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Abstract: Three-dimensional (3D) plant canopy structure analysis is an important part of plant 

phenotype studies. To promote the development of plant canopy structure measurement based on 

3D reconstruction, we reviewed the latest research progress achieved using visual sensors to 

measure the 3D plant canopy structure from four aspects, including the principles of 3D plant 

measurement technologies, the corresponding instruments and specifications of different visual 

sensors, the methods of plant canopy structure extraction based on 3D reconstruction, and the 

conclusion and promise of plant canopy measurement technology. In the current research phase on 

3D structural plant canopy measurement techniques, the leading algorithms of every step for plant 

canopy structure measurement based on 3D reconstruction are introduced. Finally, future prospects 

for a standard phenotypical analytical method, rapid reconstruction, and precision optimization are 

described. 

Keywords: 3D measurement; 3D reconstruction; plant phenotype; canopy structure; point cloud 

processing 

 

1. Introduction 

With the rapid development of plant phenotypical technology, its identification has become a 

key process used to improve plant yield, and analyzing plant phenotypes with intelligent equipment 

is one of the main methods to achieve smart agriculture [1]. Digital and visual research of three-

dimensional (3D) plant canopy structures is an important part of plant phenotypical studies. With 

the improvement in computer processing capabilities and reductions in the size of 3D data 

measurement devices, 3D plant canopy structure measurement and reconstruction studies have 

begun to increase exponentially [2]. 

This paper introduces five common visual techniques for 3D plant canopy data measurement, 

their corresponding instrument models and parameters, and their advantages and disadvantages. 

These technologies are binocular stereo vision, multi-view vision, time of flight (ToF), light detection 

and ranging (LiDAR), and structured light. Following this, the general process of 3D reconstruction 

and structure index extraction of plant canopies are summarized. The accuracy and correlation of the 

structure index of the reconstructed plant canopy with different visual devices are evaluated, and the 

common algorithms of plant 3D point cloud processing are reviewed. Then, the technical defects, 
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including the lack of matching between reconstructed 3D plant structure data and physiological data, 

the low reconstruction accuracy, and the high device costs, are outlined. Finally, the development 

trends in 3D plant canopy reconstruction technology and structure measurement are described. 

2. 3D Plant Canopy Data Measurement Technology 

2.1. Binocular Stereo Vision Technology and Equipment 

Binocular vision uses two cameras to image the same object at different positions, which will 

produce a difference in the coordinates of similar features within two stereo images, the difference  

calls binocular disparity, and the distance (object to camera) can be calculated according to binocular 

disparity. Disparity distance measurement is applied to calculate depth information [2]. The principle 

of the method is shown in Figure 1. 

 

Figure 1. Binocular stereo vision principle. x1 and x2 is value of image coordinate and can be obtained 

from image plane directly, and camera calibration can get f (focal distance) and b (baseline). The z 

(deep of object) can be calculated by triangle similarity principle, which result as , and 

x and y can be calculated by z and image plane coordinate. 

The main process of binocular vision reconstruction includes image collection, camera 

calibration, feature extraction, stereo matching, and 3D reconstruction. Camera calibration is a key 

step for obtaining stereo vision data with binocular cameras, and its main purpose is to estimate the 

parameters of a lens and image sensor of a camera, and use these parameters to measure the size of 

an object in world units or determine the relative location between camera and object. The main 

camera calibration methods include the Tsai method [3], Faugeras–Toscani method [4], Martins' two-

plane method [5], Pollastri method [6], Caprile–Torre method [7], and Zhang Zhengyou’s method [8]. 

These methods are based on traditional calibration methods that obtain the camera parameters by 

using a highly accurate calibration piece to establish the correspondence between the space points 

and the image points. In addition, there are self-calibration technologies and calibration techniques 

based on active vision [9]. Andersen et al. [10] used the camera calibration method of Zhang 

Zhengyou to calibrate the internal parameters of the binocular camera, and then obtained the depth 

data of wheat using the stereo matching method with simulated annealing. 

Stereo matching or disparity estimation is the process of finding the pixels in the multi-view that 

correspond to the same 3D point in the scene. The disparity map refers to the apparent pixel 

difference or motion between a pair of stereo images. The calculation of disparity maps in stereo 
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matching is both challenging and the most important part of binocular stereo vision technology. 

Various algorithms can be used to calculate pixel disparity, which can be divided into global, local, 

and iterative methods according to different optimization theories; they can also be divided into 

region matching, feature matching, and phase matching by what elements are represented by the 

images. Malekabadi [11] used an algorithm based on local methods (ABLM) and an algorithm based 

on global methods (ABGM) to obtain the disparity image, which can provide plant shape data. Two 

stereo matchings, 3D minimum spanning tree (3DMST) [12] and semi-global block matching (SGBM), 

are state-of-the-art and widely used. Bao [13] designed an analysis system to measure plant height in 

field using a high-throughput field combined with the 3DMST stereo matching technique. Baweja 

[14] coupled deep convolutional neural networks and SGBM stereo matching to count stalks and 

measure stalk width. Dandrifosse [15] used SGBM stereo matching to extract wheat structure features 

with two nadir cameras in field conditions, including height, leaf area, and leaf angles; the result 

showed that 3D point cloud produced by the stereo camera can be used to measure the plant height 

and other morphological characteristics, although some errors were noted. 

The parameters of typical binocular cameras are shown in Table 1. Binocular stereo version is 

simple and inexpensive, and no further auxiliary equipment (such as a specific light source) and no 

special projection are required [16]. Stereo vision technology also has limitations. It is affected by 

changes in scene lighting and requires a highly-configured computing system to implement the 

stereo matching algorithm; The measurement accuracy by binocular stereo depends on the baseline 

length, as the longer the baseline length compared with distance to a measurement object is, the 

higher the accuracy is; Stereo vision cannot acquire high-quality data, but it uses the data to have an 

interpretation in robotics and computer vision [2]; A robust disparity estimation is difficult in areas 

of homogeneous color or occlusion [16]; and a stereo camera may not reflect the actual boundary of 

the surface when projecting on a smooth and curved surface, which is called false boundary problem 

and will affect the correctness of feature matching in active stereo vision. To solve the false boundary 

problem, one effective approach is to use dynamic and exploratory sensing, another is to move the 

cameras farther away from the surface [17]. 

Table 1. Typical binocular stereo camera. 

Camera 
Bumblebee2-

03S2 
Zed2 PM802(PERCIPIO) 

RGB resolution and 

frame rate  

648 × 488, 48 fps 

1024 × 768, 18 

fps 

4416 × 1242, 15 fps 

3480 × 1080, 30 fps 

2560 × 720, 60 fps 

2560 × 1920, 1 fps 

1280 × 960, 1 fps 

640 × 480, 1 fps 

Depth resolution and 

frame rate 
648 × 488, 48 fps 2560 × 720, 15 fps (Ultra mode) 

1280 × 1920, 1 fps 

640 × 480, 1 fps 

Baseline 120 mm 120 mm 450 mm 

Focal length 2.5 mm 2.12 mm N.A. 

Size (mm) 157 × 36 × 47.4 175 × 30 × 33 538.4 × 85.5 × 89.6 

Weight (g) 342 135 2000 

Measurable range (m) N.A. 0.5–20 0.85–4.2 

Field of view (vertical × 

horizontal) 
66° × 43° 110° × 70° 56° × 46° 

Accuracy  N.A. 
< 1% up to 3 m  

< 5% up to 15 m 
0.04–1% 

Special or limitations  Extendable 

1. Inertial Measurement Unit 

(IMU) 

2. Depending on high-

performance equipment  

1. Protection: IP54 

2. Applying for industry 

equipment 

Price ($) 116 449 11766 

N.A. indicates that data were not found; RGB is the abbreviation of red, blue and green. 
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2.2. Multi-View Vision Technology 

Multi-view vision technology is an imaging method used to capture pictures of objects from 

different perspectives with calibrated cameras. The feature points obtained by overlapped images are 

used to calculate shooting position. Its main applications include structure-from-motion technology 

(SfM) and multi-view stereo technology (MVS). There are two main multi-view vision technologies: 

using multiple cameras to obtain 3D data and rotating cameras or objects to obtain 3D data (including 

deep information). The 3D reconstruction processes for multi-view stereo vision and binocular vision 

are similar, the biggest difference is that SfM uses redundancy overlapping images to get camera 

position parameters, and binocular vision uses a traditional calibration method, calibration, 

matching, and 3D reconstruction. Although the image produced by multi-view vision is more 

accurate, its calibration and synchronization, including camera location mainly, are more 

complicated than those of a binocular camera. 

SfM and MVS have a sequential order: SfM is used to determine camera poses, intrinsic 

parameters calibration and start feature matching, then MVS is used to reconstruct the dense 3D 

scene. Structure-from-motion technology (SfM) is a distance imaging technology that estimates a 3D 

structure by capturing a series of 2D images at different locations in a scene, whose model includes 

incremental, global, and hybrid structures, then it applies a highly redundant image feature and 

matches the 3D positions of features based on the scale-invariant feature transform (SIFT) algorithm 

(or using SURF, ORB algorithm). After estimating camera pose and extracting the points cloud (using 

Bundler), MVS technology is used to reconstruct a complete 3D object model from a suite of images 

taken from known camera locations after calibrating cameras [18], which uses the method of polar 

geometric constraint that sees whether they are consistent with a common popular geometry to match 

each pixel (clustering views for multi-view stereo (CMVS), patches-based multi-view-stereo (PMVS2) 

algorithms and et al.). Some open source software for MVS are shown in Table 2. 

Table 2. Open source software for multi-view stereo technology (MVS). 

Project Colmap GPUlma + fusibile HPMVS MICMAC MVE OpenMVS PMVS 

Language C++ CUDA C++ CUDA C++  C++  C++  C++ CUDA C++ CUDA 

CUDA: Compute Unified Device Architecture. 

SfM generally produces sparse point clouds and MVS photogrammetry algorithms are used to 

increase the point density by several orders of magnitude. As a result, the combined workflow is 

more correctly referred to as ‘SfM-MVS’ [19]. The steps of point cloud formation based on SfM-MVS 

generally include feature detection, keypoint correspondence, identifying geometrically consistent 

matches, structure from motion, scale and georeferencing, refinement of parameter values, and multi-

view stereo image matching algorithms. Some typical commercial integrated software for 

implementing SfM-MVS are shown in Table 3.  

Table 3. Commercial software for 3D scene modeling utilizing SfM-MVS. 

Name Function Company 

ContextCapture Create detailed 3D models quickly with simple photos 
Bentley 

Acute3D 

PhotoMesh 
Construct full-element, fine, textured three-dimensional mesh models from a 

set of standard, disordered two-dimensional photographs. 
SkyLine 

StreetFactory 

Enabling rapid and fully automatic process of images from any aerial or 

street camera for the generation of a 3D textured database and distortion-

free imagery 

AirBus 

PhotoScan 
Performing photogrammetric processing of digital images and generates 3D 

spatial data to be used in geographic information system (GIS) applications 
AgiSoft 

Pix4DMapper Transform images in digital maps and 3D models. Pix4D 

RealityCapture Extracts accurate 3D models from a set of ordinary images and/or laser scans RealityCapture 
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Scale and georeferencing are special steps for aerial maps. Output of the SfM stage is a sparse 

unscaled 3D point cloud in arbitrary units along with camera models and poses, so correct scale, 

orientation, or absolute position information need to be built according to known coordinates. Three 

methods can be used to enable accurate scale and georeferencing of the imagery. One is using a 

minimum of three ground control points (GCPs) with XYZ coordinates to scale and georeference the 

SfM-derived point cloud [20]. Orientation can be measured from an Inertial Measurement Unit (IMU) 

[21] and it can be performed from known camera positions derived from RTK-GPS measurements 

[22]. On the other hand, the metric scaling factor was derived through the known value of a 

geometrical feature in the point cloud for small-scale plant measurement without unmanned aerial 

systems (UAS), and raw point cloud are multiplied by a scale factor that is the ratio of the feature in 

millimeters and in the pixel system of the raw point cloud, which will determine an individual scale 

factor for every point cloud [23]. 

SfM can be applied to large-scale plant measurement. Unmanned aerial systems are necessary 

pieces of auxiliary equipment for large-scale experimental field measurement based on SfM-MVS. 

Images are acquired autonomously based on presetting UAS parameters and camera settings, then 

point cloud data are generated by some commercial software for 3D scene modeling. Then plant 

height, density, and etc. was calculated after point cloud processing. For example, Malambo [20] used 

a DJI ® Phantom 3 to acquire images and 6 or more portable GCPs were placed uniformly in the field 

and measured using a Trimble GeoXH GPS system for scale and georeferencing, 100 readings were 

taken per point and differentially post-processed using Trimble’s Pathfinder Office software to 

achieve centimeter accuracy (<10 cm), and Pix4Dcapture software based on SfM was used to generate 

a point cloud, then point cloud was processed to obtain maize height. SfM can also be applied to 

small-scale plant measurement. Rose [23] used Pix4DMappe based on SfM-MVS to reconstruct single 

tomato plants, and extracted main stem height and convex hull from the 3D point clouds. 

2.3. Time of Flight Technology 

Time of Flight (ToF) is a high-precision ranging method. ToF cameras and LiDAR (light detection 

and ranging) scanning are based on Time of Flight technology. The imaging principles of ToF can be 

divided into pulsed-wave (PW-iToF) or continuous-wave (CW-iToF) modulation [24]. The ToF imaging 

principle is shown in Figure 2. CW-iToF emits near-infrared (NIR) light through a light-emitting diode 

(LED), which reflects back to the sensor. Each pixel on the sensor samples the amount of light reflected by 

the scene four times in equal intervals per cycle (such as m0, m1, m2, and m3). The phase difference, offset 

value, and amplitude are sampled by comparing the modulation phase with the transmitted signal phase, 

and the target depth is calculated based on these three quantities. PW-iToF uses a transmitting module to 

transmit a laser pulse (Tpulse), while at the same time, a shutter pulse, which has the same time length 

with Tpulse, is activated by the transfer gate (TX1). When the reflected laser hits the detector, the charges 

are collected. After the first shutter pulse ends, the second shutter pulse is activated by the transfer gate 

(TX2). The charge is integrated in the according storage node of two shutters and the target depth is 

calculated based on accumulation of charge [24]. 

  
(a) (b) 

Figure 2. Principle of time of flight image collection: (a) distance measurement based on continuous-

wave modulation; (b) distance measurement based on pulsed modulation. 
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2.3.1. Time of Flight Cameras 

Time of Flight cameras are part of a broader class of scannerless LiDAR, in which the entire scene 

is captured with each laser pulse, as opposed to point-by-point with a laser beam, such as in scanning 

LIDAR systems [25]. Typical cameras using ToF technology are SR-4000, CamCube, Kinect V2, etc., 

whose structural parameters are shown in Table 4. An important issue for ToF cameras is the 

wrapping effect, which is the distances to objects that differ 360° in phase and are indistinguishable. 

Multiple modulated frequencies and lowering the modulation frequency can solve the issue by 

increasing the unambiguous metric range [26]. Hu et al. [27] proposed an automatic system for leaflet 

non-destructive growth measurement based on a Kinect V2, which uses a turntable to obtain a multi-

view 3D point cloud of the plant under test. Yang Si et al. [28] used a Kinect V2 to obtain the 3D point 

cloud depth data of vegetables in seedling trays. Vázquez–Arellano [29] estimated the stem position 

of maize plant clouds, calculated the height of individual plants, and generated a plant height profile 

of the rows using a Kinect V2 camera in a greenhouse. Bao [30] used Kinect V2 to obtain 3D point 

cloud data under field conditions, and a point cloud processing pipeline was developed to estimate 

plant height, leaf angle, plant orientation, and stem diameter across multiple growth stages. A branch 

3D skeleton extraction method based on an SR4000 was proposed by Liu [31] to reconstruct a 3D 

skeleton model of the branches of apple trees, and an experiment was carried out in Fruit Tree 

Experimental Park; Skeletonization is the process of calculating a thin version of a shape to simplify 

and emphasize the geometrical and topological properties of that shape, such as length, direction, or 

branching, which are useful for the estimation of phenotypic traits. Hu [32] used the SR4000 camera 

to acquire a plant’s 3D spatial data and construct a 3D model of poplar seedling leaves, then 

calculated leaf width, leaf length, leaf area, and leaf angle based on the 3D models. 

Table 4. Depth camera comparison based on time of flight (ToF). 

Camera CAMCUBE 3 SR-4000 Kinect V2 
IFM Efector 3D 

(O3D303) 

Manufacturer 

PMD 

Technologies 

GmbH 

Mesa Imaging 

AG 
Microsoft IFM 

Principle 
Continuous-wave 

modulation 

Continuous-

wave 

modulation 

Continuous-wave 

modulation 

Continuous-wave 

modulation 

V (vertical) × H 

(horizontal) field 

of view 

40° × 40°  N.A. 70° × 60° 60° × 45° 

Frame rate and 

depth resolution  
40 fps, 200 × 200 

54 fps, 176 × 

144 
30 fps, 512 × 424 40 fps, 352 × 264 

Measurable range 

(m) 
0.03–7.5 0.03–7.5 0.5–5 0.03–8 

Focal length (m) 0.013 0.008 0.525 N.A 

Signal wavelength 

(nm) 
870 850 827–850 850 

Advantages 

Strong resistance 

to ambient light, 

high precision 

High precision 

and light 

weight 

Rich development 

resource bundle 

Not affected by light, 

detection of scenes 

and object without 3D 

images of motion blur 

Disadvantages High cost 
Not for 

outdoor light 

Low measurement 

accuracy; not suitable 

for very close object 

recognition 

High cost 

A key advantage of time-of-flight cameras is that only a single viewpoint is used to compute 

depth. This allows robustness to occlusions and shadows and preservation of sharp depth edges [33]. 
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The main disadvantages of Time of Flight are low resolution, and not being to able to be operated 

under strong sunlight, being disturbed by other’s ToF cameras, and short distance measurement.  

2.3.2. LiDAR Scanning Equipment Based on ToF 

Light detection and ranging (LiDAR) was developed in the early 1970s to monitor the earth [34]. 

LiDAR can be divided into aerial and terrestrial LiDAR. As aerial LiDAR laser scanning is mainly 

used for 3D data measurement of glaciers, forests, and land, the effect resolution is low in plant 

phenotypical analysis, so terrestrial LiDAR scanning is mainly used in 3D plant scanning. Terrestrial 

LiDAR (T-LiDAR) scanners can be divided into phase-shift T-LiDAR and pulse-wave T-LiDAR. T-

LiDAR estimates time by the phase shift between the continuous emission and the receipt of the laser 

beam, making it ideal for measuring high-precision and relatively close scenarios. Time-of-flight T-

LiDAR is based on calculating the time between emitting and receiving laser pulses to estimate the 

distance, which is suitable for scenarios with large distances. The specification parameters of partial 

low-cost devices T-LiDAR for measurements of a plant canopy are shown in Table 5. 

Table 5. Low-cost T-LiDAR(Terrestrial LiDAR) scanners specifications. 

Performance 

Parameters 

LMS 111 

[35] 

UTM30LX 

[36,37] 

LMS291-S05 

[38] 

Velodyne 

HDL64E-S3 

[39] 

FARO 

Focus 3D X 

330 HDR [40] 

Measurement range 

(m) 
0.5–20 0.1–30 0.2–80 0.02–120 0.6–330 

Field of view 

(vertical × 

horizontal) 

270° (H) 270° (H) 180° (H) 
26.9° × 360° (V 

× H) 

300° × 360°(V 

× H) 

Light source 
Infrared 

(905 nm) 

Laser Semicon-

ductor (905 nm) 

Infrared 

(905 nm) 

Infrared 

(905 nm) 

Infrared 

(1550 nm) 

Scanning frequency 

(Hz) 
25 40 75 20 97 

Angular resolution 

(°) 
0.5 0.25 0.25 0.35 0.009 

Systematic error ±30 mm N.A. ±35 mm N.A. ±2 mm 

Statistical error ±12 mm N.A. ±10 mm N.A. N.A. 

Laser class  
Class 1 (IEC 

60825-1) 
Class 1 

Class 1 

(EN/IEC 

60825-1) 

Class 1 (Eye-

safe) 
Class 1 

Weight (kg) 1.1 0.21 4.5 12.7 5.2 

LiDAR 

specifications 
2D 2D 2D 3D 3D 

N.A. indicates that data were not found. 

LiDAR can be used for canopy measurement. Garrido [35] used portable LiDAR LMS 111 to 

reconstruct a maize 3D structure under greenhouse conditions, which can help the aim of developing 

a georeferenced 3D plant reconstruction. Yuan [38] developed a detection system to measure the tree 

canopy structure by LiDAR UTM30LX and the height and weight of artificial tree could be obtained 

by the system. Qiu [39] used LiDAR Velodyne HDL64E-S3 to get depth-band histograms and 

horizontal point density, using the data to recognize and compute the morphological phenotype 

parameters (row spacing and plant height) of maize plants in the experimental field. Jin [40] used 

LiDAR FARO Focus 3D X 330 HDR to get maize point cloud data, and realized stem-leaf 

segmentation and phenotypic trait extraction in an experiment carried out in the Botany Garden. 

2.4. Structured Light Technology and Equipment 

Structured light is an active imaging technology. The projector projects a series of light 

sequences, or patterns consisting of many stripes at once or of arbitrary fringes onto the object, and 
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the light sequence is deformed on the object. Then, the camera shoots the object in another direction 

and extracts the deformation of its stripe shape and stripe width to obtain depth data. The method is 

shown in Figure 3. 

 

Figure 3. The principle of structured light. 

A structured light 3D scanner has some advantages. A structured light scanner can produce 

highly accurate results, resolution is typically high, the images captured can reliably determine the 

dimensions of the object, and it is often fast. 3D imaging can occur practically as fast as an image can 

be taken. Structured light scanner imaging systems have a better measurement coverage area than 

other 3D imaging techniques, as long as the distance is fixed. This is particularly useful for larger 

parts that need multiple scans, further saving time and creating efficiencies in production [33]. Major 

drawbacks of the sequential projection techniques include its inability to acquire the 3D object in 

dynamic motion or in a live subject such as human body parts. Another limitation is that the reflected 

pattern is sensitive to optical interference from the environment, so it is suitable for indoors. The 

general process for 3D reconstruction based on structured light is as follows: camera and projector 

calibration, projector calibration includes intensity calibration to build the relationship between the 

actual intensity of the projected pattern and image pixel value, geometric calibration to build the 

relationship between point of 3D space and projector [41], projecting patterns and finding 

correspondences to estimate parameter matrix between pixel and point of 3D space, obtaining a 3D 

point cloud based on the parameter matrix of the structured light camera, and to carry out 3D 

reconstruction. 

Chené et al. [42] used Kinect V1 to measure leaf curvature, morphology, and orientation. Azzari 

et al. [43] used Kinect V1 to obtain the point cloud data of the plant, and then constructed the canopy 

structure of the plant to obtain the plant diameter and height. Nguyen et al. [44] used a combination 

of structured light and a multi-camera to extract plant (cabbage, cucumber, tomato) height, leaf area, 

and total shaded area. Syed et al. [45] used Realsense SR300 to obtain the color and depth data of the 

plants (pepper, tomato, cucumber, and lettuce), with the key characteristics of the seedlings obtained 

through a series of algorithms; the processing speed was also fast. Vit [46] compared the following 

sensors: Kinect II, Orbbec Astra, Intel RealSense SR300, and Intel D435; and experiments showed that 

the Intel D435 sensor provided the best accuracy for measuring the average diameter of maize stems. 

Liu [47] proposed a recognition algorithm for citrus fruit based on RealSense. The method effectively 

used depth-point cloud data got from RealSense F200 in a close-shot range of 160 mm and different 

geometric features of the citrus fruit and leaves to recognize fruits with an intersection curve cut by 

the depth-sphere. Milella [48] used the RealSense R200 depth camera to construct an in-field high 

throughput grapevine phenotyping platform that can estimate canopy volume and detect grape 

bunches under field condition. And some structured light depth cameras specifications are shown in 

Table 6. 
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Table 6. Depth camera comparison based on structured light. 

Performance Parameters Kinect V1 
RealSense 

SR300 
Orbbec Astra 

Occipital 

Structure 

Measurable range (m) 0.5–4.5 0.2–2 0.6–8 0.4–3.5 

V × H field of view 57° × 43° 71.5° × 55° 60° × 49.5° 58° × 45° 

Frame rate and depth 

resolution 

30 fps, 320 × 

240 
60 fps, 640 × 480 

30 fps, 640 × 

480 
60 fps, 320 × 240 

Price ($) 199 150 150 499 

Size (mm) 280 × 64 × 38 14 × 20 × 4 165 × 30 × 40 119.2 × 28 × 29 

2.5. Comparison of Main Measurement Technologies 

Table 7 summarizes the devices’ technology differences of stereo vision, SfM, Time of Light, 

LiDAR scanning, and structured light in 6 aspects. The numbers of plus and minus are intensity of 

advantage. 

Table 7. Summarize the advantages and disadvantages of each technology. 

Category Advantages Disadvantages 

Binocular stereo 

vision technology 

[49] 

1) Get depth image quickly and 

plant’s slight movement does not 

affect the precision 

2) Low cost 

3) Obtains deep and color data at the 

same time 

4) No further auxiliary equipment 

1) Affected by scene lighting  

2) High computer performance and 

complicated algorithm  

3) Complex 3D scene reconstruction 

4) Not for homogeneous color 

5) False boundary problem 

Structure-from- 

motion technology 

[50] 

1) Operates easily and low cost 

2) Open source and commercial 

software for 3D reconstruction 

3) Suitable for aerial applications, 

excellent portability 

1) Not suitable for real-time applications 

Time-of-flight 

technology [49,51] 

1) No external light 

2) Single viewpoint to compute depth 

1) Poor depth resolution 

2) Not work in bright light 

3) Short distance measurement 

 

LiDAR scanning 

technology  

1) Fast image collection 

2) Can work at night 

3) Can work in severe weather (rain, 

snow, fog, etc.) for advanced laser 

scanning 

4) Works over long distances (more 

than 100 m) 

1) Poor edge detection (3D point clouds of 

edges of plant organs like leaves, for 

instance, are blurry) 

2) Needs warm-up time 

3) Need for movement to obtain the depth 

data of the detected object 

Structured light 

technology  

1) Accuracy and high depth 

resolution 

2) Get depth image quickly 

3) Captures large area 

1) Indoor plant imaging 

2) Stationary object 

3. Plant Canopy Structure Measurement Based on 3D Reconstruction 

Plant canopy structure measurement based on 3D reconstruction main flows include 3D plant 

data acquisition, point cloud processing, 3D plant reconstruction, plant segmentation, plant canopy 

structure parameters extraction. The processes are shown in Figure 4. 
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Figure 4. Flow chart of plant canopy structure measurement based on 3D reconstruction. 

3.1. 3D Plant Data Acquisition 

Plant 3D data are mainly displayed using depth maps [52,53], polygon meshes [54], voxels [55–

58], and 3D point clouds [44]. The presentation of data types is shown in Figure 5. Among them, the 

depth map is a 2D picture, and each pixel value records the distance from the camera viewpoint to 

the surface of the obstruction. A polygon mesh, also called an unstructured mesh, is a collection of 

vertices and polygons representing polyhedron shapes in 3D computer graphics, consisting of a 

series of convex polygon vertices and convex polygon surfaces [59]. Polygon meshes are intended to 

represent 3D object models in a way that is easy-to-render. A voxel [60], which is an abbreviation for 

volume cell and is similar to a pixel of 2D space, is the smallest unit of digital data in the 3D space 

partition. Voxelization is a standardized representation method that is used in the field of 3D 

imaging. A point cloud is a data set of points in a certain coordinate system that includes 3D 

coordinates, color, size value, segmentation results, etc.  

3D point cloud data can be obtained by a visual sensor based on binocular stereo vision 

technology, multi-view vision technology, SfM technology, ToF technology, and so on. The details of 

the technical principle and camera specifications are shown in Section 2. 

 

Figure 5. Data type: (a) depth maps, (b) polygon meshes, (c) voxels, and (d) 3D point clouds. 

3.2. 3D Plant Canopy Point Clouds Preprocessing 

Modeling using point cloud data is fast and has finer details than polygon meshes and voxels, 

which is valuable for agricultural crop monitoring. However, point clouds cannot be used directly 

for 3D applications, they need to be processed first because of wrongly assigned points and no-

interest points, which are not matching between pixel point and actual corresponding object, or it is 

background and no target object. 3D point cloud preprocessing in general includes background 

subtraction, outlier removal, and denoising [61]. At present, there are many open source resources 

available for point cloud processing. Table 8 introduces some functions of open source point cloud 

processing libraries and open source software.  
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Table 8. Introduction of open source libraries and software for point cloud processing. 

Type Name Function Reference URL 

Open 

source 

library 

Point Cloud 

Library 

Large cross-platform open-source 

C++ programming library 

providing a full set of point cloud 

data processing modules to 

implement a large number of 

general point-cloud-related 

algorithms and efficient data 

structures 

http://pointclouds.org/ 

Point Data 

Abstraction 

Library 

C++ BSD (the Berkeley software 

distribution) library for 

translation and manipulation of 

point cloud data 

https://pdal.io/ 

Liblas 
Libraries for reading and writing 

plain LiDAR formats 
https://liblas.org/ 

Entwine 

Data organization library for a 

large number of point clouds, 

designed to manage hundreds of 

millions of point and desktop-

scale point clouds 

https://github.com/connormanning/entwine/ 

PotreeConverter 

Data organization library that 

generates data for data used in 

Potree (a large network-based 

point cloud renderer) network 

viewer 

https://github.com/potree/PotreeConverter 

Open 

source 

software 

Paraview 
Multi-platform data analysis 

and visualization application 
https://www.paraview.org/ 

Meshlab 

Open source for unstructured 

3D triangular mesh processing 

and editing; portable and 

scalable system 

http://meshlab.sourceforge.net/ 

CloudCompare 

3D point cloud and grid 

processing software open 

source project 

http://www.danielgm.net/cc/ 

OpenFlipper 

Multi-platform application and 

programming framework 

designed to process, model, and 

render geometric data 

http://www.openflipper.org/ 

PotreeDesktop 

Desktop/portable version of the 

web-based point cloud viewer 

Potree 

https://github.com/potree/PotreeDesktop 

Point Cloud 

Magic 

The first set of free point cloud 

data processing “point cloud 

cube” software developed by 

the Chinese Academy of 

Sciences for remote sensing of 

the earth, LiDAR statistical 

parameters, extraction of 

vegetation height, biomass, etc., 

based on statistical regression 

methods and single tree 

segmentation 

http://lidar.radi.ac.cn/ 

3.2.1. Background Subtraction 

To obtain only the plant canopy, it is necessary to separate the plant point cloud area from the 

ground, weeds, or other backgrounds after obtaining plant 3D point clouds data. When using active 

image technology (ToF technology, structured light technology, and so on) without color data to get 
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3D point clouds, detection of geometric shapes can be applied to remove the background. When using 

passive image technology (binocular stereo vision technology, multi-view vision technology, SfM 

technology, and so on), color thresholding or clustering with different color data can be applied to 

remove background. 

Bao [13] uses the Random Sample Consensus (RANSAC) algorithm to fit a plane, and subtracts 

the background whether un-requiring the distance threshold value between data point and defined 

plane. Klodt [62] used dense stereo reconstruction to analyze grapevine phenotyping, and 

backgrounds were segmented with respect to the color and depth information. However, the low-

level geometric shapes features cannot handle all types of meshes. Deep Convolutional Neural 

Networks (CNNs) can solve the problem and provide a highly accurate way to label the background, 

using many geometric features to train a label model [63]. 

Background subtraction has an important application in robotic weeding. Plant recognition for 

automated weeding based on 3D sensors included preprocessing, ground detection, plant extraction 

refinement, and plant detection and localization. Gai [64] used Kinect V2 to obtain broccoli point 

clouds and RANSAC was used to remove ground Afterwards, 2D color information was utilized to 

compensate rough ground error and clustering was applied to remove weeding point cloud, and the 

result after ground removal with RANSAC is shown in Figure 6. Andújar [65] used Kinect V2 for 

volumetric reconstruction of corn, and canonical discriminant analysis (CDA) was used to predict 

weed classification of the system using weed height. 

 

Figure 6. Result after ground removal with Random Sample Consensus (RANSAC) [64]. 

3.2.2. Outlier Removal and Plant Point Clouds Noise Reduction 

An outlier is a data point that differs significantly from other observations. Noisy data are with 

a large amount of additional meaningless information data, which arise out of various physical 

measurement processes and limitations of the acquisition technology [66], including being corrupted 

or distorted, or having a low signal-to-noise ratio data. Also, matching ambiguities and image 

imperfection produced by lens distortion or sensor noise will lead to outliers and noise of point cloud 

data. Outlier detection approaches are classified into distribution-based [67], depth-based [68], 

clustering [69], distance-based [70], and density-based approaches [71]. The moving least-squares 

(MLS) generally deals with noise, which iteratively projects points on weighted least squares fits of 

their neighborhoods, thus causing the newly sampled points to lie closer to an underlying surface 

[72]. 

Wu et al. [73] used a statistical outlier removal filtering algorithm to denoise the point cloud, 

which calculates the mean distance to the K neighboring points by K-neighbor searching method for 

each point, and removing oversize value. Yuan et al. [38] used statistical outliers to remove outlier 

point clouds around peanut point clouds. Wolff [74] designed a new algorithm to remove noisy 

points and outliers from each per-view point cloud by checking if points are consistent with the 

surface implied by the other input views. Xia [75] combined the two characteristic parameters of the 

average distance of neighboring points and the number of points in the neighborhood to remove 
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outlier noise, and used a bilateral filtering algorithm to remove small noise in the point cloud of 

tomato plants. After performing point-wise Gaussian noise reduction, Zhou et al. [76] used the grid 

optimization method to optimize the point cloud data, and used the average distance method to 

remove redundant boundary points, thus obtaining a more realistic blade structure. Hu et al. [27] 

first used the multi-view interference elimination (MIE) algorithm to reduce layers and then used 

moving least squares (MLS) algorithm to reduce the remaining local noise. 

3.3. 3D Plant Canopy Reconstruction 

3.3.1. Plant Point Clouds Registration 

To measure the complete data model of a plant, the points obtained from various perspectives 

are combined into a unified coordinate system to form a complete point cloud, so the point clouds 

needs to be registered. The purpose of registration is to transform the coordinates of the source point 

cloud (initialized the point cloud) and target point cloud (point cloud formed by the motion of 

targeted object), and obtain a rotation translation matrix (RTMatrix, RTRT) that represents the 

position transformation relationship between source point cloud and target point cloud. Point cloud 

registration can be divided into rough registration and precise registration. Rough registration uses 

rotation axis center coordinate and rotation matrix to make the rigid transformation of point clouds. 

Precise registration aligns two sets of 3D measurements from geometric optimization. Iterative 

closing point (ICP) algorithm [77], Gaussian mixture models (GMM) algorithm [78] and thin plate 

spline robust point matching (TPS-RPM) algorithm [79] are generally used to make precise 

registration . ICP is the most classic and easy, which iteratively calculates the distance between the 

corresponding source point cloud and the target point cloud, constructing a rotation translation 

matrix to transform the source point cloud, and calculating the mean squared error after the 

transformation to determine if met defined threshold. Jia [80] performed the rough registration of 

plant point clouds from six perspectives based on the sample consistent initial alignment (SAC_IA). 

Precise registration uses a known initial transformation matrix, and it obtains a more accurate 

solution through ICP algorithm. The principle of ICP algorithm is shown in Figure 7. 

 

Figure 7. Iterative closest point (ICP) algorithm: realize the registration of A and B point clouds. 

3.3.2. Plant Point Clouds Surface Reconstruction 

According to the different principles of reconstruction surfaces, 3D point clouds surface 

reconstruction can be divided into surface reconstruction based on Delaunay triangulation[81], 

region-based growth surface reconstruction, and implicit surface reconstruction [82]. Among them, 

the Delaunay triangulation and its improved method [83–85] can satisfy the consistency requirements 

of the point cloud data topology, but the accuracy of surface reconstruction depends entirely on the 

density and quality of the point cloud. Region-based growth surface reconstruction can quickly 

triangulate the original point cloud to reconstruct the surface by projecting a 3D point to a certain 

normal plane, and then triangulating the point cloud obtained by the projection in the plane to obtain 

the connection relationship of the points. After triangulating the plane area, a triangular mesh surface 

is formed, and then a surface model is obtained according to the connection relationship [83]. The 
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implicit surface reconstruction segments the data into regions for local fitting and further combine 

these local approximations using blending functions [86], and it has better noise immunity and 

smoothness, but retaining the sharp features of the surface is difficult. Implicit surface reconstruction 

includes the radial basis function (RBF) algorithm [87], point set surface (PSS) algorithm [88], unified 

implicit multi-level partition of unity (MPU) algorithm [89], Poisson algorithm [90], algebraic point 

set surface (APSS) algorithm [91], etc. 

Jay [92] used Delaunay triangulation to reconstruct the surface of cabbage to calculate the leaf 

area. Poisson surface reconstruction is often used in plant point cloud surface reconstruction, where 

the approximate surface is obtained by performing optimal interpolation processing on point cloud 

data. Martinez [93,94] used the Poisson algorithm in Meshlab to perform foliar reconstruction of 

cauliflower leaves. Hu [95] searched for the points closest to the dense point cloud in the vertices of 

the Poisson surface based on the Poisson reconstruction surface. The obtained distance was compared 

with the distance threshold to determine the removal of the vertices of the Poisson surface and to 

smooth the reconstructed cucumber, eggplant, and green pepper surfaces. Poisson surface 

reconstruction cannot be used for complex plants or plant canopies, so Michael [96] proposed that 

the boundary of each leaf patch can be refined using the level-set method, and demonstrated the 

effectiveness of the approach on the surface smoothing of the leaves of wheat and rice after 

reconstructing 3D point clouds of plants and scenes from multiple color input images. The 

reconstruction results based on Delaunay triangulation, implicit surface reconstruction algorithm, 

Poisson algorithm are shown in Figure 8. 

 

Figure 8. (a) Cabbage reconstruction based on Delaunay triangulation [92]; (b) Tree reconstruction 

based on implicit surface reconstruction algorithm [97]; (c) Sugar beet reconstruction based on 

Poisson algorithm [94]. 

3.4. Plant Canopy Segmentation  

Plant canopy study is focused on canopy architecture, leaf angle distribution, leaf morphology, 

leaf number, leaf size, and so on, so plant leaf point cloud segmentation is necessary before 

morphological analysis. Plant segmentation is most difficult and important in plant phenotypic 

analysis, because kinds of plant organ in different vegetation is not similar, which leads to the use of 

specific methods for different plant segmentation. Three main varieties of range segmentation 

algorithms are edge-based segmentation, surface-based segmentation, and scanline-based 

segmentation [98]. The surface-based segmentation methods use local surface properties as a 

similarity measure and merge together the points that are spatially close and have similar surface 

properties. Surface-based segmentation is common for plant canopy segmentation and its key is 

obtaining features for clustering or classification. Spectral clustering algorithm [99] can solve the 

segmentation problem of plant stem and leaf where the centers and spreads are not an adequate 

description of the cluster, but the number of clusters must be given as input; Point Feature 

Histograms (PFH) [100] can better show descriptions of a point’s neighborhood for calculating 

features. Seed region-growing algorithm [101] is also common for segmentation, it examines 

neighboring features of initial seed points and determines whether the point should be added to the 

region, so the selecting of initial seed point is important for the segmentation result. 
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Paulus [102] proposed a new approach to the segmentation of plant stem and leaf, which applies 

PFH descriptor into Surface Feature histograms (SFH) in order to make a better distinction, and new 

descriptors were used as features for labels of machine learning to realize automatic classification. 

Hu [27] used pot point data to construct a pot shape feature to define plane Sm and segmentation of 

the plant leaf by whether the point’s projection is or not on plane Sm. Li [103] selected a suitable seed 

point feature in the K-nearest neighborhood to cluster for coarse planar facer generation, then carried 

out facet region growing by multiple coarse facers according to facet adjacency and the coplanarity 

to accomplish leaf segmentation. Dey [104] used saliency features [105] and color data to obtain a 12-

dimensional feature vector for each point, then used SVM to classify the point clouds of grape, 

branches, and leaves according to obtained features. Gélard [106] decomposed 3D point clouds into 

super-voxel and used the improved region growing approach to segment merged leaves. 

Surface fitting benefits plant canopy segmentation, which is used to fit planes or flexible 

surfaces. Non-uniform rational B-splines (NURBS) [107] algorithm is the general fitting plant leaf 

surface. Hu et al. [32] proposed an angle of the two adjacent normal vectors method to remove 

redundant points, and NURBS method was used to fit the plant leaf. Santos [108] used single hand-

held to get dense 3D point clouds by MVS technology, sunflower stem and leaf were segmented by 

spectral clustering algorithm, and leaf surface was estimated using non-uniform rational B-splines 

(NURBS). 

3.5. Plant Canopy Structure Parameters Extraction 

Plant structure index is used to characterize growth quality, structural parameters, covering 

area, and so on. It can be divided into the plant group canopy level [109], individual plant level[110], 

and plant organ level [111]. The plant canopy plays important functional roles in cycling materials 

and energy through photosynthesis and transpiration, maintaining plant microclimates, and 

providing habitats for various taxa [112]. This paper only focuses on the plant group canopy level, 

which includes leaf inclination angles, leaf area density, plant area density, etc.  

3.5.1. Leaf Inclination Angles 

The skeleton, also called the symmetry axis, is a useful structure-based object descriptor. 

Extracting object skeletons directly from natural images can deliver important information about the 

presence and size of objects. The skeleton segment [113] is often applied to leaf angle measurement. 

Skeletonization is used to show the geometrical and topological properties of that shape. Bao [30] 

made a skeleton segmentation for maize and filtered the skeleton nodes that satisfy suitable point-to-

stem distance, and leaf angle was computed using PCA and approximated by the first eigenvector of 

the filtered nodes, the skeleton segmentation result is shown in (a) of Figure 9. As a result of leaf angle 

stability, not change with zooming in or out, the leaf projected can be used to calculate the leaf angle. 

Biskup [114] used leaf projected ROI (region of interest) for plane fitting to build a planar surface 

model, which is obtained by the RANSAC algorithm and by analyzing the covariance matrix of the 

outlier-free point cloud; the leaf angle was obtained corresponding to the dihedral angle between two 

planes, the detailed is shown in (b) of Figure 9. 
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Figure 9. (a) Skeleton segments that contain both stems and leaves [30]; (b) 3D reconstruction of a 

soybean leaf consisting of three leaflets. Black lines: normal vectors to fitted plane; red contour: 

projected region of interest (ROI) used for plane fitting [114]. 

3.5.2. Leaf Area Density (LAD) 

Leaf area density (LAD) is defined as the one-sided leaf area per unit of horizontal layer volume 

[115]. The leaf area index (LAI), which is defined as the leaf area per unit ground area, is calculated 

by integrating the LAD over the canopy height. For LAD, leaf area and plant volume need to be 

calculated by each layer voxel area, which is obtained by transferring point clouds into voxel-based 

three-dimensional model.  

For the direct calculating of LAD, Hosoi [116] proposed the voxel-based canopy profiling (VCP) 

method to estimate tree LAD; data for each horizontal layer of the canopy were collected from 

optimally inclined laser beams and were converted into a voxel-based three-dimensional model; then 

LAD and LAI were computed by counting the beam-contact frequency in each layer using a point-

quadrat method. 

For the measurement of plant volume, an alpha shape volume estimation was used to calculate 

plant volume [117]. This algorithm estimates the concave hull around point clouds and computes the 

volume from there. Paulus [102] used an alpha shape volume estimation method for volume 

estimation and an accurate description of the concave wheat ears with segmental point clouds, the 

detailed presentation is shown in (a) of Figure 10. Hu [27] proposed a method based on tetrahedrons 

to calculate plant volume; tetrahedrons were constructed by down-sampled point cloud, distance of 

any two points should be smaller than maximum edge length of tetrahedrons, and plant volume can 

be calculated by tetrahedrons point space. When the plant is reconstructed by voxel grid or octree, 

the volume can be estimated by adding up the volumes of all the voxels covering the plant, the 

detailed presentation is shown in (b) of Figure 10. Chalidabhongse [118] made 3D mango 

reconstruction based on the space carving method, and each projected voxel in the voxel space onto 

the all view of images was the approximation of the object volume. 

For leaf fitting using NURBS, leaf area is calculated by the sum of each partial area according to 

fitting surface mesh. Santos [119] and Hu [32] used NURBS to calculate mint and poplars area, and 

the results were very accurate. It is relatively simple to get the whole plant area with needless 

segmentation, Bao [13] converted point clouds into triangle mesh, reconstructed surface with PCL, 

and the plant surface area was approximated by the sum of areas of all triangles in the mesh. When 

a voxel grid or octree reconstructs the plant, a sequential cluster connecting algorithm and 

subsequent refinement steps need to be carried out to segment the leaf, then voxel grid or octree is 

converted into point cloud for piece-wise fitting of leaf planes [120]. Scharr [55] used volume carving 

to make 3D maize reconstruction and leaf area was calculated by a sequence of segmentation 

algorithms. In addition, the marching cubes algorithm [121] can also calculate the area of a voxel or 

octree by fitting a mesh surface. 
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Figure 10. (a) A description of the concave wheat ears with segmental point clouds [102]; (b) The 

triangulation results of three different sized plants, and the triangle vertexes extracted from triangular 

mesh were used as the points to construct tetrahedrons, which can be used to calculate volume [27]. 

3.5.3. Plant Area Density (PAD) 

The notion of plant area density (PAD) is easy to understand, which is defined as canopy area 

per unit of ground area. So the device for generating points of data needs to have a broad-scale survey 

range, and as such, handheld laser scanner and airborne laser scanner (ALS) remote sensing are often 

used. As a result of large quantities of data for broad-scale plant area measurement, point cloud 

segmentation and reconstruction are complex and difficult, so PAD is estimated based on the VCP 

[116] method by converting point clouds into a voxel-based three-dimensional model. Song [122] 

used an airborne laser scanner estimate tree PAD, and PAD was computed with the VCP method. 

Table 9 and Table 10 shows the 3D reconstruction of plants and the analysis of the structure index 

using single and multiple measurement methods. 

Table 9. Examples of RMSE for plant canopy 3D structure parameters measurement. 

RMSE 
Cotton 

[123] 

Sunflower 

[123] 

Black 

eggplant 

[123] 

Tomato 

[123] 

Maize 

[30] 

Palm tree 

seedling 

[124] 

Leafy 

vegetable 

[27] 

Plant height 1.7 cm 1.1 cm 1 cm 1.3 cm 
0.058 

m 
/ 0.6957 cm 

Leaf area 

(cm2) 
80  30  10  10  / 3.23 72.43 

Leaf 

inclination 

angles (°) 

/ / / / 3.455 2.68 / 

Stem 

diameter 
/ / / / 5.3 mm / / 

Volume / / / / / / 2.522 cm3 

Note: RMSE, root mean square error. 

Table 10. Examples of MAPE and R2 for plant canopy 3D structure parameters measurement. 

 LAD PAD 

Tree MAPE: 17.2–55.3% [116] R2: 0.818 [122] 

Note: R2, Coefficient of determination, the ratio of the sum of the squared regression to the sum of the 

squared total errors is an index of the degree of fit of the trend line; MAPE, Mean absolute percentage 

error. 
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4. Conclusions 

4.1. Poor Standardization of Algorithms 

There is a lot of variability of the appearance of different kinds of plants, and the analysis method 

of reconstruction and segmentation aims to only specific plants, moreover it may apply different 

algorithms for the same plant in different environments. In the flow of 3D plant data acquisition, 

point cloud processing, 3D plant reconstruction, plant segmentation, and plant canopy structure 

parameters extraction have multiple processing algorithms and do not have an optimal criteria to 

build standards and specifications (such as labeling, naming, formatting, and integrity constraints). 

The problems include large differences in format and accuracy, incomplete supporting data, data 

redundancy, and low data use. The data from the plant organ layer to the individual plant layer to 

the group canopy level are independent from each other in the study of 3D canopy structure, and the 

matching characterization with plant physiological data (such as canopy photosynthesis data) needs 

to be standardized [125]. For example, Delaunay triangulation, region-based growth surface 

reconstruction, and implicit surface reconstruction can be used for plant reconstruction and have 

different results. 

4.2. 3D Reconstruction Operation Is Slow 

The data processing speed can be influenced by the number of input points, which could be a 

time-consuming problem for large-sized plants. When analyzing plant phenotypes on a large scale, 

3D reconstruction takes longer and is less efficient due to the large number of objects to be analyzed. 

The analysis shows that the 3D reconstruction effect of multi-view images is related to the number of 

images. The higher the number of images, the better the reconstruction effect, but the corresponding 

calculation amount also increases considerably [126], resulting in a time-consuming reconstruction 

process. In addition to the speed improvement required by hardware, software algorithms are 

required to speed up the calculation.  

3D reconstruction speed has a direct relationship with point cloud data size, and rough and fine 

reconstruction also take different times. Marton [127] used the triangulation method to make an 

urban scene fast surface reconstruction, which needed 8.983 seconds with 65,646 points and 

reconstruction of radiohead took 17.857 seconds with 329,741 points. Although 3D reconstruction 

takes little time, generating dense and complete a 3D point cloud with multi-images will take a lot of 

time. The CMPMVS software ran for around 182 minutes from 66 input images, and Lou [128] used 

an improved SfM method, which ran for 15 minutes to produce the final 3D point cloud for the same 

images. 

4.3. Plant 3D Reconstruction Is Inaccurate 

Currently, plant analysis and reconstruction technology uses moment phenotype extraction and 

lacks a monitoring of growth dynamics; however, monitoring of growth dynamics requires a non-

invasive time-lapse imaging system that supports accurate reconstruction of plant architecture and 

most depth cameras or other devices provide only rough approximations of size, often lacking high 

spatial or high temporal resolution [129]. In addition, the occlusion of the plant canopy structure 

causes problems such as voids or holes, untextured areas, and blurred images in the final 3D models 

of some plants. Therefore, occlusion problems should be avoided as much as possible during the 

image collection process. Multi-view stereo reconstruction with multiple devices working together 

like laser scanner and ToF camera has high accuracy for sheltered leaves and fruit plant 

reconstruction, but rapid multi-view registration is difficult for achieving the high-throughput 3D 

phenotypic analysis.  

Models that have been proposed thus far are still limited in their application because of 

sensitivity to outdoor illumination conditions and the inherent difficulty in modeling complex plant 

shapes using only radiometric information. Different plant or imaged environments also have a great 

reconstruction performance difference with the same material and methods. In the 3D stereo model, 
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the reconstruction errors of corn, sunflower, black nightshade, and tomato are 5.7, 4.6, 5.2, and 4.7% 

in LCA (leaf cover area) [123]. The data accuracy meets the demand for precision agriculture 

practices, but still needs to improve the reconstruction accuracy in fine phenotypic analysis and 

texture research.  

The process of plant 3D data capture is easily affected by light intensity, blurred edges, wind 

factors, etc., which lead to data loss or low quality, affecting the segmentation of plants and 

background. When the plant structure cannot be completely reconstructed, the reconstruction 

accuracy is reduced. Although when structured light and ToF camera avoid the condition being 

indoors, having high measuring speed, and strong robustness with a no-movement plant, the major 

weakness is the existing high noise among 3D data, which is a challenge for plant segmentation. For 

individual plant organ segmentation, there is no unified and standard methods, which largely vary 

according to diffident plant morphology. Existing methods based on machine learning can achieve 

good results, but require manual participation and cannot provide automatic segmentation. 

4.4. High Equipment Collection Cost  

The current limitation of the broad-scale plant detection is that it relies on a relatively expensive 

robotic platform and positioning system. The commercial possibilities of a scout robot are better since 

the robot’s task can be executed while navigating when the automatic data processing can be carried 

out. As LiDAR [130], light field camera [131], high-precision TOF cameras, and other instruments are 

expensive, they are suitable only for laboratory research and large-scale facilities and agricultural 

sites. They are currently in the pilot stage, but manual operation is often needed and the promotion 

is limited due to funding problems [132]. Although the cost of applying SfM photogrammetry is 

lower, generating more detailed models will increase time required and costs. For broad-scale plant 

detection of large farms or forests, airspace carrying devices including unmanned aerial vehicles 

(UAV) or farm helicopter transport is necessary, which adds the extra cost. 

5. Prospection 

5.1. Establishing a Standard System of 3D Plant Canopy Structure Data 

A future research direction should go into automating the manual estimations by automatically 

setting the point density parameter in order to avoid manual trimming. Additionally, more research 

needs to be done with the leaf area index (LAI) parameter estimation. High-throughput phenotyping 

for large greenhouses and open fields (if the measurements are performed on cloudy or low sunlight 

intensity days) is a future application for the analysis system. Phenotypical analysts have introduced 

the canopy structure index into various agricultural professional models to match plant physiological 

data and improve the international universality of agricultural professional models.  

Due to the significant differences in the different plant characteristics on different scales, it is 

possible to refine the plant species as a unit on multiple scales such as organ, individual, or 

population, and consider the top-level design principles of 3D structure analysis of plant canopies. 

The top-level design principles include related terminology categories, detection schemes, technical 

standards, technical methods, models for obtaining and using relevant data, and the representation 

and verification procedures of the relationship between various data. 

5.2. Speeding Up the 3D Plant Canopy Structure Reconstruction  

In the different methods used to study plant phenotype, the effects of image preprocessing and 

scaling on image registration accuracy can be studied [133] to reduce lighting interference, 

background interference, image distortion, and other problems, and then improve the matching 

degree of plant reconstruction and enhance the algorithm robustness. If distributed computing can 

be combined with computer cluster computing [134], the reconstruction algorithm could be sped up, 

and performing distributed optimization on the algorithm could also improve the calculation 

accuracy and reduce the calculation time. Clustering algorithm mainly applies in point clouds 
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processing of background subtraction and outlier removal, along with surface feature-based 

segmentation. 

In the construction of the collection device platform, the UAV is a type of remote sensing 

platform that is unmanned and reusable. After being equipped with a 3D canopy shape collection 

device, the UAV could provide rapid collection, flexible movement, and convenient control. 

Especially with the miniaturization of the 3D shape collection device, UAVs can acquire visible or 

near-infrared images, 3D point cloud images, multispectral images, and remote sensing images with 

high spatial resolution at any time. It is possible to construct a 4D space–time scene of farmland based 

on UAV remote sensing images through real-time data collection to achieve cross-fusion of time 

series and spatial images [135].  

5.3. Improving the Accuracy of the 3D Structure Index of Canopy Reconstruction  

3D plant canopy structure measurement technology can be embedded in phenotypical analysis 

tools. Sensor fusion technology can be used to quantify 3D canopy structure and single leaf shape 

features by integrating multiple features to improve the accuracy of the structure index. The color, 

depth, and infrared data included in the image can be combined to improve the integrity of the plant 

phenotypical data and improve the 3D reconstruction effect. Using multiple devises working 

together to obtain point clouds from multi-view can reduce noise and improve reconstruction 

accuracy. 

Optimizing the segmentation algorithm parameters to support a wider range of plant species 

with less parameter tuning is important to improve plant structure index extraction accuracy. Neural 

networks can be used for classification of segmentation. Deep learning on point clouds is still at the 

forefront of research. Multi-view convolutional neural networks (CNNs) have tried to render 3D 

point cloud into 2D images and then apply 2D conv nets to classify them, which can make shape 

classification, but it cannot achieve 3D tasks such as point classification and shape completion [129]. 

Feature-based deep convolutional neural networks (DNNs) firstly convert the 3D data into a vector, 

by extracting traditional shape features and then use a fully connected net to classify the shape, but 

they are constrained by the representation power of the features extracted [63]. Qi [136] proposed a 

novel deep neural network called PointNet, it can achieve point classification or semantic 

segmentation with a 1080X GPU. In conclusion, integrating the local and global features extracted by 

deep learning models with the spatial representation of the point clouds will be useful to design a 

model for plant canopy segmentation with top performance, but at present its segmentation quality 

is low as a result of point clouds being irregular and sparse. The promising solutions are improving 

multi-scale point clouds resolution, developing the architectures of the deep learning models like 

those in RGB images, and improving the processing raw point clouds based on zero-shot learning 

[137]. 
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