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Abstract: Knowing the total Nitrogen content (Nt) of forage maize (Zea mays) is important so that
decisions can be made quickly and efficiently to adjust the timing and amount of both irrigation
and fertilizer. In 2017 and 2018 during three growing cycles in two study plots, leaf samples were
collected and the Dumas method was used to estimate Nt. During the same growing seasons and on
the same sampling plots, a Parrot Sequoia camera mounted on an unmanned aerial vehicle (UAV)
was used to collect high resolution images of forage maize study plots. Thirteen multispectral indices
were generated and, from these, a Random Forest (RF) algorithm was used to estimate Nt. RF is a
machine-learning technique and is designed to work with extremely large datasets. Overall analysis
showed five of the 13 indices as the most important. One of these five, the Transformed Chlorophyll
Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation Index, was found to be the
most important for estimation of Nt in forage maize (R2 = 0.76). RF handled the complex dataset in a
time-efficient manner and Nt did not differ significantly when compared between traditional methods
of evaluating Nt at the canopy level and using UAVs and RF to estimate Nt in forage maize. This result
is an opportunity to explore many new research options in precision farming and digital agriculture.

Keywords: nitrogen content; remote sensing; spectral indices; random forest

1. Introduction

Nitrogen (N), in both its organic and inorganic forms, is essential to promote leaf development
and crop growth. Nitrogen is present in the soil in two ways: the decomposition of plants naturally
high in N such as legumes, buckwheat, and others (organic N; amino acids, proteins, and nucleotides),
and the human application of fertilizer (inorganic N; (ammonium [NH4

+], nitrates [NO3
−], Nitrogen

gas [N2], and nitrites [NO2
−])).

Maize (Zea mays) has one of the highest photosynthetic rates per unit of N [1] and is thus considered
a C4 plant. The N content in maize determines the yield and quality of grain and must be available in
the soil in adequate quantities throughout the growing season. Vos et al. [2] noticed a 29% increase in
the foliar area when compared to a high versus low incorporated amount of N in the soil. A lack of N
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results in an inefficient photosynthesis process because it is a fundamental constituent element in the
chlorophyll molecule [3].

Chlorophyll absorbs the necessary sunlight energy to catalyze the photosynthetic process and
is the pigment responsible for the green color of leaves. Its content in leaves relates to the amount
of N in a crop [4]. A less than optimal N content manifests itself in light green or yellowing leaves
(chlorosis) [5].

One way to determine the total N content (Nt) in plants is to use the reflectance data on red edge
(RE) wavelengths [6]. A consensus on N content is that the physical expression of chlorosis is related
by an increase in the reflectance value of the visible spectrum and a decrease in the absorption of the
near-infrared (NIR) region [7].

The indirect estimation of Nt is attainable through spectral indices [3,8]. Some authors have
reported the close relationship among the indices with chlorophyll content [9]. In conjunction with a
sampling field design, and a follow-up growing season practices program, they are a reliable alternative
to estimate Nt to reduce cost and time in decision-making [10–12].

Remote sensing images have become attractive in digital agriculture and precision farming as
they are used to monitor crop growth rapidly and in a nondestructive way [13]. The optical sensors
carried by manned and unmanned air vehicles were designed to register a wide range of high spatial
resolution for data collection of crops’ dynamic nature. The satellite images are an excellent option [5,6]
to monitor the N status on large plant cover areas. Despite their low spatial resolution and large
temporal resolution, thematic maps provide sufficient accuracy. Even though manned and unmanned
air vehicles can capture images at higher spatial and temporal resolutions than the satellite-origin,
but they are limited by their high operational complexity and cost [7]. Digital agriculture stands its
operational bases on the use of free access multispectral satellite-origin images, as Landsat, Sentinel,
SPOT, and MODIS. The unmanned aerial vehicle (UAV; also known as a drone) is expanding its use
to refine the multispectral bands to register only the ones most associated with the plant physiologic
processes. These images have technical advantages over satellite platforms, such as (a) a better spatial
resolution (the pixel size may vary based on the flight height, and can reach up to 1 cm); (b) high
temporal resolution—several flights can be programmed at any time during the day.

Operational limitations in using drones include the difficulty of flying in extreme weather
conditions of wind, rain, and high air temperatures, low-scale coverage due to high data volume and
limited image storage capacity, and the data download and processing time. The most technically
advanced drones currently have several options for mission planning schedules, pre- and postprocessing
of images, autonomous flight, and coupling cameras with optical sensors or radar [14].

An important achievement in remote sensing data science the estimation of the chlorophyll
content in leaves by contrasting the NIR and RE wavelengths; these wavelengths represent the wide
variation of reflected energy by the canopy, and the point of maximum slope in vegetation reflectance
spectra, which occurs between wavelengths 690 and 740 nm [15–17]. This band ratio results in a
numerical value that indicates how sunlight energy interacts with vegetation cover (the amount that
was reflected, absorbed, or was transferred to the soil). The RE point wavelength is well correlated with
the chlorophyll content in the leaves [18]. It marks the threshold between the processes of chlorophyll
absorption in red wavelengths and within-leaf scattering in the NIR [19]. The RE emphasizes the lower
absorption of chlorophyll, which reduces the saturation effect; however, the reflectance value continues
to be sensitive to chlorophyll absorption in moderate to high values [8,20].

Some studies have documented the relationship between the RE and the chlorophyll content in
maize [3,6,8,21,22] and have proposed a number of indices that enhanced this ratio—the GNDVI (Green
Normalized Difference Vegetation Index), CI_green (Chlorophyll Index Green), NDVI (Normalized
Difference Vegetation Index), RVI (Ratio Vegetation Index), NDRE (Normalized Difference Red Edge),
CCCI (Canopy Chlorophyll Content Index), CI_rededge (Red edge Chlorophyll Index), MCARI/OSAVI
(Modified Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation Index),
MCARI/OSAVI RE (Red Edge-based Modified Chlorophyll Absorption in Reflectance Index/Optimized
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Soil Adjusted Vegetation Index), TCARI/OSAVI (Transformed Chlorophyll Absorption in Reflectance
Index/Optimized Soil-Adjusted Vegetation Index), TCARI/OSAVI RE (Red Edge-based Transformed
Chlorophyll Absorption in Reflectance Index/Optimized Soil Adjusted Vegetation Index), and MTCI
(MERIS Terrestrial Chlorophyll Index) among others. One common result reported by researchers is that
these indices tend to exhibit saturation values in moderate to high plant cover [6,23,24], but discussing
this situation is out of the reach of this manuscript.

We used these indices to show internal and external relationships between vegetation cover and its
response to sunlight. The use of data mining, deep learning, and other data analysis techniques can help
to recognize patterns and trends that cannot be seen without these analyses. Among these techniques
are decision trees (DTs), Random Forest (RF), support vector machine, and artificial neural networks,
all of which perform quite well with very large databases and in current approaches involving plant
nutritional status [25], water-demand [26], biomass [27], and chlorophyll content [28]. When the results
of any data analysis failed to find a strong relationship between or among variables, the RF analysis
may be a viable option [29]. RF is a nonparametric analysis that uses DTs, with their class values
assigned according to the maximum number of forecast votes through the DTs [30], and with more
predictive power in comparison to classic regression methods [31,32], in essence to efficiently handling
many variables that do not adjust to a normal distribution.

We compared the collection and analysis of Nt in forage maize with the industry-standard method
versus the collection of multispectral images and RF analysis. To our knowledge, there are no published
studies that used UAV-collected multispectral data to estimate total Nt in combination with the RF
algorithm for data analysis; therefore, the use of UAV imagery and RF in this context is innovative and
will contribute to future research.

2. Materials and Methods

2.1. Description of the Study Areas

The study areas are in the north-central region of Mexico known as the Comarca Lagunera
(Figure 1). The cultivated area of forage maize has been reported at approximately 59,298 ha [33].
This semidesert to arid region has a mean annual temperature of 20–22 ◦C and mean annual precipitation
of 200–300 mm.

2.2. Description of Sampling Sites

Two large agricultural farms were studied (Granada and El Porvenir; Figure 1). The Granada
farm was studied during the summer–autumn forage maize production cycle in 2017, while in 2018,
the spring–summer and summer–autumn cycles were evaluated at El Porvenir.

The Granada farm occupies an area of 60.4 ha. The soil composition is clay-loam. The maize hybrid
sown was Pioneer P3201 and was selected because it is a hybrid of early to intermediate varieties, it has
high nutritional content when used as forage for dairy cattle, high grain health, and high tolerance
to root and/or stem lodging. Eight seeds meter−1 will produce a density of 103,000 plants ha−1.
The agricultural management practices included fallowing, harrow passing, skirting, and leveling
(slope of 2 cm per 100 m). Chemical fertilizer was applied two times. The first application was
composed of 42% ammonium sulfate, 42% monoammonium phosphate, and 16% Ryzogen (a granular
microbial fertilizer used to stimulate root growth); this was incorporated into the soil at the time of
sowing at a rate of 250 kg ha−1. The second time was immediately after the first additional water had
been applied; the fertilizer consisted of urea (46%) at 400 kg ha−1. The irrigation schedule included
five additional dates. The maize was harvested 117 days after sowing (DAS) when the forage reached
32% of dry matter content.
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Figure 1. Study area location. The sample sites were recorded with a geographical information system.

On the El Porvenir site, 52 ha of forage maize was studied in the spring–summer cycle, and 34 ha
in the summer–autumn cycle; this variation has no effect on the number of plant samples. The Syngenta
N83N5 maize hybrid was sown in loam-clay soil at the same density as at the Granada farm. This forage
maize is an earlier cycle variety with high nutritional value and high stability in various soil types and
performs well in different environments. This farm was handled with the same agricultural practices
as the Granada farm (fallowing, harrow passing, skirting, and leveling). A sole application of a mixture
of chemical fertilizer mixture was performed. It was composed of 300 kg ha−1 of ammonium sulfate
and 100 kg ha−1 of monoammonium phosphate. The irrigation schedule included a total of four dates.
Maize was harvested when it reached 38% of dry matter—at 118 DAS in spring–summer, and 115 DAS
in summer–autumn.

2.3. Field Sampling

For both farms, we collected composite plant samples (CPSs) before and after flowering, and each
collection site was georeferenced using a Garmin Etrex 20 geographic positioning system receiver,
with a 3.6 m margin of error. Before flowering, samples were taken from three plants (stem and leaves)
in the same plot, and after flowering samples were taken from the leaf opposite the ear of corn from
ten plants. Plant samples were sent to the laboratory for further analysis.

For the Granada farm, there were six dates for plant collection samples each associated with aerial
imaging planning. The first sampling was performed at 33 DAS with 15 CPSs; the second at 57 DAS
with 19 CPSs; the third at 62 DAS with 18 CPSs; the fourth at 72 DAS with 16 CPSs; the fifth at 82 DAS
with 18 CPSs; the sixth at 105 DAS with 17 CPSs.

For the El Porvenir farm, we scheduled three plant collection dates for each of the two cycles,
and each was associated with an aerial imaging date. For the spring–summer cycle, the first sampling
was performed at 31 DAS with 10 CPSs; the second at 41 DAS with 10 CPSs; the third at 51 DAS with
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10 CPSs. For the summer–autumn cycle, sampling was conducted at 53 DAS with 10 CPSs; the second
at 77 DAS with 10 CPSs; the third at 92 DAS with 10 CPSs.

2.4. Laboratory Analysis of Samples

All CPSs were dried in an oven at 65 ◦C until they all reached a constant weight. Each CPS was
then ground using a 0.5 mm mesh. The Dumas method was used to determine the percentage of Nt in
each sample. According to Sweeney and Rexroad [34], the determination of Nt is made by thermal
conductivity. This method transforms all N into N gas by calcination; the gases produced are reduced by
copper, and subsequently desiccated, while the CO2 (Carbon Dioxide) is trapped. The N is quantified
using a Universal Quantifier. The plant samples were processed in the soil laboratory of the Centro
Nacional de Investigación Disciplinaria—Relación Agua Suelo Planta Atmósfera (CENID-RASPA),
located in Gomez Palacio, Durango. The sampling process was adjusted to the protocol proposed by
the Compendium of International Methods of Analysis [35].

2.5. Aerial Imaging

The UAV missions were carried out after maize plants had four fully expanded leaves;
this phenotypic stage represents the exponential start of the vegetative development curve. Twelve
UAV missions were flown in each of the three production cycles. The UAV was equipped with a Parrot
sequoia camera that has the capacity to record up to four wavelength ranges: from 530 to 570 nm
(green); 640 to 680 nm (red); 730 to 740 nm (red edge); 770 to 810 nm (near-infrared). The spatial
resolution of the multispectral image is 1.2 megapixels. The camera also includes a red, blue, and green
(RGB) sensor, with a resolution of 16 megapixels. Regardless of the lighting conditions, the camera
has a luminosity sensor in its upper section that allows it to obtain accurate images [36]. The UAV’s
height above the ground was 191 m; this, along with the camera’s field of view, yielded images that
represented a ground spatial distance of 18 cm. The images from the UAV missions were captured
in EMOTION software (an image processing and flight management platform). Orthomosaic and
reflectance values were obtained with Pix4Dmapper software 4.5. The spectral indices obtained from
the UAV missions are shown in Table 1.

Table 1. Spectral indices are derived from aerial images.

Index Equation Reference

NDRE: sensitive to chlorophyll content
when crops are in medium to late stages.

(
NIR−RE
NIR+RE

)
[37]

CCCI: based on a two-dimensional
approach relating the NDVI [38] used to
estimate canopy cover, and the NDRE.

(
NDRE
NDVI

)
[37]

CCCI_simpl: estimates chlorophyll
content with minimal sensitivity to
other factors that can influence in the
canopy signal of N.

NDRE−NDRE MIN
NDRE MAX−NDRE MIN [39]

CI_rededge: indicates chlorophyll
content; value shows low sensitivity to
the background effects of the soil.

(
NIR
RE

)
− 1 [40]

MCARI/OSAVI: very sensitive to
variations in chlorophyll content and
highly resistant to variations in Leaf
Area Index (LAI); takes into account the
effects of the soil.

{
[(RE−R)−0.2(RE−G)]( RE

R )
}[

(1+0.16)(NIR−R)
NIR+R+0.16

] [41]
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Table 1. Cont.

Index Equation Reference

MCARI/OSAVI RE: very sensitive to
variations in chlorophyll content and
highly resistant to variations in LAI;
takes into account the effects of the soil
and RE.

{
[(NIR−RE)−0.2(NIR−G)]( NIR

RE )
}[

(1+0.16)(NIR−RE)
NIR+RE+0.16

] [42]

TCARI/OSAVI: reduces the effect of
soil contribution and enhances
sensitivity to chlorophyll content

3
{
[(RE−R)−0.2(RE−G)( RE

R )][
(1+0.16)(NIR−R)

NIR+R+0.16

] }
[43]

TCARI/OSAVI RE: very sensitive to
variations in chlorophyll content and
highly resistant to variations in LAI;
takes into account the effects of the soil
and RE.

3
{
[(NIR−RE)−0.2(NIR−G)( NIR

RE )][
(1+0.16)(NIR−RE)

NIR+RE+0.16

] }
[42]

MTCI: has the advantage of being
sensitive to N with relatively lesser
effect of water or irrigation level
for corn.

NIR−RE
RE−R [44]

GNDVI: estimates photosynthetic
activity and is a commonly used
vegetation index to determine water
and N uptake into the plant canopy.

NIR−G
NIR+G [45]

CI_green: estimates chlorophyll content
in leaves using the ratio of reflectivity in
the NIR and green bands.

NIR
G − 1 [46]

NDVI: determines the green biomass
during the early and middle
development stages.

NIR−R
NIR+R [38]

RVI: estimates and monitors green
biomass, specifically, in the coverage of
high vegetation density.

NIR/R [47]

NIR: Near Infrared; RE: Red Edge; G: Green; R: Red.

2.6. Data Analysis

The RF decision tree classifier was used to ascertain the link between the Nt data obtained in
the laboratory and the value of spectral indices derived from the aerial images. RF can develop
multidimensional and multicollinear analyses on large databases [48] and is a suitable data mining
technique to estimate Nt in crops [49,50]. The RF implementation was in the Python (v 3.8.0) ecosystem.
The outputs of this implementation are a set of decision trees. On this, the contribution of each variable
to the model is identified hierarchically. The decision tree is a flowchart, where each of the internal
nodes represents an attribute, each branch represents the output of the attribute, and each sheet is
a class label. The model developed included independent variables (x = vegetation indices) and a
dependent variable (y = Nt). The parameters to quantify the precision and analyze the quality of the
input data were declared as follows:

n_estimators. Declares the number of trees in the forest. A greater number of trees improves the
accuracy of the data (RF learns faster as more decision trees are included) [25]; however, a too-large
number of trees can encourage RF’s implementation during the training process. In the model run,
the computing process limits were set at 30, 50, 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 trees.
These thresholds have been used to evaluate RF’s abilities [12,51].
max depth. Represents the depth of each tree in the forest. If the tree is deeper, it has more divisions
and can capture more information from the data. Its value ranges from 1 to 32.
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min_samples_split. Some samples are required to separate a node. Its value ranges from 10% to 100% of
the samples.
min_samples_leaf. A minimum number of samples required in the node. Its value ranges from 10%
to 50%.
max_features. Number of characteristics to consider when looking for the best node division (default
is Auto).

The importance parameter was used to reduce the noise effect of uncorrelated variables. This means
that the indices that have the highest correlation in the prediction can be selected and resultin a reduction
in computing time. To reduce the number of indices, the model was first trained using all vegetation
indices as input variables. Subsequently, based on the importance parameter, all with the lowest
weight were eliminated to improve the accuracy of the model and make it more robust.

The optimization of nonparametric regression methods uses a training data-based learning process,
which builds a model. The model parameters are adjusted to minimize the estimation error of the
extracted variables [52]. A k-fold hold-out cross-validation method with 5 subsets was applied to
evaluate the performance of the predictive model. This method has been widely used to validate
machine learning models such as RF [12,28,29,52–55] and consists of dividing the entire dataset into
two subsets; the first one is to train or adjust the model and while the second one is to validate it [56].
Thus, a model is generated only for training data, which is compared with the data that were reserved
for validation and was not used during the development of the model. In the present study, we used
70% of the data for adjustment and 30% for validation. These percentages of data division are similar
to those reported by other authors [12,29,53,54,57].

To avoid overfitting and to optimize the performance of the RF, it is necessary to use the
n_estimators and max_features hyperparameters. Different combinations of these hyperparameters
are carried out in the training stage to obtain the best performance. However, this can cause overfitting,
causing the model to perform well on the training set but poorly on the test set. Therefore, it is necessary
to perform the cross-validation k-fold [12,28,55]. Firstly, the dataset was divided into training and test
sets. In k-fold, only the training set was used and was divided into five subsets. These subsets were
iterated using one-fifth of the samples to validate the model and the remaining samples (four-fifths)
for training. The first iteration of the first subset was chosen to perform the validation and the four
remaining iterations for training. In the second iteration, the second subset was used for validation
and subsets one, three, four, and five for training, and so on until the five iterations were computed.
The above indicates that five independent pieces of training are carried out to validate the model and
that the final accuracy will be the average of the five previous accuracies.

The Nt estimated by the RF model and the Nt calculated in the laboratory were intercompared.
The determination coefficient (R2) and the mean square error was used.

3. Results

3.1. Sampling Universe

The dataset included data from 162 field-collected points and twelve flight missions. The resulting
data included Nt (%) obtained from laboratory processing (NLab) of the field samples, and the RF
estimated Nt values from five (N5) and thirteen (N13) spectral indices (Table 2).
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Table 2. Results of total Nitrogen content (Nt) (from field sampling) and estimated Nt using
Random Forest (RF) (with five and thirteen indices derived from Unmanned Aerial Vehicles (UAVs))
corresponding to Farm and Production cycle, Maize hybrid, and Flight date.

RF Estimates

Farm and
Production Cycle

Maize
Hybrid

Number
CPS *

NitrogenLab
(Nlab) ** Flight Date Nitrogen5

(N5) †
Nitrogen13

(N13) ‡

Granada:
Summer–Autumn

2017

Pioneer
P3201

15 3.63 11 September 2017 3.56 3.57
19 2.60 5 October 2017 2.55 2.63
18 2.53 10 October 2017 2.67 2.63
16 3.10 20 October 2017 3.04 2.90
18 2.92 30 October 2017 2.88 2.93
17 2.46 22 November 2017 2.69 2.53

El Porvenir:
Spring–Summer

2018

Syngenta
N83N5

10 3.36 28 April 2018 3.39 3.42
10 2.49 8 May 2018 2.60 2.60
10 1.75 18 May 2018 1.92 2.02

El Porvenir:
Summer–Autumn

2018

Syngenta
N83N5

10 1.58 20 September 2018 1.79 1.79
10 1.23 15 October 2018 1.24 1.23
10 1.04 30 October 2018 1.22 1.27

* Number CPS refers to the total composite plant samples taken on the farms. ** NitrogenLab is the average of the
calculated values of Nt in the laboratory. † N5 is the estimated value of Nt of the five vegetation indices with the
greatest contribution to the importance value. ‡ N13 is the estimated value of Nt using the thirteen proposed indices.

3.2. Estimate of Nt in Laboratory

The Nt ranged from 0.81% to 4.09% with an average of 2.51% for the 2 years of the study.
In the summer–autumn 2017 cycle (n = 103, mean = 2.85%, median = 2.74%, minimum value = 1.8%,
maximum value = 4.04%), spring–summer 2018 cycle (n = 30, mean = 2.53%, median = 2.35%,
minimum value = 1.53%, maximum value = 4.09%), and summer–autumn 2018 cycle (n = 29,
mean = 1.29, median = 1.24%, minimum value = 0.81%, maximum value = 1.96%; Figure 2).
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Figure 2. Percent Nt values of field samples measured in the laboratory. The minimum, maximum
(vertical bars), and median (solid lines) are displayed.

The Nt values for summer–autumn 2018 were lower than those for summer–autumn 2017, possibly
due to the use of two different hybrids and two different study sites. The summer–autumn period at
Granada and the Pioneer P3201 hybrid was used because, in the past, they have resulted in a greater
range of nitrogen concentration.
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3.3. RF Model Optimization

As shown in Figure 3, r2 raised and dropped dramatically when the model was tried in 100 trees,
and subsequently raised again to 1000 and remained almost sustained. When tried in 3000 trees
it raised slightly, but if this value is chosen to optimize the n_estimators parameter it can cause an
overfitting and slow down the model. In order to avoid the overfitting, 1000 trees were used as an
entrance parameter.Agriculture 2020, 10, x FOR PEER REVIEW 10 of 16 
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3.4. Validation

Cross-validation results: k-fold with five subsets was r2 = 0.76, while individual accuracies
resulted in (−0.52977942, −0.08294489, −1.34383388, −1.77652506, −10.38701745) and a final accuracy
of [−2.82 (+/− 7.66)], the first value from the final accuracies shows the average from the individual
accuracies, meanwhile the second value represents the standard deviation. Because the data of this
study were taken in different crop phenological phases, it can be assumed that is the reason why values
are different between stages.

3.5. Selection of the Spectral Indices Based on the Parameter of Importance

Two RF iterations were implemented. In the first, all thirteen indices were included, while in the
second all those with the best contribution to the value of importance were selected (Figure 4).
In the second iteration, one redundancy effect from minor importance indices was assumed.
The TCARI/OSAVI, CI_green, TCARI/OSAVI RE, GNDVI, and NDVI indices were included,
which together make up 0.8 of the importance value. Given the decrease in the number of indices,
these five improved the value of importance; however, they were not as relevant (0.60, 0.06, 0.05,
0.05, and 0.04, respectively). In this second performance, the TCARI/OSAVI registered the highest
importance values in the two runs (0.66).

The scatter plot (Figure 5) shows the relationship between Nt measured in the laboratory and
that estimated using thirteen spectral indices, reaching an R2 of 0.74 with a mean square error (MSE;
indicator of model accuracy) of 0.18 (Figure 5a). On the Figure 5b shows that when using the five most
important spectral indices, R2 increased to 0.77 and MSE decreased to 0.15.
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4. Discussion

During the growing season, any vegetation indices are useful to characterize the phenotypic
stages. It has been stated recently that the spectral indices are of fundamental use as a dataset in digital
and precision agriculture systems. In determining the Nt [58], the technologies applied to quantify N
must be accurate and robust [59,60]. At the production scale, obtaining a more accurate estimation of
Nt involves combining methods and processes, in addition to analyzing large datasets—data mining
techniques are an example. These technologies are expected to revolutionize agriculture, enabling
decision-making in hours or days instead of weeks or months, envisioning a significant reduction in
cost and an increase in crop yield [61].

It is broadly recognized and documented that remote sensing has been widely applied in
weed mapping, crop growth monitoring, including the health indices of open ecosystems, irrigation
management, and many other applications associated with good production practices in most of the
production systems. Their use in precision farming practices is diverse and on the rise. The thematic
indices show the plant water and/or nutritional needs, plant stress (biotic and nonbiotic), dynamism
in time and scale of the geographic space as it occurs, and in general terms, the exchange process
among soil cover and the atmosphere. In this manuscript, the indices obtained from high spatial
resolution images were useful to estimate the Nt total in forage maize, a crop which is highly sensitive
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to the N content, but also highly sensitive to the many sources that cause biotic and the abiotic stress,
especially during the flowering stage. The RF analysis showed that the TCARI/OSAVI index is the
optimal multispectral vegetation index for Nt estimation in forage maize (i.e., R2 = 0.77). This result is
similar to the previous findings of Inoue et al. [62] and Yao et al. [63], who noticed that a combination
in indices of NIR and RE bands provides an efficient approach of N status in a plant.

Our results seem to corroborate what was written by Hunt et al. [64] on wheat, that there is a
better relationship between the chlorophyll content when the indices utilize the reflectance in the
RE wavelengths in comparison to those that do not use it. While some studies about phenotypic
characterization and monitoring of corn cultivation have documented the close relationship between
the RE band and chlorophyll content [3,5,8,21,22], in this one, the CCCI and NDRE indices showed a
weak relationship with Nt; this is contrary to the results documented by authors who report strong
relationships with parameters associated with Nt in the plant [65,66]. Nevertheless, this opposite
relationship could be associated with conditions of hydric stress, and plant density, as suggested
by Rodríguez et al. [67]; though, our results match with those reported by Fitzgerald [68], that the
CCCI_simpl index has limited importance in estimating the status of Nt and chlorophyll content in
wheat. Comparable results were observed for MCARI/OSAVI and MCARI/OSAVI RE. This study
shows the importance of good practices in forage maize to avoid water and nutritional stress.

Results suggest that indices with the RE bandwidth (CCCI_simpl, MCARI/OSAVI, and MCARI/
OSAVI RE) are not associated with a stress condition, and also are poorly associated in estimating
the Nt in forage maize. Furthermore, more studies are necessary to record additional meteorological
variables to vegetation indices, such as the temperature of the air, and the relative humidity to explore
their role in conjunction with the vegetation indices with RE bandwidth with maize growth and
Nt estimation.

The very positive result is related to the TCARI/OSAVI index. We found a moderate to
a strong relationship in estimating the Nt in forage maize. This result matches a study by
Chen et al. [22], where they found a relationship between the TCARI/OSAVI and the Nt in corn
(R2 = 0.66), while Berni et al. [10] reported that the TCARI/OSAVI index minimizes the effect of bare
soil and variation of leaf area in olive trees, providing predictive relationships to estimate chlorophyll
concentration using multispectral imaging. One study unveiled TCARI/OSAVI as very sensitive to
estimate the chlorophyll content and is the least sensitive to variations in the Leaf Area Index (LAI) [69].
The robust relationship can be explained by the inclusion of the RE region where chlorophyll exhibits
the lowest absorption rate. Therefore, the use of this band in indices reduces the saturation effect
on the index, and the reflectance remains sensitive to moderate to high chlorophyll values [3,8,20].
The component that divides the TCARI index from the OSAVI index is the one that considers the
contribution of bare soil to the reflectance value. The combination of both indices improves the
estimation of Nt in forage maize.

Due to the evident contrast in the importance value of TCARI/OSAVI concerning the thirteen
evaluated indices, a specific pattern is visualized in estimating Nt in forage maize much better than the
resulting from indices associated with the crop topology such as GNDVI, NDVI, and RVI. These results
seem also to support that these structural indices have a weak prediction power to estimate Nt
in essence because of the tendency to exhibit saturation values in moderate to high ground cover
conditions [5,70,71].

5. Conclusions

Monitoring the growing season of forage maize through field data collection and UAV-based
images was a technical challenge because of the high demand for storage and computing resources.
In this manuscript, we explored the usefulness of RF analysis to demonstrate whether or not Nt in forage
maize plants could be estimated using remotely sensed data. Multispectral image indices were selected
to reflect the plant phenology and Nt. The data analysis showed the notable association between the
TCARI/OSAVI index (obtained from the RE wavelength) and the Nt in forage maize. We observed
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that this index enhanced the performance even in comparison with other indices with RE bandwidth
included. The five-variable model prediction reached a value of R2 = 0.77 with an MSE of 0.15.
This study opens new avenues to support precision farming decision making in irrigated-water crops.
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