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Abstract: Food production to meet human demand has been a challenge to society. Nowadays,
one of the main sources of feeding is soybean. Considering agriculture food crops, soybean is sixth
by production volume and the fourth by both production area and economic value. The grain can
be used directly to human consumption, but it is highly used as a source of protein for animal
production that corresponds 75% of the total, or as oil and derived food products. Brazil and the
US are the most important players responsible for more than 70% of world production. Therefore,
a reliable forecasting is essential for decision-makers to plan adequate policies to this important
commodity and to establish the necessary logistical resources. In this sense, this study aims to predict
soybean harvest area, yield, and production using Artificial Neural Networks (ANN) and compare
with classical methods of Time Series Analysis. To this end, we collected data from a time series
(1961–2016) regarding soybean production in Brazil. The results reveal that ANN is the best approach
to predict soybean harvest area and production while classical linear function remains more effective
to predict soybean yield. Moreover, ANN presents as a reliable model to predict time series and can
help the stakeholders to anticipate the world soybean offer.

Keywords: artificial neural networks; time series forecasting; soybean; food production

1. Introduction

World’s population is projected to reach 9.8 billion in 2050 [1] and food production needs to
increase by 60% to meet the demand [2,3]. One reason for that is the developing countries—that
have been growing much more rapidly than the industrial countries—are creating implications for
world food demand mainly in products such as animal-based, fruits, and vegetables [4]. However,
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declining rates of growth in crop yields, slowing investment in agricultural research, and rising
commodity prices have raised concerns of a general slowdown in global agricultural harvest area,
yield, and production [5].

The rapid per capita income growth in countries like China and India (40% world population)
pressure food supply chains shifting towards animal-based products that require disproportionately
more agricultural resources in production [4,6] such as land, water, and vegetable protein [7]. Moreover,
there is a concern revolving around big agriculture growers such as Brazil and the US using their
agriculture areas to produce biofuels [6].

It is not only in the economy that this relationship between food demand and income are
finding shelter. It is possible to verify in the literature a connection about technology and
agricultural production. Crop yield and production, for instance, have been studied in the light
of artificial intelligence. Khan et al. [8] predicted fruit production using deep neural networks.
García-Martiínez et al. [9] estimated corn grain yield with a neural network using multispectral and
RGB images acquired with unmanned aerial vehicles. Maimaitijiang et al. [10] predicted soybean yield
using multimodal data fusion and deep learning. These applications are a clear attempt to improve
knowledge about food production and provide decision-makers with valuable information to face the
challenges of food demand.

Another possible solution discussed is the use of areas in Latin America and the Caribbean to
expand agriculture production [11]. Brazil, for instance, has more than 8 million km2 of area and uses
only 15% of its arable land—approximately 60 of 400 million hectares [12]. The country is an important
global food supplier, and it is estimated that one out of four agribusiness products in circulation
around the world came from Brazil [13]. Despite the concern of biofuel production, sugarcane occupies
only 8.9 million hectares of arable land [14], and the majority is used for sugar production rather
than ethanol.

Brazil has more than 300 different crops and exports 350 types of products to 180 countries.
The main export products are sugar, coffee, maize, orange juice, cotton, and soybean. Among these
products, soybean is the main global source of protein, and the country is the major exporter that
corresponded for approximately 29.9% of agribusiness external sales in 2016—USD 25.4 billion [13].
According to the Department of Agriculture of United States—USDA [15], Brazilian exports of the
soybean complex are 81% grains, 15.7% meal, and 3.3% refined oil.

Soybean production has overspread inside the country from south, through the center-western to
the northeast area. These movements are motivated by low land cost, and investments in agriculture
inputs, mechanization, and infrastructure [16–18]. Other factors contributing to soybean growth
in Brazil include the genetic improvement of seeds, increasingly productive planting systems [19],
favourable climatic conditions, predictable precipitation patterns, and public financing policies for
soybean plantations [20].

The soybean production is evaluated considering three categories: harvest area, yield,
and production. The two main players are Brazil and the US, the former planted a harvest area
of 36.9 million of hectares that produced 120.9 million of tones with a yield of 3.3 tones per hectare [21]
and the latter planted a harvest area around 30.8 million of hectares with a production of 96.8 million
tons and a yield of 3.1 tones per hectare [22]. These values are constantly predicted using classical
methods and presented to stakeholders by government agencies. However, the respective literature
is sparse and relates to agronomy aspects of soybean yield [10,23,24]. In this paper, we focus on the
prediction of these soybean indicators based on the previous crop data.

Therefore, our study aims to estimate Brazilian soybean harvest area, yield, and production
adopting Artificial Neural Networks (ANN) and comparing with classical methods of Time Series
Analysis. To this end, we collected the values of harvest area, production, and yield over a period of
56 years (1961–2016). We established the trend lines for five functions: Linear, Exponential, Logarithmic,
Polynomial, and Power, and compared these results with an ANN model with 10 neurons and
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six delays computed using a Nonlinear Autoregressive Network with External Input-NARX with
Levenberg—Marquardt backpropagation for training the network.

The results show that the ANN model is the most efficient method to predict soybean harvest
area and production. The novelty of this paper is to obtain a reliable prediction for soybean production
measures using an ANN model and dealing with a short data period time series (50 years) [25].
The period of 1961–1966 was used only for ANN model delay.

This paper is divided into sections: Section 1 presents this introduction and literature review,
Section 2 shows the methodological procedures, Section 3 deal with results and discussion,
and Section 4 presents the conclusions of the study.

1.1. Artificial Neural Networks

Artificial Neural Networks, as the name proposed, use artificial neurons connected in layers to
simulate human synapse (Figure 1). A mathematical model mimics the neural structure to learn and
to acquire knowledge via experiences (Equations (1) and (2)). This technology is effective to solve
problems—dynamic and nonlinear—such as pattern recognition and prediction [25–30].

ne =
n

∑
i=1

xiwi + bi (1)

u = f (ne) (2)

where x1. . . xn are the input values (data set), w1. . . wn are the weights, and b is the activation threshold
(bias) in the neuron potential ne [25,26,31].

Figure 1. Artificial neuron (left) and ANN multilayer (right).

Among several types of neuron activation functions, the most common are: hyperbolic tangent
(Equation (3)), hidden layer, and linear. The last one always assumes values identical to the activation
potential n [25,26,31]:

f (ne) =
1− e−βu

1 + e−βu (3)

where β is the constant associated with the slope of the hyperbolic tangent function and the output
values assume numbers between −1 and 1.

ANN uses previous data for training the network and minimizes errors between the insertion
and the estimation. This process adjusts the weights and possible bias for each neuron interaction.
The training usually stops when finding out the optimal learning rate [25–30].
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There are various ANN techniques such as General Regression Neural Network (GRNN),
Backpropagation Neural Network (BNN), Radial Base Function Neural Network (RBFNN),
and Adaptive Neuro-Fuzzy Inference System (ANFIS) [32]. Backpropagation (BP) is a learning
algorithm widely used in forecasting problems with ANN, and the networks [30]. The weights
between the different layers may be updated using the BP algorithm, with momentum and learning
rate. Moreover, the weights between the different layers may be updated where the error is then
propagated backward from the output to the input layer [33].

Some studies have been using ANN to study the agricultural environment. Garg et al. [30]
compare the performance between different training methods using an ANN model to forecast wheat
production in India. The data contain 95 years of wheat production (1919–2013), and the results
revealed that the algorithms most effective in training methods are Bayesian regularization and
Levenberg–Marquardt.

Almomani [34] adopted artificial neural networks to predict the biofuel production from
agricultural wastes and cow manure at high accuracy. The training and testing of the ANN used
to predict the cumulative methane production was assessed by using the root mean square method.
The study confirms the capacity of the ANN model to predict the behavior of biofuel production and
to identify the optimum conditions in a short time.

Sankhadeep et al. [35] use an ANN model for soil moisture quantity prediction for sustainable
agricultural applications. They study soil moisture prediction in terms of soil temperature,
air temperature, and relative humidity. The nonlinear relation between soil moisture and the features
is realized using a hybrid modified flower pollination algorithm supported by the ANN model.
They conclude that for sustainable agricultural application the model is highly suitable.

Khan et al. [8] use deep neural networks to fruit production prediction. They considered different
types of fruit production such as apples, bananas, citrus, pears, and grapes with data from the National
Bureau of Statistics of Pakistan. They adopted Levenberg–Marquardt optimization, backpropagation,
and Bayesian regularization backpropagation. The results reveal that the government of Pakistan needs
to further increase fruit production and create better policies for farmers to improve their production.

Wang and Xiao [36] studied recycle agriculture in West China to make a prediction on the
comprehensive development status applying a neural network model with the application of
backpropagation through the MATLAB program. They conclude that China needs to take measures
to promote resources’ decrement input and resource reuse efficiency, protect the forest resources,
and reinforce harnessing of water loss and soil erosion.

Liu et al. [37] create an artificial neural network model for crop yield responding to soil parameters.
The model was established by training a backpropagation neural network with 58 samples and tested
with other 14 samples. They conclude that the model can precisely describe crop yield responding to
soil parameters.

Fegade and Pawar [38] describe that, in India, farmers have difficulties to select proper crop for
farming due to factors such as rainfall, temperature humidity, soil, and so on. Therefore, they used
support vector machine and artificial neural networks to predict crop with 86.80% of accuracy.

Regarding grains, Maimaitijiang et al. [10] evaluate the power of an unmanned aerial vehicle
(UAV) to estimate soybean grain yield within the framework of deep neural networks (DNN). Thermal
images were collected using a low-cost multi-sensory UAV. The results propose that multimodal data
fusion improves the yield prediction accuracy and is more adaptable to spatial variations; DNN-based
models improve yield prediction model accuracy and were less prone to saturation effects.

Zhang et al. [39] establish a model for forecasting soybean price in China using quantile regression
models to describe the distribution of the soybean price range, and using regression-radial basis
function neural networks to approximate the nonlinear component of the soybean price. They collected
the monthly domestic soybean price in China, and the results of the model indicate that the proposed
model is effective.
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García-Martínez et al. [9] analyze different multispectral and red-green-blue vegetation indices,
canopy cover, and plant density in order to estimate corn grain yield using a neural network model.
The neural network model provided a high correlation coefficient between the estimated and the
observed corn grain yield with acceptable errors in the yield estimation.

Abraham et al. [40] propose to design, train, and simulate an ANN on to forecast the demand of
soybean production in Mato Grosso state, Brazil that is exported by the port of Santos. A nonlinear
autoregressive solution was adopted considering 80% of data for training, 5% to validation, and 15%
for testing the network—a value of 9.0 million tons for 2017 as an increase of about 26.5% compared
with the 2016.

Eventually, Abraham et al. [41] also analyze the relationship between soybean supply (production)
and soybean demand (export) using artificial intelligence in a hybrid model neuro-fuzzy. Data from
20 years of soybean production and exportation were used, and the results indicate that the supply
tends to be low when the demands of the ports are overloaded.

Specifically, in the present article, we raised two questions regarding ANN in soybean production:

• Can soybean harvest area, yield, and production be predicted efficiently using Artificial Neural
Networks?

• If so, are Artificial Neural Networks more effective than classical methods of Time Series Analysis
to predict soybean production measures?

To answer these two questions, we develop an ANN model using NARX with the Levenberg–
Marquardt algorithm for backpropagation and data of Brazilian soybean production.

1.2. Time Series and Classical Methods

Time series analysis studies the past behavior of historical series using different methods (Table 1).
It verifies trends, seasonality, and randomness in a dataset in two ways: stationary, when observations
oscillate around a central horizontal axis; and non-stationary when oscillates around changing
values [42,43]. The most appropriate model for a specific dataset is the coefficient of determination
(R), the mean absolute error (MAE), and the mean squared error (MSE) [42,43].

Table 1. Classical methods, equations, and characteristics.

Method Formulas Features

Linear function y = ax± b

Linear is defined as a curve of the first degree or a simple straight
line—where y is the trend, x represents the period of time, a is a
slope, and b is the intercept. The intercept will determine how
far from the x-axis the trend begins. The slope will determine the
direction and the steepness.

Exponential function y = aebx

Exponential is defined as a transcendental curve, where e
represents the basis for natural logarithms, and its constant
value is 2.7813. It grows exponentially, but they never reach the
attracting value.

Logarithmic function y = aln(x)± b The inverse of the exponential function is a logarithmic function.

Polynomial function y = ax2 ± bx± c

The second-degree polynomial curve is a parabola. The
polynomial model can go up to the sixth degree. A larger
magnitude corresponds to a greater adjustment than that in the
original data; however, this does not mean that it is best for
forecasting. The best method is the one that can perform well
with minimum parameters.

Power function y = axb The graph of a power curve is a hyperbola.

Source: adapted from [42,43].
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The coefficient of determination (Equation (4)) measures the linear regression adjustment, which
aims to explain the relationship of the variables. The closer this number is to one, the more fitted is the
model. However, a measure higher than 0.7 is satisfactory [25,42,43]:

R =
∑ (ŷ− y )2

∑ (y− y )2 . (4)

The coefficient of determination is calculated based on the ratio between the explained and the
total variance where y represents the real value of the series, ŷ is the expected value (value of the
regression line approaching the actual value), and ȳ is the average value of the series.

Note that the variance is the difference between the expected value and the mean, and the total
variance is the difference between the original and mean value [25,42,43]. The MAE and MSE are
calculated according to Equations (2) and (3), where n is the number of elements in the series.

MAE =
∑ |y− ŷ|

n
, (5)

MSE =
∑ (y− ŷ)2

n
. (6)

Finally, functions with error values close to 0 are the most effective in predicting future values.
These time series applications are described in the Results and Discussion section.

2. Materials and Methods

2.1. Dataset

To perform this study, we collected data from the Food and Agriculture Organization of the United
Nations (FAO) [44] regarding harvest area (million hectares), yield (tons per hectare), and production
(million tons) between 1961–2016. The dataset was imported from MS c© Excel 2016 spreadsheet to
Matlab c© R2017b arrays. However, the period from 1961–1966 was used only for delay configuration,
and it was not plotted on the time series [29,45].

Firstly, we conducted Time Series Analysis. The historical series was extracted and processed
in MS c© Excel 2016 spreadsheet format generating graphs with trend lines. Tables 2–4 present
the formulas.

Table 2. Harvest area.

Model Trend Formulas

Linear function y = 0.5523x− 1.1485
Exponential function y = 2.1503e0.0582x

Logarithmic function y = 7.8508ln(x)− 10.379
Polynomial function y = 0.009x2 + 0.0937x + 2.8259
Power function y = 0.4302x1.0419

x = timestep(year). y = million hectares.

Table 3. Yield.

Model Trend Formulas

Linear function y = 0.0388x + 1.0523
Exponential function y = 1.1748e0.0199x

Logarithmic function y = 0.5735ln(x) + 0.3397
Polynomial function y = 0.0001x2 + 0.0321x + 1.111
Power function y = 0.7747x0.3113

x = timestep(year). y = tons per hectare.
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Table 4. Production.

Model Trend Formulas

Linear function y = 1.6935x− 12.323
Exponential function y = 2.5259e0.0782x

Logarithmic function y = 22.599ln(x)− 36.247
Polynomial function y = 0.045x2 − 0.6007x + 7.5607
Power function y = 0.3332x1.3534

x = timestep(year). y = million tons.

Secondly, we used neural networks toolbox of the Matlab c©R2017b software to create, train,
and validate the ANN model—we tested with 10 neurons and six delays (Figure 2).

Figure 2. Neural network created in Matlab 2017b.

We adopted the Nonlinear Autoregressive Network with External Input-NARX type because
it has proven to be the most effective and accurate solution for multivariable data series [27,46–48].
The NARX network applies historical input data with time delay operators [9]. We used 70% of data for
training, 15% for validation, and 15% for testing. We defined the percentage based on k-cross validation
that utilizes efficiently the learning abilities of the ANN model [49], and data are distributed randomly
by NARX [46]. Moreover, we adopted the Levenberg–Marquardt algorithm for backpropagation due
to being the fastest supervised algorithm for training and widely used for time series prediction in the
ANN model [25,30,46].

For harvested area (target), we used yield and production as input variables; for yield (target),
we used harvested area and production as input variables; for production (target), harvested area and
yield were used as input variables.

After that, Matlab c© R2017b provided algorithms for closed-loop form simulation
(named multistep prediction). This type of simulation is important to verify the ability of the networks
to make predictions (calculation of errors) [25]. Figure 3 shows the overall flowchart of the ANN model.

2.2. Model Classification

The differences between the original and predicted values were computed using MAE and MSE,
even for ANN. We compared classical models and neural networks where the errors of each model
were sorted from lowest to highest. However, regression measures were sorted from highest to lowest.
Depending on the use of two measures of error the weighted average was used (Equation (7)):

Rank =
(MAE × 0.5) + (MSE × 0.5) + (R × 1)

2
(7)

where MAE is mean absolute error, MSE is mean squared error, and R is the coefficient of determination.
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Figure 3. Flowchart of the ANN model.

3. Results and Discussion

3.1. Time Series Analysis Using Classical Predictive Methods (Functions)

3.1.1. Harvested Area

The first application of classical methods for prediction uses the time series for harvest area
(target). Figure 4 illustrates the 1967–2016 timespan in million hectares.

The harvested area raised continuously, mainly after the harvest of 1997 (Timestep 31), and reached
around 33 million hectares in 2016 (Timestep 50). Looking back over 1967 year (Timestep 1), the planted
soybean area was 2% (around 0.6 million hectares) of the area planted in 2016. There has been a more
than a 50-fold increase while the US, the main Brazilian competitor, had in 1967 54% of the current
planted area [22].

Regarding the fit of functions, polynomial and power were more effective in predicting harvest
area considering R, MAE, and MSE (Table 5).

Table 5. Effective functions for forecasting harvested area.

Rank Model R MAE MSE

1◦ Polynomial function 0.944 1.813 3.915
2◦ Power function 0.949 1.927 6.901
3◦ Linear function 0.904 1.996 6.716
4◦ Exponential function 0.797 2.481 8.859
5◦ Logarithmic function 0.680 3.825 22.482

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in millions
of hectares), and MSE is the mean squared error (value in millions of hectares).
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Figure 4. Original time series for harvested area.

3.1.2. Yield

The second application of classical methods of predication verifies soybean yield (target). Figure 5
depicts the time series analysis results considering data from 1967–2016 in hectares.

Figure 5. Original time series for yield.

The average yield over the 50-year period was approximately two tons per hectare. The lowest
value was 0.9 hectares in 1968 (Timestep 2), and the highest value 3.1 tons per hectare in 2011 (Timestep
45). During the 1967 (Timestep 1) crop season, the national yield was approximately 1.2 ton per hectare,
which corresponds to less than half of the yield in 2016 (Timestep 50). In addition, compared with the
US in the same period, the lowest value was 1.6 ton per hectare in 1974 and the highest value 3.5 in
2016 [22]. This means that the Brazilian soybean yield varies 158% against 119% of the US.

The yield increase in soybean production was affected by changes in production processes and
the use of new technologies. Moreover, genetic improvements of soybean created a variety of grain
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with better adaptation to the climate that affected productivity [12]. According to Pereira [50], the last
30 years have demonstrated innovative solutions in food production, such as new crop varieties
and new irrigation techniques. However, Dani [12] argue that the evolution has generally been
technological without improving governance processes causing logistics issues throughout the supply
chain. Logistics has a huge impact on soybean production and directly affect the trade [51].

Related to the fit of the functions, linear and polynomial predict more precisely soybean yield
given that R, MAE, and MSE (Table 6).

Table 6. Effective functions for forecasting yield.

Rank Model R MAE MSE

1◦ Linear function 0.898 0.148 0.036
2◦ Polynomial function 0.899 0.158 0.037
3◦ Exponential function 0.874 0.170 0.038
4◦ Power function 0.794 0.202 0.068
5◦ Logarithmic function 0.728 0.239 0.095

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in tons
per hectare), and MSE is the mean squared error (value in tons per hectare).

3.1.3. Production

Finally, we use classic methods to predict production. Figure 6 shows the time series analysis for
soybean production from 1967–2016 in millions of tons.

Figure 6. Original time series for production.

Brazilian soybean production raised 130-fold, moving from 700 thousand tons in 1967 (Timestep 1)
to 96.3 million tons in 2016 (Timestep 50). In the same period, the US soybean production moves
from 26.5 million tons to 116.9 million tons [22]. In 2019, the Brazilian soybean production was 25%
higher [21] than 2016.

Furthermore, we identify that in 1970 (Timestep 4) the production was 1.5 million tons, but, in 1977
(Timestep 11), it reached 12.5 million tons. This great expansion of soybean cultivation occurs due to
the expansion of international demand and the national soybean oil industry [52].

Regarding soybean production, polynomial and power were more effective considering R, MAE,
and MSE (Table 7).
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Table 7. Effective functions for forecasting production.

Rank Model R MAE MSE

1◦ Polynomial function 0.968 3.990 21.755
2◦ Power function 0.952 6.058 88.784
3◦ Exponential function 0.853 5.847 77.116
4◦ Linear function 0.867 7.658 91.879
5◦ Logarithmic function 0.574 13.843 293.441

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in millions
of tons), and MSE is the mean squared error (value in millions of tons).

3.2. ANN Model

3.2.1. Training, Validation, and Testing of Neural Network

Harvested area training reached an optimal value for the regression and correlation among
variables after nine interactions (Figure 7). The training procedure stops when the performance on
the test data does not improve following a fixed number of training iterations [39]. The main purpose
of the training phase is to find the optimal set of weights for the ANN model where the error is
minimized [35].

Figure 7. Regression and correlation of the harvested area using Matlab R2017b.

The training, validation, and testing indicate that the network learned from the data (R > 0.99).
Moreover, the fit was well-aligned, which means the model has a good capacity for generalization
and prediction.

Yield training reached an optimal value for the regression and correlation among variables after
12 iterations and pose an R higher than 0.9 (Figure 8).
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Figure 8. Regression and correlation for yield using Matlab R2017b

Yield presents correlation and regression results similar to the other two networks. However,
fit shows a reasonable alignment representing a capacity of the network generalize and predict.

Finally, the production network was trained and after nine interactions reached an optimal value
for the regression and correlation among variables (Figure 9).

Figure 9. Regression and correlation for production using Matlab R2017b.

The network shows an excellent rate of learning, with reasonable values of alignment. However,
the validation and test pose deviations on fit. The overall results present proper alignment confirming
its ability to generalize and make predictions.

Given that there are three networks, the harvested area indicated the best results, followed by
production and yield.
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3.2.2. Time Series Results with an Artificial Neural Network

Figures 10–12 depict the results of the time series generated by the neural networks in closed-loop
form (multistep prediction). The blue line (target) represents the original data, and the red line
(prediction) represents the obtained values for each period.

Neural network prediction shows better adjustment to the original data than time series analysis.
In other words, these predictions show a smoother follow-up. The trend lines of the classical models
follow the randomness of the series increasing the error between the original and predicted values.
The base graphic Figure 10 presents the error of the prediction in millions of hectares, in Figure 11 in
tons per hectare and Figure 12 in millions of tons.

The classical models are based on elements dependent on the analysis of their predecessors.
On the flipside, ANN is a generalization of the classical models, where an element to be predicted also
depends on the previous elements of other related time series [27].

Figure 10. Multistep prediction of harvested area using Matlab R2017b.

Figure 11. Multistep prediction of yield using Matlab R2017b.



Agriculture 2020, 10, 475 14 of 18

Figure 12. Multistep prediction of production using Matlab R2017b.

3.2.3. Comparison between Artificial Neural Networks and Time Series Classical Models

Considering R, MAE, and MSE, Tables 8–10 present the ranking of ANN model versus classical
functions for forecast harvested area, yield, and production, respectively.

Considering the results, Artificial Neural Networks ranked first for predicting harvested area and
production and third place to yield. The polynomial model ranked second in all three series showing
the reliability of the model to estimate future values. The logarithmic model is the least fitted and
should be discarded for these series.

Table 8. Effective functions versus ANN for forecasting harvested area.

Rank Model R MAE MSE

1◦ ANN 0.995 1.309 2.763
2◦ Polynomial function 0.944 1.813 3.915
3◦ Power function 0.949 1.927 6.901
4◦ Linear function 0.904 1.996 6.716
5◦ Exponential function 0.797 2.481 8.859
6◦ Logarithmic function 0.680 3.825 22.482

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in millions
of hectares), and MSE is the mean squared error (value in millions of hectares).

Table 9. Effective functions versus ANN for forecasting yield.

Rank Model R MAE MSE

1◦ Linear function 0.898 0.148 0.036
2◦ Polynomial function 0.899 0.158 0.037
3◦ ANN 0.954 0.220 0.084
4◦ Exponential function 0.874 0.170 0.038
5◦ Power function 0.794 0.202 0.068
6◦ Logarithmic function 0.728 0.239 0.095

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in tons
per hectare), and MSE is the mean squared error (value in tons per hectare).
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Table 10. Effective functions versus ANN for forecasting production.

Rank Model R MAE MSE

1◦ ANN 0.992 3.362 19.713
2◦ Polynomial function 0.968 3.990 21.755
3◦ Power function 0.952 6.058 88.784
4◦ Exponential function 0.853 5.847 77.116
5◦ Linear function 0.867 7.658 91.879
6◦ Logarithmic function 0.574 13.843 293.441

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (values in
millions of tons), and MSE is the mean squared error (values in millions of tons).

Based on these results, it is possible to infer that predictive capabilities of the developed
ANN model are efficient to soybean prediction with short data time series. This fact confirms the
superior performance of the ANN model against classical methods. Similar results are obtained
for Nedic et al. [53] when compared to an ANN model with classical statistical models to predict
traffic noise.

ANN has been recognized as a valuable predictive tool due to its ability to learn, adapt,
and generalize the results of a sample of noise data and are more effective and flexible than conventional
statistics for dealing with nonlinearity [54]. Moreover, there is a tendency towards the adopting of
artificial intelligence in decision models.

4. Conclusions

This study compares classical methods of time series prediction with Artificial Neural Networks
using Brazilian soybean harvest area, yield and production from 1961–2016. The results indicate
that ANN is the best approach to predict soybean harvest area and production while classical linear
function remains more effective to predict soybean yield. However, ANN is a reliable model to predict
using time series and can help farmers, government, and trading companies anticipate the soybean
world offer to organize efficiently logistics resources and public policies.

Our results confirm the important role of neural networks in dealing with agriculture issues as
showed in previous studies in the literature [8,10,35,39]. The R value above 0.9 confirms the high
performance of the model. Nevertheless, regarding the agriculture concerns about low availability
for planting areas, yield, and production [4–6], your results demonstrated that, at least in case of the
soybean, this is not a concern.

Furthermore, we can conclude that the ANN model can be effective even using a short time
series—that, in our case, was 50 years. This fact reveals a robustness of the model. However, despite the
advantages of the ANN model, classical methods also can produce very good models. A comparison
in other agriculture commodities can be made to confirm or refuse the behavior presented in a soybean
case.

Finally, we also suggest for further studies to combine neural networks in hybrid systems using,
for example, ANN and Fuzzy Logic, similar to that proposed by [41]. Literature has shown that hybrid
systems are more efficient. The goal is to achieve a synergy between hybrid systems to compensate for
the disadvantage of one by the advantage of another [55–57].
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