.76 

Minimum temperature 0.84 0.92 0.72 0.74 
Maximum temperature 0.85 0.89 0.68 0.75 

The bias correction technique applied is Quantile Mapping (QM) with the gamma distribution 
model. The principle of the QM technique relies on adjusting the cumulative distribution functions 
(CDF) of the simulated historical GCM/RCM data based on observed historical data as given in 
Equation (9). This method matches the CDF of the simulated historical GCM data and the observed 
historical data together thereby correcting the bias (extremes, intensity and frequency) in the future 
GCM data [7]. It has been proved that the quality of RCM data and shape of CDF is improved through 
QM in previous studies [7,9,39,40]. QM also performed better than the change factor method that was 
tested in this study. Thus, daily historical observed and simulated rainfall data from 1976–2005 (30 
years) were used to bias correct the future simulated data (2021–2099) through QM. 𝑦 = 𝐹obs−1 (𝐹𝑅𝐶(𝑥)), (9) 

where y = bias-corrected future rainfall values, 𝐹obs−1 = inverse of the CDF of the observed values, 𝐹𝑅𝐶𝑀 
= CDF of the historical RCM data. 

Hence, future daily rainfall (after bias correction), minimum and maximum temperatures of the 
basin obtained from HadGEM2-ES (GCM) and RCA4 (RCM) for the period of 2021–2099 under 
Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios under the CORDEX-Africa project 
was used. 

2.5. Calibration and Validation of AquaCrop 

In the AquaCrop model, the planting date window was calibrated between 1–15 June which is 
the usual planting period of soybean within the basin. The crop cycle of soybean in Nigeria is 
provided in Figure A3 for a better understanding of its phenology. All the calibrated parameters and 
values used are given in Table A2. The model was calibrated to automatically select a planting date 
based on the establishment of rainfall (cumulative rainfall at least 40 mm) within each year according 
to the inputted rainfall data and starts simulation on that date. This was done to emulate the planting 
styles of farmers within the study area who plants after the onset of rainfall within those planting 
periods. The initial soil conditions were set at field capacity since rainfed agriculture is simulated. 
Meanwhile, groundwater intrusion has not been established on agricultural fields within the basin, 
thus, groundwater was not considered [9,15]. Soil infertility and weak weed management are 
common within the study. Hence, the soil fertility and weed management functions were both 
calibrated as moderate. In the model, soil fertility is moderate when it has 60% of the potential 
biomass production which corresponds to a nitrogen rate of 60 kg/ha as shown in field experiments 
within the basin. Then, all the management files were set up as project files. Each field with similar 
soil texture and management practices were grouped into single units to form projects under the 
historical period (1986–2015) and future period (2021–2099). 

In order to assess the performance of AquaCrop, the four years of experimental data obtained 
were evaluated through R2, RMSE, MAE and NSE. The results show that the simulated yields match 
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well with the observed yields. The average simulated and average observed soybean yields are 2.71 
and 2.69 t/ha respectively as shown in Table A3. Hence, satisfactory results obtained make the model 
reliable and suitable for both historical and future climate conditions of the basin. A preliminary 
sensitivity analysis was done on the physical soil properties and found out that the model is more 
sensitive to FC and PWP than other properties of the soil. Validation of water fluxes could not be 
done due to limited data but these validations have been done within the Ogun-Osun River Basin 
that AquaCrop performs satisfactorily in simulating water fluxes of soybean within the region [9]. 

3. Results 

3.1. Temporal Distribution of CWR, Yield and CWP in the Past Decades 

The CWR, yield and CWP of rainfed soybean were simulated from 1986–2015 (30 years) on the 
soil texture within the study area to estimate the changes in the trend of production and examine 
temporal variability of these parameters. CWR, yield, and CWP were averaged over all points with 
the same soil texture. 

3.1.1. Temporal Distribution of Seasonal Crop Water Requirements (CWR) 

According to Figure 3, soybean CWR on all the soil textures shows an upward surge. The 
trendlines show an increasing trend with the slope values 0.11, 0.18, and 1.01 mm/year on loamy sand, 
sandy clay loam and sandy loam soils respectively. Although, CWR was decreasing from 1986 to 
2006, it later increased in 2007 up till 2015. From this study, climate change is causing an increasing 
trend in soybean CWR in the basin. CWR can be affected by rainfall variability, change in temperature 
and CO2 concentration. The analyses show that climate change through increased temperature and 
huge variability of rainfall within the basin is causing an increase in the CWR of soybean. It shows 
that soybean CWR is mostly affected by rainfall variability than all other factors. Furthermore, it 
shows that even though the temperature is increasing, and the growing season is reducing, still 
soybean CWR is increasing. 

 
Figure 3. Temporal variability of CWR. 
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3.1.2. Temporal Distribution of Crop Yield 

For yields, according to Figure 4, the trendlines show that there is an increase in yield across the 
years. The results show positive slopes of 0.006, 0.002 and 0.006 t/ha/year on loamy sand, sandy clay 
loam and sandy loam soils respectively. The increasing trend in soybean yield is attributable to CO2 
fertilization [41] which has more influence than rainfall variability and increasing temperature. The 
seemingly positive effects of climate change on soybean yields show that while some crops are 
negatively affected, some crops are benefitting from climate change. Thus, within the basin, climate 
change has a positive impact on soybean yields. 

 
Figure 4. Temporal variability of yield. 

3.1.3. Temporal Distribution of Crop Water Productivity (CWP) 

According to Figure 5, a clear upward trend of CWP was observed on all the soil textures from 
1986 till it peaked in 2007 before declining from 2008 till 2015. In addition, the trendlines show that 
there is a slight increase in CWP of soybean on loamy sand, sand clay loam and sandy loam soils with 
slope values of 0.0014, 0.0004 and 0.001 kg/m3/year respectively. It shows that CWP follows the same 
pattern as yield. This is not surprising since CWP is directly proportional to crop yields. It further 
shows that soybean is effectively converting the consumptive water use into quantifiable yields. 
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Figure 5. Temporal variability of CWP. 

3.2. Future Changes in Climatic Parameters, CWR, Yield and CWP under Different Climate  
Change Scenarios 

The future changes in rainfall, minimum and maximum temperatures for future periods of near 
future (2021–2040), mid-century (2041–2070) and late-century (2071–2099) under RCP 4.5 and RCP 
8.5 scenarios relative to mean of the baseline period (1986–2015) were estimated based on the 
projections of HadGEM2-ES model. The analysis shows that the basin will experience a reduction in 
annual rainfall across all scenarios and future periods except in the period of 2041–2070. From Table 
3, under the RCP 4.5 scenario, annual rainfall will decrease by 10% by 2040, increase by 3% by 2070 
and decrease by 8% by 2099 compared to the average of the baseline period. In addition, both 
minimum and maximum temperatures will increase gradually from 2021 up to 2099 under both RCP 
4.5 and RCP 8.5 scenarios. RCP 8.5 is expected to be generally hotter than RCP 4.5 since RCP 8.5. The 
maximum temperature was projected to increase by 2.7 °C and 4.4 °C by the late century under RCP 
4.5 and RCP 8.5 scenarios, respectively, compared to the average of the baseline period. Similarly, 
minimum temperature is projected to increase by up to 2.4 °C and 4.2 °C by the late century under 
RCP 4.5 and RCP 8.5 scenarios, respectively, compared to the average of the baseline period. 

Table 3. Changes in rainfall, minimum and maximum temperatures for future periods under 
Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios relative to mean of the baseline 
period (1986–2015). 

Climatic 
Parameters 

Baseline 
(1986–
2015) 

Relative Changes 
RCP 4.5 RCP 8.5 

2021–2040 2041–
2070 

2071–2099 2020–2040 2041–2070 2071–2099 

Rainfall (mm) 1340 −140 (−10.4%) 45 (3.4%) −110 (−8.2%) −130 (−9.7%) −110 (−8.2%) −130 (−9.7%) 
Minimum 

temperature (°C) 
22.3 0.9 (4.0%) 1.4 (6.3%) 2.4 (10.8%) 1.4 (6.3%) 2.4 (10.8%) 4.2 (18.4%) 

Maximum 
temperature (°C) 

31.6 1.2 (3.8%) 1.9 (6.1%) 2.7 (8.5%) 1.5 (4.8%) 2.8 (8.9%) 4.4 (13.9%) 

Climate change is capable of significantly affecting agricultural production globally which is 
expected to be temporally and spatially distributed. The future CWR, IWR, yield and CWP of soybean 
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were simulated for future periods of near future (2021–2040), mid-century (2041–2070) and late-
century (2071–2099) under RCP 4.5 and RCP 8.5 scenarios based on the projections of HadGEM2-ES 
model. 

3.2.1. Future Seasonal Crop Water Requirements (CWR) 

The simulations show that climate change (change in rainfall and temperature) will significantly 
affect soybean CWR. The CWR of soybean is projected to decrease gradually from 2021–2099 as 
shown in Figure 6. Under RCP 4.5, the average CWR of soybean on loamy sand, sandy clay loam and 
sandy loam soils are projected to be 340, 347 and 351 mm in the near future; 321, 332 and 330 mm in 
the mid-century and 329, 334 and 337 mm in the late century respectively. Meanwhile, under RCP 
8.5, CWR of soybean will reduce largely when compared with the results under RCP 4.5 in all future 
periods. Under RCP 8.5, the average CWR of soybean on loamy sand, sandy clay loam and sandy 
loam soils are projected to be 328, 337 and 341 mm in the near future; 320, 330 and 332 mm in the 
mid-century as well as 293, 301 and 303 mm in the late century, respectively. 

 
(a) 

 
(b) 

Figure 6. Simulated future CWR under RCP 4.5 (a)and RCP 8.5 (b). 
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3.2.2. Future Crop Yields 

According to Figure 7, rainfed soybean yield is projected to progressively increase from 2021 to 
2099 under both RCP 4.5 and RCP 8.5 scenarios within the basin. In this case, higher yields are 
projected under RCP 8.5 than RCP 4.5. The results show that soybean yields are almost similar for 
the soils. Under RCP 4.5, the average soybean yield on loamy sand, sandy clay loam and sandy loam 
soils are projected to be 3.33, 3.26 and 3.41 t/ha in the near future; 3.58, 3.5 and 3.55 t/ha in the mid-
century and 3.55, 3.29 and 3.60 t/ha in the late century respectively. Similarly, under RCP 8.5, the 
average soybean yield on loamy sand, sandy clay loam and sandy loam soils are projected to be 3.22, 
3.19 and 3.26 t/ha in the near future; 3.60, 3.57 and 3.70 t/ha in the mid-century and 3.92, 3.83 and 4.01 
t/ha in the late century respectively. The higher yields under RCP 8.5 could be attributed to higher 
CO2 concentrations. 

 
(a) 

 
(b) 

Figure 7. Simulated future yields under RCP 4.5 (a) and RCP 8.5 (b). 
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3.2.3. Future Crop Water Productivity (CWP) 

The simulated future CWP show different variations for the future periods as well as under 
different climate change scenarios. According to the simulations, there will be huge variability within 
the soil textures and the growing seasons. The simulations of soybean CWP under both RCP 4.5 and 
RCP 8 scenarios show an increasing trend in the future years as shown in Figure 8. Under RCP 4.5, 
the average CWP of soybean on loamy sand, sandy clay loam and sandy loam soils are projected to 
be 0.99, 0.94 and 0.98 kg/m3 in the near future; 1.06, 1.02 and 1.05 kg/m3 in the mid-century and 1.09, 
0.99 and 1.08 kg/m3 in the late century respectively. Meanwhile, under RCP 8.5, the average CWP of 
soybean on loamy sand, sandy clay loam and sandy loam soils are projected to be 0.94, 0.90 and 0.96 
kg/m3 in the near future; 1.13, 1.12 and 1.13 kg/m3 in the mid-century and 1.35, 1.28 and 1.34 kg/m3 in 
the late century respectively. The projected CWP also follows the same pattern as yields. Higher CWP 
is projected under RCP 8.5 than RCP 4.5 due to simulated higher yields under this scenario. 

 
(a) 

 
(b) 

Figure 8. Simulated future CWP under RCP 4.5 (a)and RCP 8.5 (b). 
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3.3. Temporal Changes in Future Seasonal CWR, Yield and CWP under Different Climate Change Scenarios 
for Different Soil Textures 

The period of 1986–2015 was used as a baseline period to estimate the temporal changes in CWR, 
yield and CWP of rainfed soybean on different soil textures in three future periods of near future 
(2021–2040), mid-century (2041–2070) and late-century (2071–2099) under RCP 4.5 and RCP 8.5 
scenarios. 

3.3.1. Changes in Future Seasonal Crop Water Requirements (CWR) 

The future changes in soybean CWR are projected to fluctuate when compared with the average 
of the baseline. According to Figure 9, under RCP 4.5, small increases ranging from 3.0 to 6% are 
projected in the near future. In addition, under RCP 8.5, increase changes of about 2% are projected 
in the near future, while in the mid-centuries, the change could be up to −3 depending on the soil 
textures. However, under RCP 8.5 in the late-century, the highest changes which range from −11.25 
to −8.37% are projected. Meanwhile, the increase in CWR is not unconnected to the combined effects 
of CO2 fertilization and elevated temperature. However, the results of this study show that under 
RCP 8.5 in the late century, soybean CWR will decrease. This could be attributed to the fact that under 
this scenario and year period, the negative effects of elevated temperature will likely suppress the 
positive effects of CO2 fertilization. 

 
Figure 9. Temporal changes in future CWR under RCP 4.5 and RCP 8.5 (2021–2099) relative to the 
baseline (1986–2015). 

3.3.2. Changes in Future Seasonal Yield 

According to Figure 10, positive changes are projected for soybean yields in future periods in all 
scenarios. The results show that under RCP 4.5, the change ranges from 15.19 to 19.70%, 21.04 to 
28.83%, and 18.23 to 25.36% in the near future, mid-century and late-century respectively. While 
under RCP 8.5, the change ranges from 10.06 to 18.87%, 24.94 to 26.40%, and 35.09 to 39.70% in the 
near future, mid-century and late-century respectively. Soybean yields will likely be benefitted by 
CO2 fertilization which will have more influence than other factors such as an increase in temperature 
and rainfall pattern. The rate of changes will likely depend on the concentration levels of CO2. 
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Figure 10. Temporal changes in future yields under RCP 4.5 and RCP 8.5 (2021–2099) relative to the 
baseline (1986–2015). 

3.3.3. Changes in Future Crop Water Productivity (CWP) 

Changes in future soybean CWP will increase gradually across all future years under RCP 4.5 
and RCP 8.5 as shown in Figure 11. The results show that under RCP 4.5, the changes in future 
soybean CWP range from 10 to 20% depending on soil texture and future period. Under RCP 8.5, the 
changes in future soybean CWP are projected to range from 4.94% to 7.71%, 21.22% to 25.02%, and 
41.86 to 45.79% in the near future, mid-century and late-century, respectively. The likely increase in 
soybean CWP is not unconnected to that the fact that CO2 fertilization has more influence than other 
factors on soybean yield which directly influence CWP. Due to the increase in CO2 concentration 
which triggers early fertilization of soybean, soybean yield will likely increase thus increasing CWP. 
Table A3 in the Appendix A represents the model evaluation of simulated soybean yield in various 
soil textures for four growing seasons. 

 
Figure 11. Temporal changes in future CWP under RCP 4.5 and RCP 8.5 (2021–2099) relative to the 
baseline (1986–2015). 
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3.4. Planting Dates and Length of Growing Seasons 

Optimum planting dates contribute immensely to crop yield and productivity [29]. During 
historical simulations, the planting date window was calibrated between 1–15 June for planting. The 
results show that the planting dates simulated during the historical period were within 1–4 June 
except for years when rainfall was delayed and occurred on 15 June. Meanwhile, the growing season 
of soybean ranges from 108–116 days while the mean was 112 days. On the other hand, the future 
simulations show that under both scenarios, no substantial changes in planting dates are projected. 
Moreover, climate change will significantly reduce the growing season of rainfed soybean within the 
basin. From the simulations, the projected growing season of soybean ranges from 96 to 112 days. 
When compared with the baseline, the reduction in soybean growing season will vary from 4 to 12 
days. 

4. Discussion 

4.1. Historical Period 

The increase in soybean CWR could be attributed to the increase in dry days during the “August 
break” of the basin which falls within the growing cycle of soybean. The variability in dry days and 
wet days even during the rainy season within the basin is one of the uncertainties that need to be 
investigated further. The differences in the temporal trends of CWR further consolidates the fact that 
there is a high inter-seasonal variability of water requirements across different regions [5,7,9]. 
Consequently, these uncertainties need to be unraveled as this will go a long way in provoking 
breeding of climate-resilient varieties, sustainable policy formulation and implementations. 

The increasing trend in yield confirms that soybean (C3 crop) has the tendency of producing 
higher yields when subjected to increased temperature [13,26]. The increasing trend can, however, 
be attributed to elevated temperature and the slight increase of CO2 concentration. For CWP, the 
results stress the fact that soybean cultivated on sandy and loamy soils are productive and have 
higher water productivities [26]. Moreover, the CWP is increasing slightly which follows the pattern 
of soybean yields. This shows the urgent need to improve crop yields and at the same time improve 
CWP for optimum growth and production [42]. Therefore, the impact of climate change on CWP 
within the basin is significantly based on the baseline period. In terms of planting dates, the simulated 
planting dates are similar to the usual planting dates of the crops within the basin [27]. This further 
consolidates the fact that planting date is a huge factor that contributes to crop productivity. Delay 
in the onset of rainfall could be challenging for farmers, thus delay or early planting dates could lead 
to low yields and productivity. Climate change has been projected to alter growing seasons [11], 
which will likely give rise to quicker maturity of crops and could lead to bad quality of crops. It is 
worth noting that the simulations show a gradual reduction in growing days occasioned by increased 
temperature and huge variability in growing days as a result of climate variability. 

4.2. Future Periods 

For the future periods, under both scenarios, huge variability in CWR is projected to occur in the 
period of 2071–2099. This means that elevated temperature and increased CO2 concentration will 
affect CWR significantly. It is important to note that this study shows that the changes in future CWR 
under RCP 8.5 are somewhat different from the changes under RCP 4.5 due to increased CO2 

concentration under RCP 8.5 compared with RCP 4.5. Even though CO2 fertilization which triggers 
early stomatal closure is more significant for soybean (C3 crop) than maize and millet (C4 crops) 
[13,26], it will not really affect soybean CWR within the basin except in the late-century under RCP 
8.5. Similarly, the CWR of wheat, a C3 crop is also projected to decrease especially in the late-century 
despite temperature increase [43]. In addition, the consecutive dry and wet days during the growing 
season as projected by the climate model could influence this factor as well. This highlights the fact 
that rainfall variability and patterns have huge impacts on crop growth and productivity [44]. 
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In terms of future yields, the projected increase in yields can be attributed to carbon fertilization 
of C3 plants such as soybean, which reveals that there will be a rapid increase in crop yield especially 
when soybean yields were simulated on extremely high atmospheric CO2 concentration [13,29]. 
Similarly, an increase in soybean yields will likely range from 5.5 to 162% and 5 to 18% in Cameroon 
and West Africa respectively [13,29]. In contrast, soybean yield will likely decline in Sub-Saharan 
African [25]. Moreover, the decline could be attributed to the GCM and crop models employed. The 
contradictory results in projected soybean yields further stress the fact that climate change impacts 
on soybean yields are temporal and spatially distributed as well as crop and GCM dependent. It 
confirms that while some crops will benefit from climate change, other crops will be affected 
negatively [7]. The results also show that fluctuations in rainfall and elevated temperature will likely 
have a slight influence on future soybean yields within the basin. In other studies, the yields of wheat 
(C3 crop) are projected to increase up to 13% [41] while rice (C3 crop) yield is projected to reduce by 
10.36–14.36% [7]. Hence, it is still unclear if all C3 crops will be positively affected by climate change 
especially CO2 fertilization and if the effects will be location-specific or not. Furthermore, in this case, 
the quality of soybean needs to be evaluated under elevated temperatures and increased CO2 
concentration. Even though there is a likelihood of an increase in soybean yields, it is important to 
research on the quality of soybean under these conditions. Achieving food security is not just about 
increased yields but improving the quality of yields as well. 

Considering CWP, it is worthy to note that for each future period, soybean CWP under RCP 8.5 
is projected to be higher than that of RCP 4.5 which is attributable to CO2 fertilization. This trend is 
the same as the future yields. In addition, the results show that as the temperature increases in the 
future years, soybean has the tendency of converting lesser crop consumptive water use into higher 
yields despite reduced growing seasons under both scenarios. This phenomenon can be attributed to 
the claim that some C3 crops such as soybean are projected to have higher CWP under higher CO2 
concentration due to the positive effect of carbon fertilization [13,26,29]. Similarly, wheat CWP will 
likely increase by 14.6% [36] but CWP of another C3 crop, rice is expected to reduce by 28% under 
RCP 8.5 in the late-century [7]. Notably, this study shows that the length of the soybean growing 
season is projected to decrease. The highest decline in the growing season is projected in the late-
century under RCP 8.5. However, there are still uncertainties about the effects of triggered 
fertilization and early stomatal closure on the nutritional composition of crops. 

Globally, food demand is increasing, hence, it is important to ensure high crop productivity. 
This will ensure adequate food production even sufficient for more export and will increase farmers’ 
profits. Climate-smart agricultural practices such as soil conservation practices can help in improving 
yields and CWP [42,45], thus they should be investigated under climate change scenarios. The use of 
organic fertilizers, appropriate and suitable weed and pest management, cultivation of climate-
resilient varieties [9] and rainwater harvesting [46] should be encouraged by the stakeholders [9]. 
With the increasing trend in temperature, most of the current crop varieties cannot withstand such 
elevated temperatures. Low yields have been recorded within Nigeria in recent times despite the 
ever-increasing demand for food [20]. Hence, with the development of new crop varieties, food 
security could be achieved. Furthermore, another adaptation strategy that needs to be reinforced is 
climate information services [45]. Therefore, there is a need for more funding and monitoring of 
meteorological stations in Nigeria. This will tremendously advance climate data accessibility and 
reliability. 

Finally, it is important to state that this study was conducted with available, but limited data 
such that validation of water fluxes could not be done. Evidently, this paper forms the basis for 
extensive studies to be conducted that will investigate the spatial distribution of crop yield and water 
requirements using an ensemble of GCM within the basin and Nigeria at large. 

5. Conclusions 

The seasonal crop water requirements (CWR), crop yield and crop water productivity (CWP) of 
soybean in the Ogun-Ona River Basin in Nigeria based on the climate data of the baseline period 
(1986–2015) and future periods (2021–2099) were simulated. The study shows that soybean CWR and 
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yield are temporarily increasing while CWP shows a slight increase. In addition, HadGEM2-ES 
downscaled by RCA4 is capable of simulating the future climate of the region satisfactorily while the 
quantile mapping bias correction method performed satisfactorily in removing the biases in the 
projected rainfall thus making it a reliable bias correction method. Just as the global temperature is 
expected to continually rise, the climate projections of the region show that maximum temperature 
will increase by 4.4 °C by 2099 under RCP 8.5 while rainfall is projected to reduce by 10% in the future 
periods. The future scenarios show that changes in soybean CWR will range from 10 to −10% in the 
future periods under RCP 4.5 and RCP 8.5. CWR was found to be largely influenced by changes in 
rainfall than temperature rise and increased CO2 concentration. The days of the growing season of 
soybean will be shortened due to temperature rise. Moreover, soybean yield and CWP are projected 
to have positive effects of climate change, hence increasing up to about 40% under RCP 8.5. The 
soybean yield is significantly influenced by increasing CO2 concentration than other changes in 
climate parameters. The outcomes of this study certainly offer useful information that could be 
implemented by stakeholders and policymakers to improve soybean productivity in Nigeria and 
Africa at large. 

Last but not least, stakeholders and decision-makers should make use of research outcomes to 
tackle food and water security. Strategies addressing climate change adaptation and water allocation 
should enhance such studies worldwide to increase water and crop productivity. 
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Appendix A 

Table A1. The climatic parameters of the basin. 

Month 
Temperature (°C) 

Humidity 
(%) 

Wind 
Speed 

(km/Day) 

Solar 
Radiation 

(MJ/m2/day) 

Rainfall 
(mm/Month) Ave Min Max 

January 27.01 20.99 33.03 61.79 73.86 14.27 5.27 
February 28.47 22.14 34.79 61.80 93.85 16.30 31.25 

March 28.76 23.17 34.35 68.61 103.97 17.04 73.31 
April 27.99 23.08 32.90 75.57 98.31 16.75 127.17 
May 27.03 22.51 31.55 78.28 85.06 16.72 148.83 
June 26.01 21.97 30.06 80.61 80.27 15.44 201.26 
July 25.07 21.83 28.31 83.32 82.03 12.51 195.99 

August 24.69 21.63 27.74 84.49 77.62 11.32 121.87 
September 25.32 21.61 29.03 82.02 68.77 13.62 232.17 

October 26.09 22.01 30.16 80.40 58.94 15.11 178.58 
November 27.22 22.40 32.05 72.68 58.88 15.68 23.20 
December 26.79 21.07 32.50 66.65 62.71 14.39 6.77 
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Figure A1. Mean annual total rainfall of the basin from 1986 to 2015. 

 
Figure A2. The average annual mean temperature of the basin from 1986 to 2015. 

 
Figure A3. The crop cycle of soybeans in Nigeria (Authors’ figure; adapted/culled from [27]). 
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Table A2. The non-conservative crop parameters are used for calibration and validation. 

Parameters Unit Soybean 
Plant population Plants/ha 352,000 
Initial canopy cover % of canopy cover 0.40 
Maximum canopy cover % of canopy cover 90 
Days from planting to emergence GDD (Day) 105 (7) 
Days from planting to maximum canopy cover GDD (Day) 1485 (99) 
Days from planting to senescence GDD (Day) 1725 (115) 
Days from planting to maturity GDD (Day) 1800 (120) 
Days from planting to flowering GDD (Day) 607 (45) 
Days from planting to maximum rooting depth GDD (Day) 1635 (109) 
Length building up to HI GDD (Day) 510 (34) 
Duration of flowering GDD (Day) 420 (28) 
Maximum effective rooting depth m 1.6 
Normalized water productivity for climate and CO2 g/m2 15.0 
Soil fertility stress - moderate 
Sink strength under elevated CO2 % 50 
Reference harvest index % 40 

Table A3. Model evaluation of simulated soybean yield in various soil textures for four growing seasons. 

Year Soil Texture Observation 
(t/ha) 

Simulation 
(t/ha) R2 RMSE 

(t/ha) 
MAE 
(t/ha) NSE 

2015 Loamy sand 2.79 2.81 
0.99 

  

0.98 

 Sandy clay loam 2.62 2.64 0.017 0.016 
 Sandy loam 3.06 3.07   

2014 Loamy sand 2.94 2.94    
 Sandy clay loam 2.88 2.92 0.96 0.056 0.003 
 Sandy loam 3.10 3.19    

2013 Loamy sand 2.27 2.31    
 Sandy clay loam 2.06 2.00 0.98 0.043 0.002 
 Sandy loam 2.54 2.56    

2012 Loamy sand 2.57 2.60    
 Sandy clay loam 2.59 2.57 0.99 0.027 0.027 
 Sandy loam 2.86 2.89    
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