| Dataset<br>Nr. | Measurement<br>Duration (d) | Nr. of<br>Replicates | Mean<br>N2O Control<br>(kg N2O-N<br>ha <sup>-1</sup> ) | N2O<br>Treatment<br>(kg N2O-N<br>ha⁻1) | SD<br>Control<br>(kg N2O-<br>N ha <sup>-1</sup> ) | SD Treatment<br>(kg N2O-N ha <sup>-1</sup> ) | Type of Crop<br>Residue | Application Type<br>of Crop Residues | C/N<br>Ratio    | Residue<br>Amount (Mg<br>DM ha <sup>-1</sup> ) | Reference                |
|----------------|-----------------------------|----------------------|--------------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------|-------------------------|--------------------------------------|-----------------|------------------------------------------------|--------------------------|
| 1              | 202                         | 3                    | 0.15                                                   | 0.00                                   | 0.02§                                             | 0.01§                                        | Maize                   | RT                                   | > 100           | -                                              | Abalos et al. [1]        |
| 2              | 202                         | 3                    | 1.30                                                   | 0.67                                   | 0.59§                                             | 0.24§                                        | Maize                   | RT                                   | > 100           | -                                              | Abalos et al. [1]        |
| 3              | 202                         | 3                    | 0.77                                                   | 0.41                                   | 0.19§                                             | 0.10 <sup>§</sup>                            | Maize                   | RT                                   | > 100           | -                                              | Abalos et al. [1]        |
| 4              | 146                         | 2                    | 0.77                                                   | 0.75                                   | 0.21                                              | 0.03                                         | Maize                   | RT                                   | 50 <b>-</b> 75¶ | -                                              | Baker et al. [2]         |
| 5              | 134                         | 4                    | 1.30                                                   | 1.25                                   | 0.10                                              | 0.42                                         | Maize                   | RT                                   | 50-75¶          | -                                              | Baker et al. [2]         |
| 6              | 180                         | 2                    | 0.92                                                   | 1.68                                   | 0.08 &                                            | 0.08 &                                       | Maize                   | CT                                   | 50-75¶          | > 6                                            | Congreves et al. [3]     |
| 7              | 180                         | 2                    | 0.97                                                   | 1.13                                   | 1.24 &                                            | 1.41 *                                       | Maize                   | NT                                   | 50-75¶          | > 6                                            | Congreves et al. [3]     |
| 8              | 120                         | 2                    | 0.50                                                   | 0.80                                   | 0.02 #                                            | 0.00 #                                       | Soybean                 | CT                                   | 50-75¶          | -                                              | Congreves et al. [3]     |
| 9              | 120                         | 2                    | 0.65                                                   | 0.70                                   | 0.01 #                                            | 0.00 #                                       | Soybean                 | NT                                   | 50 <b>-</b> 75¶ | -                                              | Congreves et al. [3]     |
| 10             | 443                         | 2                    | 0.98                                                   | 0.83                                   | 0.03                                              | 0.01                                         | Maize, Wheat            | CT                                   | _               | -                                              | Dendooven et al. [4]     |
| 11             | 443                         | 2                    | 0.93                                                   | 0.70                                   | 0.04                                              | 0.03                                         | Maize, Wheat            | NT                                   | _               | -                                              | Dendooven et al. [4]     |
| 12             | 367                         | 2                    | 2.25                                                   | 2.19                                   | 0.28 &                                            | 0.28 &                                       | Wheat, Maize            | NT                                   | _               | -                                              | Dendooven et al. [5]     |
| 13             | 120                         | 4                    | 2.24                                                   | 0.12                                   | 0.95                                              | 0.01                                         | Sugar beet              | СТ                                   | < 25¶           | 4–6                                            | Essich et al. [6]        |
| 14             | 365                         | 3                    | $0.54^{s}$                                             | $0.40^{s}$                             | 0.02 §                                            | 0.02 §                                       | Maize                   | CT                                   | 50 <b>-</b> 75¶ | -                                              | Fan et al. [7]           |
| 15             | 365                         | 3                    | 0.52§                                                  | 0.49§                                  | 0.06 §                                            | 0.03 §                                       | Maize                   | NT                                   | 50 <b>-</b> 75¶ | -                                              | Fan et al. [7]           |
| 16             | 365                         | 3                    | 0.74§                                                  | 0.55§                                  | 0.05 §                                            | 0.01 §                                       | Maize                   | СТ                                   | 50-75¶          | -                                              | Fan et al. [7]           |
| 17             | 365                         | 3                    | $0.60^{\$}$                                            | $0.48^{\$}$                            | 0.05 §                                            | 0.05 §                                       | Maize                   | NT                                   | 50-75¶          | -                                              | Fan et al. [7]           |
| 18             | 183                         | 3                    | 1.04                                                   | 0.71                                   | 0.19                                              | 0.08                                         | Maize                   | NT                                   | 50-75¶          | -                                              | Franco-Luesma et al. [8] |
| 19             | 183                         | 3                    | 0.97                                                   | 1.06                                   | 0.19                                              | 0.34                                         | Maize                   | NT                                   | 50 <b>-</b> 75¶ | -                                              | Franco-Luesma et al. [8] |
| 20             | 365                         | 3                    | 0.48                                                   | 0.70                                   | 0.48 #                                            | 0.58#                                        | Maize                   | CT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 21             | 365                         | 3                    | 2.67                                                   | 1.78                                   | 0.39 &                                            | 0.39 &                                       | Maize                   | CT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 22             | 365                         | 3                    | 4.17                                                   | 4.33                                   | 0.10 #                                            | 0.02 #                                       | Maize                   | CT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 23             | 365                         | 3                    | 0.53                                                   | 0.39                                   | 0.46 #                                            | 0.09 #                                       | Maize                   | NT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 24             | 365                         | 3                    | 2.21                                                   | 1.66                                   | 0.29 #                                            | 0.31 #                                       | Maize                   | NT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 25             | 365                         | 3                    | 4.25                                                   | 3.63                                   | 0.27 &                                            | 0.27 &                                       | Maize                   | NT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 26             | 365                         | 3                    | 0.64                                                   | 0.70                                   | 0.57 #                                            | 1.13 #                                       | Maize                   | CT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 27             | 365                         | 3                    | 2.45                                                   | 1.78                                   | 0.29 &                                            | 0.29 &                                       | Maize                   | CT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 28             | 365                         | 3                    | 3.38                                                   | 4.33                                   | 0.42 &                                            | 0.42 &                                       | Maize                   | CT                                   | 50 <b>-</b> 75¶ | -                                              | Guzman et al. [9]        |
| 29             | 365                         | 3                    | 0.52                                                   | 0.39                                   | 0.04 #                                            | 0.42 #                                       | Maize                   | NT                                   | 50-75¶          | -                                              | Guzman et al. [9]        |
| 30             | 365                         | 3                    | 1.71                                                   | 1.66                                   | 0.06 #                                            | 0.09 #                                       | Maize                   | NT                                   | 50-75¶          | -                                              | Guzman et al. [9]        |
| 31             | 365                         | 3                    | 3.26                                                   | 3.63                                   | 1.28 #                                            | 1.33 #                                       | Maize                   | NT                                   | 50-75¶          | -                                              | Guzman et al. [9]        |
| 32             | 208                         | 4                    | 1.46                                                   | 1.11                                   | 0.03                                              | 0.12                                         | Wheat                   | СТ                                   | 75-100          | < 4                                            | Guzman-Bustamante [10]   |

Table S1. Observations used in the meta-analysis with corresponding values and subgroups.

| 33 | 223 | 4 | 1.09   | 0.92   | 0.26   | 0.27              | Wheat    | CT     | 25-50           | 46  | Guzman-Bustamante [10]   |
|----|-----|---|--------|--------|--------|-------------------|----------|--------|-----------------|-----|--------------------------|
| 34 | 307 | 4 | 2.61   | 4.78   | 1.14 * | 1.86 *            | Wheat    | CT     | 75–100¶         | -   | Hao et al. [11]          |
| 35 | 307 | 4 | 0.76   | 1.40   | 0.33 * | 0.55 *            | Wheat    | СТ     | 75–100¶         | -   | Hao et al. [11]          |
| 36 | 307 | 4 | 1.32   | 2.89   | 0.57 * | 1.13 *            | Wheat    | СТ     | 75–100¶         | -   | Hao et al. [11]          |
| 37 | 365 | 3 | 0.94   | 0.77   | 0.09 # | 0.02 #            | Maize    | RT, NT | 25-50           | -   | Heller et al. [12]       |
| 38 | 117 | 3 | 2.05   | 1.89   | 0.78   | 0.43              | Wheat    | CT     | 50-75           | 4-6 | Hu et al. [13]           |
| 39 | 254 | 3 | 0.51   | 0.49   | 0.49   | 0.02              | Maize    | CT     | 25-50           | >6  | Hu et al. [13]           |
| 40 | 106 | 3 | 1.53   | 1.18   | 1.18   | 0.14              | Wheat    | CT     | 50-75           | 4-6 | Hu et al. [13]           |
| 41 | 254 | 3 | 1.00   | 0.76   | 0.76   | 0.13              | Maize    | CT     | 25-50           | >6  | Hu et al. [13]           |
| 42 | 104 | 3 | 1.18 + | 1.09 + | 0.62 + | 0.33 +            | Wheat    | NT     | 75–100¶         | -   | Huang et al. [14]        |
| 43 | 104 | 3 | 0.20 + | 0.09 * | 0.15 + | 0.02 *            | Wheat    | NT     | 75–100¶         | -   | Huang et al. [14]        |
| 44 | 104 | 3 | 2.71 + | 1.80 + | 1.05 + | 0.65 +            | Wheat    | NT     | 75–100¶         | -   | Huang et al. [14]        |
| 45 | 257 | 3 | 0.98 + | 0.89 + | 0.19 + | 0.29 +            | Maize    | CT     | 50-75¶          | -   | Huang et al. [14]        |
| 46 | 257 | 3 | 0.34 + | 0.11 + | 0.11 + | 0.02 +            | Maize    | CT     | 50-75¶          | -   | Huang et al. [14]        |
| 47 | 257 | 3 | 1.83 + | 1.47 + | 1.00 + | 0.85 +            | Maize    | CT     | 50-75¶          | -   | Huang et al. [14]        |
| 48 | 107 | 3 | 1.21 + | 0.72 + | 0.04 + | 0.06 +            | Wheat    | NT     | 75–100¶         | -   | Huang et al. [14]        |
| 49 | 107 | 3 | 0.19 + | 0.17 + | 0.07 + | 0.04 +            | Wheat    | NT     | 75–100¶         | -   | Huang et al. [14]        |
| 50 | 107 | 3 | 2.39 + | 1.97 + | 0.41 + | 0.20 +            | Wheat    | NT     | 75–100¶         | -   | Huang et al. [14]        |
| 51 | 259 | 3 | 1.43 + | 0.75 + | 0.65 + | 0.46 +            | Maize    | СТ     | 50–75¶          | -   | Huang et al. [14]        |
| 52 | 259 | 3 | 0.64 + | 0.30 + | 0.17 + | 0.05 +            | Maize    | CT     | 50-75¶          | -   | Huang et al. [14]        |
| 53 | 259 | 3 | 1.96 + | 1.50 + | 0.63 + | 0.56 +            | Maize    | CT     | 50 <b>-</b> 75¶ | -   | Huang et al. [14]        |
| 54 | 365 | 3 | 1.39   | 0.69   | 0.62   | 0.09              | Wheat    | NT     | 75–100¶         | >6  | Jacinthe and Lal [15]    |
| 55 | 365 | 3 | 5.50   | 2.41   | 2.22   | 1.28              | Wheat    | NT     | 75–100¶         | >6  | Jacinthe and Lal [15]    |
| 56 | 365 | 3 | 1.19   | 0.69   | 0.38   | 0.09              | Wheat    | NT     | 75–100¶         | >6  | Jacinthe and Lal [15]    |
| 57 | 365 | 3 | 4.45   | 2.41   | 1.33   | 1.28              | Wheat    | NT     | 75–100¶         | >6  | Jacinthe and Lal [15]    |
| 58 | 365 | 4 | 3.50   | 2.80   | 0.20   | 0.20              | Maize    | NT, CT | 50–75¶          | >6  | Jin et al. [16]          |
| 59 | 342 | 4 | 5.10   | 4.70   | 0.50   | 0.21              | Maize    | NT     | 50-75           | >6  | Johnson and Barbour [17] |
| 60 | 341 | 4 | 3.60   | 4.00   | 0.13   | 0.18              | Maize    | NT     | 50-75           | >6  | Johnson and Barbour [17] |
| 61 | 365 | 4 | 4.85   | 3.85   | 0.67   | 0.14              | Maize    | NT     | 50-75           | >6  | Johnson and Barbour [17] |
| 62 | 337 | 4 | 4.68   | 4.14   | 0.62   | 0.34              | Maize    | NT     | 50-75           | >6  | Johnson and Barbour [17] |
| 63 | 342 | 4 | 3.81   | 4.48   | 0.17   | 0.28              | Maize    | CT     | 50-75           | >6  | Johnson and Barbour [17] |
| 64 | 341 | 4 | 3.84   | 3.89   | 0.35   | 0.25              | Maize    | CT     | 50-75           | >6  | Johnson and Barbour [17] |
| 65 | 365 | 4 | 3.79   | 3.66   | 0.25   | 0.10              | Maize    | CT     | 50-75           | >6  | Johnson and Barbour [17] |
| 66 | 337 | 4 | 3.56   | 4.24   | 0.09   | 0.27              | Maize    | CT     | 50-75           | >6  | Johnson and Barbour [17] |
| 67 | 299 | 4 | 1.89   | 2.02   | 0.89§  | 1.85 <sup>§</sup> | Rapeseed | СТ     | 50-75           | >6  | Kesenheimer et al. [18]  |
| 68 | 299 | 4 | 2.41   | 1.73   | 2.37§  | 0.82§             | Rapeseed | RT     | 50-75           | >6  | Kesenheimer et al. [18]  |
| 69 | 365 | 3 | 2.70   | 3.00   | 0.40   | 0.70              | Maize    | NT     | 50-75¶          | > 6 | Lehman and Osborne [19]  |
| 70 | 365 | 3 | 1.20   | 0.60   | 0.30   | 0.10              | Maize    | NT     | 50-751          | >6  | Lehman and Osborne [19]  |
| 71 | 131 | 4 | 3.00   | 1.90   | 0.70   | 0.40              | Wheat    | СТ     | 75–100          | -   | Liu et al. [20]          |

| 72  | 237 | 4 | 1.50       | 1.60       | 0.10       | 0.10   | Maize       | CT | 50-75              | -   | Liu et al. [20]      |
|-----|-----|---|------------|------------|------------|--------|-------------|----|--------------------|-----|----------------------|
| 73  | 69  | 4 | 0.44       | 0.31       | 0.04 #     | 0.09 # | Pea         | CT | 25-50¶             | 4–6 | Malhi et al. [21]    |
| 74  | 69  | 4 | 0.16       | 0.10       | 0.13 #     | 0.17 # | Pea         | CT | 25-50¶             | 4–6 | Malhi et al. [21]    |
| 75  | 69  | 4 | 0.17       | 0.15       | 0.07 *     | 0.06 * | Pea         | NT | 25-50¶             | 4–6 | Malhi et al. [21]    |
| 76  | 69  | 4 | 0.10       | 0.04       | 0.04 *     | 0.02 * | Pea         | NT | 25–50 <sup>¶</sup> | 4–6 | Malhi et al. [21]    |
| 77  | 108 | 4 | 0.43       | 0.48       | 0.48 #     | 0.24 # | Wheat       | CT | 75–100¶            | 4–6 | Malhi et al. [21]    |
| 78  | 108 | 4 | 0.04       | 0.02       | 0.02 #     | 0.18 # | Wheat       | CT | 75–100¶            | 4–6 | Malhi et al. [21]    |
| 79  | 108 | 4 | 0.25       | 0.11       | 0.11 *     | 0.04 * | Wheat       | NT | 75–100¶            | 4–6 | Malhi et al. [21]    |
| 80  | 108 | 4 | 0.06       | 0.07       | 0.07 *     | 0.03 * | Wheat       | NT | 75–100¶            | 4–6 | Malhi et al. [21]    |
| 81  | 114 | 4 | 0.28       | 0.24       | 0.12 *     | 0.09 * | Rapeseed    | CT | 50 <b>-</b> 75¶    | -   | Malhi and Lemke [22] |
| 82  | 114 | 4 | 0.04       | 0.03       | 0.02 *     | 0.01 * | Rapeseed    | CT | 50 <b>-</b> 75¶    | -   | Malhi and Lemke [22] |
| 83  | 114 | 4 | 0.23       | 0.20       | 0.10 *     | 0.01 * | Rapeseed    | NT | 50 <b>-</b> 75¶    | -   | Malhi and Lemke [22] |
| 84  | 114 | 4 | 0.04       | 0.02       | 0.02 *     | 0.08 * | Rapeseed    | NT | 50-75¶             | -   | Malhi and Lemke [22] |
| 85  | 75  | 4 | 0.14       | 0.12       | 0.06 *     | 0.05 * | Barley      | CT | 75–100¶            | < 4 | Malhi and Lemke [22] |
| 86  | 75  | 4 | 0.10       | 0.10       | 0.04 *     | 0.04 * | Barley      | CT | 75–100¶            | < 4 | Malhi and Lemke [22] |
| 87  | 75  | 4 | 0.15       | 0.14       | 0.07 *     | 0.06 * | Barley      | NT | 75–100¶            | < 4 | Malhi and Lemke [22] |
| 88  | 75  | 4 | 0.09       | 0.08       | 0.04 *     | 0.03 * | Barley      | NT | 75–100¶            | < 4 | Malhi and Lemke [22] |
| 89  | 140 | 4 | 1.30       | 1.18       | 0.57 *     | 0.46 * | Pea         | CT | 25-50¶             | < 4 | Malhi and Lemke [22] |
| 90  | 140 | 4 | 0.08       | 0.08       | 0.04 *     | 0.03 * | Pea         | CT | 25-50¶             | < 4 | Malhi and Lemke [22] |
| 91  | 140 | 4 | 0.67       | 0.80       | 0.29 *     | 0.31 * | Pea         | NT | 25-50¶             | < 4 | Malhi and Lemke [22] |
| 92  | 140 | 4 | 0.16       | 0.10       | 0.07 *     | 0.04 * | Pea         | NT | 25-50¶             | < 4 | Malhi and Lemke [22] |
| 93  | 190 | 4 | 0.83       | 0.82       | 0.36 *     | 0.32 * | Wheat       | CT | 75–100¶            | 4–6 | Malhi and Lemke [22] |
| 94  | 190 | 4 | 0.47       | 0.52       | 0.21 *     | 0.20 * | Wheat       | CT | 75–100¶            | 4–6 | Malhi and Lemke [22] |
| 95  | 190 | 4 | 1.13       | 1.02       | 0.49 *     | 0.40 * | Wheat       | NT | 75–100¶            | 4–6 | Malhi and Lemke [22] |
| 96  | 190 | 4 | 0.29       | 0.32       | 0.13 *     | 0.13 * | Wheat       | NT | 75–100¶            | 4–6 | Malhi and Lemke [22] |
| 97  | 119 | 3 | 1.45       | 1.10       | 0.16       | 0.19   | Maize       | CT | 25-50              | 4–6 | Maris et al. [23]    |
| 98  | 119 | 3 | 1.83       | 0.83       | 0.27       | 0.27   | Maize       | CT | 25-50              | >6  | Maris et al. [23]    |
| 99  | 119 | 3 | 1.41       | 1.05       | 0.06       | 0.11   | Maize       | CT | 25-50              | >6  | Maris et al. [23]    |
| 100 | 121 | 3 | 1.67       | 2.09       | 0.71       | 0.45   | Maize       | CT | 50-75              | >6  | Maris et al. [23]    |
| 101 | 121 | 3 | 1.41       | 1.76       | 0.13       | 0.56   | Maize       | CT | 50-75              | >6  | Maris et al. [23]    |
| 102 | 121 | 3 | 1.44       | 1.21       | 0.77       | 0.52   | Maize       | CT | 50-75              | >6  | Maris et al. [23]    |
| 103 | 237 | 3 | 0.67*      | 1.93*      | 0.29*      | 0.75 * | Barley      | NT | 75–100¶            | -   | Mutegi et al. [24]   |
| 104 | 237 | 3 | 1.14*      | $1.48^{*}$ | 0.49*      | 0.58 * | Barley      | RT | 75–100¶            | -   | Mutegi et al. [24]   |
| 105 | 237 | 3 | $2.50^{*}$ | 1.91*      | $1.08^{*}$ | 0.74 * | Barley      | CT | 75–100¶            | -   | Mutegi et al. [24]   |
| 106 | 120 | 3 | 0.36       | 0.38       | 0.04#      | 0.06 # | Maize       | CT | 50 <b>-</b> 75¶    | 4–6 | Nath et al. [25]     |
| 107 | 120 | 3 | 0.42       | 0.44       | 0.04#      | 0.10 # | Maize       | NT | 50-75¶             | 4–6 | Nath et al. [25]     |
| 108 | 89  | 3 | 1.82       | 0.69       | 0.11       | 0.44   | Wheat       | CT | 75–100¶            | 4–6 | Nawaz et al. [26]    |
| 109 | 213 | 3 | 1.54       | 0.23       | 0.79       | 0.09   | Cauliflower | RT | < 25               | > 6 | Nett et al. [27]     |
| 110 | 213 | 3 | 1.02       | 0.09       | 0.29       | 0.11   | Cauliflower | RT | < 25               | > 6 | Nett et al. [27]     |
|     |     |   |            |            |            |        |             |    |                    |     |                      |

| 111 | 213 | 3 | 1.33    | 0.67   | 0.16              | 0.15              | Cauliflower | RT | < 25            | >6  | Nett et al. [27]     |
|-----|-----|---|---------|--------|-------------------|-------------------|-------------|----|-----------------|-----|----------------------|
| 112 | 365 | 4 | 0.77    | 0.44   | 0.14 §            | 0.10 §            | Sugarcane   | NT | 50-75           | >6  | Pinheiro et al. [28] |
| 113 | 365 | 4 | 1.05    | 0.51   | 0.13 <sup>§</sup> | 0.16 §            | Sugarcane   | NT | 50-75           | >6  | Pinheiro et al. [28] |
| 114 | 365 | 4 | 0.49    | 0.44   | 0.05 §            | 0.10 §            | Sugarcane   | NT | 50-75           | 4–6 | Pinheiro et al. [28] |
| 115 | 365 | 4 | 0.64    | 0.51   | 0.11 §            | 0.16 §            | Sugarcane   | NT | 50-75           | 4-6 | Pinheiro et al. [28] |
| 116 | 365 | 4 | 0.70    | 0.44   | 0.06 §            | 0.10 §            | Sugarcane   | NT | 50-75           | >6  | Pinheiro et al. [28] |
| 117 | 365 | 4 | 0.81    | 0.51   | 0.04 §            | 0.16 §            | Sugarcane   | NT | 50-75           | >6  | Pinheiro et al. [28] |
| 118 | 365 | 4 | 3.43    | 5.32   | 0.57 #            | 0.11 #            | Sugarcane   | NT | > 100           | >6  | Pitombo et al. [29]  |
| 119 | 365 | 4 | 4.55    | 5.32   | 0.71 #            | 0.61 #            | Sugarcane   | NT | > 100           | 4-6 | Pitombo et al. [29]  |
| 120 | 365 | 4 | 3.20    | 5.32   | 1.00 #            | 0.09 #            | Sugarcane   | NT | > 100           | >6  | Pitombo et al. [29]  |
| 121 | 82  | 4 | 0.49 §  | 0.29 § | 0.09 §            | 0.02 §            | Icesalat    | CT | < 25¶           | -   | Seiz et al. [30]     |
| 122 | 195 | 4 | 40.14 § | 7.52 § | 6.68 <sup>§</sup> | 1.51 <sup>§</sup> | Broccoli    | СТ | < 25¶           | -   | Seiz et al. [30]     |
| 123 | 112 | 4 | 3.68 §  | 1.69 § | 0.60 §            | 0.25 §            | Cauliflower | СТ | < 25¶           | -   | Seiz et al. [30]     |
| 124 | 119 | 4 | 3.85 §  | 1.39 § | 1.26 §            | 0.41 §            | Broccoli    | СТ | < 25¶           | -   | Seiz et al. [30]     |
| 125 | 243 | 3 | 1.12    | 0.89   | 0.32              | 0.19              | Maize       | NT | 50-75¶          | -   | Tan et al. [31]      |
| 126 | 243 | 3 | 0.77    | 0.73   | 0.26              | 0.10              | Maize       | CT | 50-75¶          | -   | Tan et al. [31]      |
| 127 | 243 | 3 | 1.79    | 1.24   | 0.03              | 0.10              | Maize       | NT | 50-75¶          | -   | Tan et al. [31]      |
| 128 | 243 | 3 | 1.00    | 1.46   | 0.23              | 0.24              | Maize       | CT | 50-75¶          | -   | Tan et al. [31]      |
| 129 | 122 | 3 | 1.83    | 2.81   | 0.22              | 0.54              | Wheat       | NT | 75–100¶         | -   | Tan et al. [31]      |
| 130 | 122 | 3 | 1.06    | 1.20   | 0.24              | 0.14              | Wheat       | СТ | 75–100¶         | -   | Tan et al. [31]      |
| 131 | 122 | 3 | 3.65    | 3.30   | 1.43              | 0.66              | Wheat       | NT | 75–100¶         | -   | Tan et al. [31]      |
| 132 | 122 | 3 | 2.52    | 1.42   | 0.48              | 0.35              | Wheat       | CT | 75–100¶         | -   | Tan et al. [31]      |
| 133 | 243 | 3 | 0.56    | 1.06   | 0.18              | 0.33              | Maize       | NT | 50-75¶          | -   | Tan et al. [31]      |
| 134 | 243 | 3 | 1.22    | 0.92   | 0.16              | 0.17              | Maize       | CT | 50-75¶          | -   | Tan et al. [31]      |
| 135 | 243 | 3 | 2.50    | 1.06   | 0.74              | 0.32              | Maize       | NT | 50-75¶          | -   | Tan et al. [31]      |
| 136 | 243 | 3 | 1.52    | 0.83   | 0.39              | 0.12              | Maize       | CT | 50 <b>-</b> 75¶ | -   | Tan et al. [31]      |
| 137 | 122 | 3 | 1.66    | 2.19   | 0.17              | 0.15              | Wheat       | NT | 75–100¶         | -   | Tan et al. [31]      |
| 138 | 122 | 3 | 1.51    | 1.41   | 0.49              | 0.19              | Wheat       | СТ | 75–100¶         | -   | Tan et al. [31]      |
| 139 | 122 | 3 | 3.37    | 2.49   | 0.54              | 0.32              | Wheat       | NT | 75–100¶         | -   | Tan et al. [31]      |
| 140 | 122 | 3 | 1.69    | 1.37   | 0.12              | 0.24              | Wheat       | CT | 75–100¶         | -   | Tan et al. [31]      |
| 141 | 209 | 3 | 1.58    | 1.19   | 0.18              | 0.12              | Wheat       | RT | 75–100¶         | 4-6 | Wang et al. [32]     |
| 142 | 207 | 3 | 1.72    | 1.30   | 0.19              | 0.09              | Wheat       | RT | 75–100¶         | 4-6 | Wang et al. [32]     |
| 143 | 201 | 3 | 1.11    | 0.74   | 0.10              | 0.05              | Wheat       | RT | 75–100¶         | 4-6 | Wang et al. [32]     |
| 144 | 126 | 4 | 0.81    | 0.94   | 0.13              | 0.14              | Soybean     | NT | 25-50¶          | -   | Wegner et al. [33]   |
| 145 | 126 | 4 | 0.66    | 0.89   | 0.25              | 0.20              | Maize       | NT | 50-75¶          | -   | Wegner et al. [33]   |
| 146 | 112 | 4 | 0.77    | 0.89   | 0.16              | 0.11              | Soybean     | NT | 25-50¶          | -   | Wegner et al. [33]   |
| 147 | 112 | 4 | 0.57    | 0.89   | 0.09              | 0.10              | Maize       | NT | 50-75¶          | -   | Wegner et al. [33]   |
| 148 | 91  | 4 | 0.19    | 0.25   | 0.07              | 0.02              | Soybean     | NT | 25–50¶          | -   | Wegner et al. [33]   |
| 149 | 91  | 4 | 0.18    | 0.20   | 0.04              | 0.04              | Maize       | NT | 50-75¶          | -   | Wegner et al. [33]   |

| 150 | 236 | 3 | 0.37 | 0.25  | 0.03   | 0.05   | Maize   | CT | 75-100  | > 6 | Xu et al. [34]     |
|-----|-----|---|------|-------|--------|--------|---------|----|---------|-----|--------------------|
| 151 | 236 | 3 | 0.93 | 0.95  | 0.08   | 0.15   | Maize   | CT | 75-100  | > 6 | Xu et al. [34]     |
| 152 | 99  | 3 | 1.20 | 1.72  | 0.12   | 0.10   | Wheat   | NT | 75-100  | -   | Yao et al. [35]    |
| 153 | 246 | 3 | 0.71 | 1.07  | 0.05   | 0.15   | Maize   | RT | 50-75   | -   | Yao et al. [35]    |
| 154 | 155 | 3 | 2.23 | 2.18  | 0.13   | 0.08   | Wheat   | CT | 75–100  | -   | Yao et al. [35]    |
| 155 | 183 | 3 | 0.14 | 0.13  | 0.03   | 0.04   | Soybean | CT | 50-75   | < 4 | Yazaki et al. [36] |
| 156 | 183 | 3 | 0.08 | 0.10  | 0.06   | 0.06   | Soybean | NT | 50-75   | < 4 | Yazaki et al. [36] |
| 157 | 183 | 3 | 0.42 | 0.49  | 0.10   | 0.14   | Soybean | CT | 50-75   | < 4 | Yazaki et al. [36] |
| 158 | 183 | 3 | 0.44 | 0.38  | 0.14   | 0.06   | Soybean | NT | 50-75   | < 4 | Yazaki et al. [36] |
| 159 | 183 | 3 | 0.56 | 0.37  | 0.25   | 0.20   | Wheat   | CT | 50-75   | 4–6 | Yazaki et al. [36] |
| 160 | 183 | 3 | 0.35 | 0.28  | 0.14   | 0.10   | Wheat   | NT | 50-75   | 4-6 | Yazaki et al. [36] |
| 161 | 183 | 3 | 0.27 | 0.24  | 0.07   | 0.03   | Wheat   | CT | > 100   | > 6 | Yazaki et al. [36] |
| 162 | 183 | 3 | 0.20 | 0.54  | 0.08   | 0.02   | Wheat   | NT | > 100   | >6  | Yazaki et al. [36] |
| 163 | 183 | 3 | 0.70 | 0.58  | 0.36   | 0.26   | Wheat   | CT | > 100   | 4-6 | Yazaki et al. [36] |
| 164 | 183 | 3 | 0.82 | 0.87  | 0.36   | 0.27   | Wheat   | NT | > 100   | 4-6 | Yazaki et al. [36] |
| 165 | 131 | 3 | 2.04 | 2.42  | 0.36 # | 0.43 # | Wheat   | CT | 75–100¶ | -   | Yeboah et al. [37] |
| 166 | 131 | 3 | 1.70 | 2.11  | 0.02 # | 0.04 # | Wheat   | NT | 75–100¶ | -   | Yeboah et al. [37] |
| 167 | 169 | 3 | 2.92 | 3.08  | 0.31 # | 0.26 # | Wheat   | CT | 75–100¶ | 4–6 | Yeboah et al. [37] |
| 168 | 169 | 3 | 2.31 | 2.47  | 0.13 # | 0.17 # | Wheat   | NT | 75–100¶ | 4-6 | Yeboah et al. [37] |
| 169 | 170 | 3 | 2.00 | 2.12  | 0.41 # | 0.58 # | Pea     | CT | 25–50¶  | < 4 | Yeboah et al. [37] |
| 170 | 170 | 3 | 1.67 | 1.84  | 0.32 # | 0.09 # | Pea     | NT | 25-50¶  | < 4 | Yeboah et al. [37] |
| 171 | 150 | 4 | 5.67 | 13.22 | 0.74 # | 1.85 # | Maize   | CT | 50-75¶  | > 6 | Yuan et al. [38]   |
| 172 | 150 | 4 | 8.10 | 10.41 | 0.19 # | 0.17 # | Maize   | NT | 50-75¶  | > 6 | Yuan et al. [38]   |
| 173 | 150 | 4 | 6.22 | 9.50  | 0.17 # | 0.18 # | Maize   | CT | 50-75¶  | > 6 | Yuan et al. [38]   |
| 174 | 150 | 4 | 3.15 | 2.37  | 0.14 # | 0.44 # | Maize   | NT | 50-75¶  | > 6 | Yuan et al. [38]   |
| 175 | 100 | 4 | 4.10 | 4.69  | 0.02 # | 0.02 # | Maize   | CT | 50-75¶  | > 6 | Yuan et al. [38]   |
| 176 | 100 | 4 | 1.69 | 1.61  | 0.70 # | 0.40 # | Maize   | NT | 50-75¶  | > 6 | Yuan et al. [38]   |

RT, reduced tillage; CT, conventional tillage; NT, zero or no-tillage. <sup>#</sup> obtained through Imputation. <sup>§</sup> received through personal contact. \* from meta-analysis "Shan and Yan [39]". <sup>†</sup> from study "Huang et al. [40]" estimated C/N value.



Figure S1. Flow chart for the selection process of the meta-analysis.



Figure S2. Funnel plot of effect size distribution around the overall mean effect size.

<sup>#</sup> excluding three observations from three studies [1,21,22] with extremely high standard errors by setting limits (x-axis: -3-+3; y-axis: 0-1.2).

## References

- Abalos, D.; Sanz-Cobena, A.; Garcia-Torres, L.; van Groeningen, J.W.; Vallejo, A. Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated Mediterranean barley field. *Plant Soil* 2013, 364, 357–371.
- 2. Baker, J.M.; Fassbinder, J.; Lamb, J.A. The impact of corn stover removal on N<sub>2</sub>O emission and soil respiration: an investigation with automated chambers. *Bioenerg. Res.* **2014**, *7*, 503–508.
- Congreves, K.A.; Brown, S.E.; Németh, D.D.; Dunfield, K.E.; Wagner-Riddle, C. Differences in field-scale N<sub>2</sub>O flux linked to crop residue removal under two tillage systems in cold climates. *GCB Bioenergy* 2017, 9, 666–680.
- Dendooven, L.; Patiño-Zúñiga, L.; Verhulst, N.; Luna-Guido, M.; Marsch, R.; Govaerts, B. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. *Agric. Ecosyst. Environ.* 2012, 152, 50–58.
- Dendooven, L.; Patiño-Zúñiga, L.; Verhulst, N.; Boden, K.; García-Gaytán, A.; Luna-Guido, M.; Govaerts, B. Greenhouse gas emissions from nontilled, permanent raised, and conventionally tilled beds in the central highlands of Mexico. J. Crop Improv. 2014, 28, 547–574.
- 6. Essich, L.; Nkebiwe, P.M.; Schneider, M.; Ruser, R. Is crop residue removal to reduce N2O emissions driven by quality or quantity? A field study and meta-analysis. *Agriculture* **2020**
- Fan, J.; Luo, R.; Liu, D.; Chen, Z.; Luo, J.; Boland, N.; Tang, J.; Hao, M.; McConkey, B.; Ding, W. Stover retention rather than no-till decreases the global warming potential of rainfed continuous maize cropland. *Field Crops Res.* 2018, 219, 14–23.

- Franco-Luesma, S.; Cavero, J.; Plaza-Bonilla, D.; Cantero-Martínez, C.; Tortosa, G.; Bedmar, E.J.; Álvaro-Fuentes, J. Irrigation and tillage effects on soil nitrous oxide emissions in maize monoculture. *Agronomy Journal* 2019, *112*, 56–71.
- 9. Guzman, J.; Al-Kaisi, M.; Parkin, T. Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system. *Soil Sci. Soc. Am. J.* **2015**, *79*, 612–625.
- 10. Guzman-Bustamante, I. (University of Hohenheim, Stuttgart, Germany). Personal communication, 2020.
- 11. Hao, X.; Chang, C.; Carefoot, J.M.; Janzen, H.H.; Ellert, B.H. Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. *Nutr. Cycl. Agroecosyst.* **2001**, *60*, 1–8.
- 12. Heller, H.; Bar-Tal, A.; Tamir, G.; Bloom, P.; Venterea, R.T.; Chen, D.; Zhang, Y.; Clapp, C.E.; Fine, P. Effects of manure and cultivation on carbon dioxide and nitrous oxide emissions from a corn field under mediterranean conditions. *J. Environ. Qual.* **2010**, *39*, 437–448.
- 13. Hu, X.-K.; Su, F.; Ju, X.-T.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.-X.; Jiang, R.-F.; Zhang, F.-S. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. *Environ. Pollut.* **2013**, *176*, 198–207.
- 14. Huang, T.; Yang, H.; Huang, C.; Ju, X. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. *Field Crops Res.* **2017**, *204*, 1–11.
- 15. Jacinthe, P.-A.; Lal, R. Nitrogen fertilization of wheat residue affecting nitrous oxide and methane emission from a central Ohio Luvisol. *Biol. Fertil. Soils* **2003**, *37*, 338–347.
- Jin, V.L.; Schmer, M.R.; Stewart, C.E.; Sindelar, A.J.; Varvel, G.E.; Wienhold, B.J. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn. *Glob. Change Biol.* 2017, 23, 2848–2862.
- 17. Johnson, J.M.F.; Barbour, N.W. Stover harvest did not change nitrous oxide emissions in two Minnesota fields. *Agron. J.* **2019**, *111*, 143–155.
- Kesenheimer, K.; Pandeya, H.R.; Müller, T.; Buegger, F.; Ruser, R. Nitrous oxide emissions after incorporation of winter oilseed rape (Brassica napus L.) residues under two different tillage treatments. *J. Plant Nutr. Soil Sci.* 2019, 182, 48–59.
- 19. Lehman, R.M.; Osborne, S.L. Soil greenhouse gas emissions and carbon dynamics of a no-till, corn-based cellulosic ethanol production system. *Bioenerg. Res.* **2016**, *9*, 1101–1108.
- 20. Liu, C.; Wang, K.; Meng, S.; Zheng, X.; Zhou, Z.; Han, S.; Chen, D.; Yang, Z. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. *Agric. Ecosyst. Environ.* **2011**, *140*, 226–233.
- 21. Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. *Soil Tillage Res.* **2006**, *90*, 171–183.
- 22. Malhi, S.S.; Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. *Soil Tillage Res.* **2007**, *96*, 269–283.
- 23. Maris, S.C.; Lloveras, J.; Vallejo, A.; Teira-Esmatges, M.R. Effect of stover management and nitrogen fertilization on N<sub>2</sub>O and CO<sub>2</sub> emissions from irrigated maize in a high nitrate mediterranean soil. *Water Air Soil Pollut.* **2017**, 229, 11.
- Mutegi, J.K.; Munkholmn, L.J.; Petersen, B.M.; Hansen, E.M.; Petersen, S.O. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. *Soil. Biol. Biochem.* 2010, 42, 1701– 1711.
- 25. Nath, C.P.; Das, T.K.; Rana, K.S.; Bhattacharyya, R.; Pathak, H.; Paul, S.; Meena, M.C.; Singh, S.B. Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices. *Arch. Agron. Soil Sci.* **2017**, *63*, 1644–1660.
- Nawaz, A.; Lal, R.; Shrestha, R.K.; Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in Alfisol of central Ohio. *Land Degrad. Develop.* 2017, 28, 673–681.
- Nett, L.; Sradnick, A.; Fuß, R.; Flessa, H.; Fink, M. Emissions of nitrous oxide and ammonia after cauliflower harvest are influenced by soil type and crop residue management. *Nutr. Cycl. Agroecosyst.* 2016, 106, 217– 231.
- 28. Pinheiro, P.L.; Recous, S.; Dietrich, G.; Weiler, D.A.; Schu, A.L.; Bazzo, H.L.S.; Giacomini, S.J. N<sub>2</sub>O emission increases with mulch mass in a fertilized sugarcane cropping system. *Biol. Fertil. Soils* **2019**, *55*, 511–523.
- 29. Pitombo, L.M.; Cantarella, H.; Packer, A.P.C.; Ramos, N.P.; Do Carmo, J.B. Straw preservation reduced total N2O emissions from a sugarcane field. *Soil Use Manag.* **2017**, *33*, 583–594.

- 30. Seiz, P.; Guzman-Bustamante, I.; Schulz, R.; Müller, T.; Ruser, R. Effect of Crop Residue Removal and Straw Addition on Nitrous Oxide Emissions from a Horticulturally Used Soil in South Germany. *Soil Sci. Soc. Am.* J. 2019, 83, 1399–1409.
- 31. Tan, Y.; Wu, D.; Bol, R.; Wu, W.; Meng, F. Conservation farming practices in winter wheat–summer maize cropping reduce GHG emissions and maintain high yields. *Agric. Ecosyst. Environ.* **2019**, *272*, 266–275.
- Wang, H.; Shen, M.; Hui, D.; Chen, J.; Sun, G.; Wang, Z.; Lu, C.; Sheng, J.; Chen, L.; Luo, Y.; Zheng, J.; Zhang, Y. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (*Oryza sativa* L.) –wheat (*Triticum aestivum* L.) cropping system. *Soil Tillage Res.* 2019, 195, 104377.
- 33. Wegner, B.R.; Chalise, K.S.; Singh, S.; Lai, L.; Abagandura, G.O.; Kumar, S.; Lehman, R.M.; Jagadamma, S. Response of soil surface greenhouse gas fluxes to crop residue removal and cover crops under a corn-soybean rotation. *J. Environ. Qual.* **2018**, *47*, 1146–1154.
- 34. Xu, C.; Han, X.; Cardenas, L.; Rees, R.M.; Wu, D.; Wu, W.; Meng, F. Crop straw incorporation interacts with N fertilizer on N<sub>2</sub>O emissions in an intensively cropped farmland. *Geoderma* **2019**, *341*, 129–137.
- 35. Yao, Z.; Yan, G.; Zheng, X.; Wang, R.; Liu, C.; Butterbach-Bahl, K. Straw return reduces yield-scaled N<sub>2</sub>O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. *Sci. Total Environ.* 2017, 590–591, 174–185.
- Yazaki, T.; Sugito, T.; Hamasaki, T.; Tsuji, H.; Nagata, O. Nitrous oxide emissions from an Andosol upland field cropped to wheat and soybean with different tillage systems and organic matter applications. *J. Agric. Meteorol.* 2011, 67, 173–184.
- Yeboah, S.; Zhang, R.; Cai, L.; Song, M.; Li, L.; Xie, J.; Luo, Z.; Wu, J.; Zhang, J. Greenhouse gas emissions in a spring wheat-field pea sequence under different tillage practices in semi-arid Northwest China. *Nutr. Cycl. Agroecosyst.* 2016, 106, 77–91.
- 38. Yuan, M.; Greer, K.D.; Nafziger, E.D.; Villamil, M.B.; Pittelkow, C.M. Soil N<sub>2</sub>O emissions as affected by long-term residue removal and no-till practices in continuous corn. *GCB Bioenergy* **2018**, *10*, 972–985.
- 39. Shan, J.; Yan, X. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. *Atmos. Environ.* **2013**, *71*, 170–175.
- 40. Huang, T.; Gao, B.; Christie, P.; Ju, X. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. *Biogeosciences* **2013**, *10*, 7897–7911.