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Abstract: Classical univariate and multivariate statistics are the most common methods used for data
analysis in plant breeding and biotechnology studies. Evaluation of genetic diversity, classification
of plant genotypes, analysis of yield components, yield stability analysis, assessment of biotic and
abiotic stresses, prediction of parental combinations in hybrid breeding programs, and analysis of
in vitro-based biotechnological experiments are mainly performed by classical statistical methods.
Despite successful applications, these classical statistical methods have low efficiency in analyzing
data obtained from plant studies, as the genotype, environment, and their interaction (G × E) result
in nondeterministic and nonlinear nature of plant characteristics. Large-scale data flow, including
phenomics, metabolomics, genomics, and big data, must be analyzed for efficient interpretation of
results affected by G×E. Nonlinear nonparametric machine learning techniques are more efficient than
classical statistical models in handling large amounts of complex and nondeterministic information
with “multiple-independent variables versus multiple-dependent variables” nature. Neural networks,
partial least square regression, random forest, and support vector machines are some of the most
fascinating machine learning models that have been widely applied to analyze nonlinear and complex
data in both classical plant breeding and in vitro-based biotechnological studies. High interpretive
power of machine learning algorithms has made them popular in the analysis of plant complex
multifactorial characteristics. The classification of different plant genotypes with morphological
and molecular markers, modeling and predicting important quantitative characteristics of plants,
the interpretation of complex and nonlinear relationships of plant characteristics, and predicting
and optimizing of in vitro breeding methods are the examples of applications of machine learning
in conventional plant breeding and in vitro-based biotechnological studies. Precision agriculture is
possible through accurate measurement of plant characteristics using imaging techniques and then
efficient analysis of reliable extracted data using machine learning algorithms. Perfect interpretation of
high-throughput phenotyping data is applicable through coupled machine learning-image processing.
Some applied and potentially applicable capabilities of machine learning techniques in conventional
and in vitro-based plant breeding studies have been discussed in this overview. Discussions are of
great value for future studies and could inspire researchers to apply machine learning in new layers
of plant breeding.
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1. Introduction

Due to climate change (global warming), increasing food requirements and depletion of resources
in consequence of increasing global population, it is necessary to use modern technologies in agriculture
and food sciences [1]. Plant breeding is a dynamic branch of agricultural science. It started with simple
selection of impressive plants with superior characteristics. Later, genetics and statistics were involved
in classical plant breeding, mainly after the discoveries of Gregor Mendel and Sir Ronald Aylmer
Fisher. Next, modern plant breeding emerged with the advancements in genetic and biotechnology
approaches. Classical plant breeding methods mainly included assessment and classification of
genetic diversity, yield components analysis (indirect selection of superior genotypes with impressive
economic characteristics), yield stability analysis (genotype × environment interaction), enhanced
tolerance to biotic and abiotic stresses, and hybrid breeding programs. In vitro-based biotechnological
breeding methods mainly included in vitro micropropagation, doubled haploid production, artificial
polyploidy induction, and Agrobacterium-mediated gene transformation. In in vitro micropropagation
studies, researchers want to investigate the effects of influential factors (inputs), such as combination
of culture medium components, combination and concentrations of plant growth regulators (PGRs),
and interactions of plant genotype × culture medium × PGRs × explant type × explant age × elicitor
additives × type and concentration of carbohydrate source × etc., on regeneration efficiency (outputs)
of their desired plants. Classical statistical techniques have been employed to analyze and interpret
the results of both classical and in vitro-based plant breeding studies. These analytical techniques
are mainly based on variance and linear regression models to assess the relationship of variables and
predict the effect of independent variables on dependent variables. One regression model is required to
assess the effect of a group of independent variables (X1, X2, X3, . . . , Xn) on one dependent variable (Y),
according to the multiple linear relationships [2]. However, nonlinear and nondeterministic properties
are inextricably linked with plant biological systems [3]. Therefore, despite of successful applications,
the classical linear regression-based models are unable to interpret highly nonlinear and complex
relationships between dependent and independent variables. Most of these plant breeding approaches
are “multiple-independent variables versus multiple-dependent variables.” Under these conditions,
one regression model is required for each output [4]. Powerful data mining tools are employed in plant
breeding studies to predict and explain complex data.

Machine learning—the science of programming computers so they can learn from data—has
been widely applied in both classical and in vitro-based plant breeding studies to interpret the flow
of information about plants from the DNA sequence to the observed phenotypes. There are three
ways to classify machine learning methods, including supervised and supervised models, linear and
nonlinear algorithms, and shallow and deep learning models (Figure 1). Artificial neural networks
(ANNs), deep neural networks (DNNs), convolutional neural networks (CNNs), random forest (RF),
and support vector machines (SVMs) are examples of nonlinear nonparametric machine learning
algorithms, applied for processing nonlinear data in plant studies [5]. These data-driven models
are able to parse and interpret non-normal, nonlinear, and nondeterministic unpredictable data sets,
through the full use of all spectral data and avoid irrelevant spectral bands and multicollinearity [6,7].
Among different learning algorithms, including supervised, unsupervised, reinforcement, sparse
dictionary, and rule-based, supervised learning is more suitable and efficient for life science problems [8].
Supervised learning can be used for classification (predicting non-numeric answers) and regression
(predicting numeric answers) [9]. Formless datasets such as data obtained by photo imaging or
sequencing can be interpreted through machine learning algorithms [10]. Genome sequencing data
can be used in machine learning models for the identification and classification of transposable
elements [11]. By using machine learning algorithms, breeders are able to predict multiple outputs
(multiple-dependent variables) through different combinations of multiple inputs in one model and
reduce required analyses.
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Figure 1. Different categories of machine learning algorithms.

Artificial neural networks, consist of an input, an output, and several hidden layers, are nonlinear
nonparametric models which do not require a prior structure for data and detailed information
about the physical processes to be modeled and to tolerate data loss [12,13]. Because of their more
hidden layers, DNNs have greater predictive power than ANNs. Convolutional neural networks,
as state-of-the-art deep learning architecture, are inspired by the natural visual perception mechanism
of the living creatures and consist of convolutional, pooling, fully-connected layers, and an output
layer [14]. CNNs are suitable for classification studies because of automatic feature extraction [9].
Image classification, object detection, object tracking, pose estimation, text detection and recognition,
visual saliency detection, action recognition, scene labeling, speech, and natural language processing
are some of the typical applications of CNNs [14]. Neural networks have low interpretability of the
features (lack the interpretation capability), especially CNN in which the features extracted are hidden.
More advanced machine learning technique of SVMs, which uses a supervised learning algorithm
to find both linear and nonlinear relationships in data, can be used for clustering, classification,
and regression analysis of data sets. In comparison with multilayer perceptron (MLP) of ANN, SVM
uses a large number of hidden units and has better performance in the formulation of the learning
problem, subsequently quadratic optimization task [15]. Random forest regression is a regression
tree-based machine learning that uses multiple decision trees to classify data and needs setting the
number of trees, the number of random features, and the stop criteria for training. RF is more
suitable for spectral data analysis and overfitting can be controlled through combining different
independent predictors [16,17]. In semantic segmentation methods, such as automated phenotyping
and plant disease detection, deep learning CNN can be more effective than shallow learning models
of SVMs and RF and problem of required large manually crafted features can be solved by using
image augmentation and small manually annotated empirical dataset for fine-tuning a synthetically
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bootstrapped CNN [18]. Through the integrating image feature extraction with classification in a single
pipeline, deep convolutional neural networks have been considered as mainstream in biotic and abiotic
stress diagnosis and classification [19]. A nine-layer deep CNN model was trained for identification
of plant leaf diseases using data set with 39 different classes of plant leaves and background images
and 96.46% classification accuracy was reported, which is greater than traditional machine learning
approaches of SVM, decision tree, logistic regression, and K-NN [20]. CNNs are also applicable in
remote sensing for object detection and pattern recognition. High accuracy (84%) for fine-grained
mapping of vegetation species and communities using deep CNN-based segmentation, trained by data
directly derived from visual interpretation of unmanned aerial vehicles (UAV)-based high-resolution
Red-Green-Blue (RGB) imagery, has been reported [21].

A lot of training data is required in ANN for the optimization of sigmoid functions belonging to the
hidden layer’s neurons, as overfitting and local minima may happen by small number of training data.
Therefore, the optimization process cannot be properly carried using back-propagation algorithms,
when the number of training samples is small [8]. Through the short review on studies that used SVM
and ANN techniques for identifying disease in plants, it was concluded that the ANN-based methods
are better than SVM-based methods, as few samples and features are used in SVM-based methods to
identify the disease-affected plants [22]. Conversely, in modeling in vitro culture of Chrysanthemum
(Dendranthema × grandiflorum), better performance accuracy of SVR (R2 > 0.92) than MLP (R2 > 0.82) has
been reported [15]. Applying different algorithm and comparing their performance is an appropriate
solution to find the best algorithm in a particular data set. In tea plant (Camellia sinensis L.), partial
least squares discriminative analysis (PLS-DA) and least squares-support vector machines (LS-SVM)
were used for the classification of different nitrogen nutrition status under field condition and better
performance with correct classification of LS-SVM than PLS-DA was reported [23]. The pros and cons
of different nonlinear machine learning methods under similar scenarios are presented in Table 1.

Table 1. Pros and cons of nonlinear machine learning algorithms applied in classical and in vitro-based
plant breeding studies.

Leaning Algorithm Advantages Disadvantages

ANNs • Good learning capabilities

• Lack the interpretation capability
• Overfitting and local minima in small

number of training data
• Implementing very small number of

hidden neurons

CNNs
• Ability of automatic

feature extraction

• Lack the interpretation capability
• Require large amounts of data for training
• Require considerable skill and experience

to select suitable hyperparameters

SVMs

• Uses a large number of
hidden units

• Quadratic optimization task
in the formulation of the
learning problem

• Shallow architecture

RF

• Ability to handle noise
• Prevent overfitting
• Ability to manage a large

number of features

• Shallow architecture

ANNs—artificial neural networks; CNN—convolutional neural networks; RF—random forest; SVMs—support
vector machines.
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Different application areas for nonlinear machine learning technologies in classical and
in vitro-based plant breeding studies are shown in Figure 2. The following sections of the article
provide a comprehensive review of the applications of these nonlinear machine learning techniques in
classical and in vitro-based plant breeding studies.Agriculture 2020, 10, x FOR PEER REVIEW 5 of 24 
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Figure 2. Potential applications of machine learning techniques in classical and modern plant breeding.

Some recently applied nonlinear machine learning models in both classical and in vitro-based
plant breeding studies are listed in Table 2.
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Table 2. Examples of recently applied nonlinear machine learning models in classical and modern plant breeding studies.

Plant Species Type of Machine Learning Techniques Purpose(s) Reference

Ajowan (Trachyspermum ammi L.)
ANN MLR Modeling and predicting of seed yield [2]
ANN MLR Modeling and predicting of essential oil content [24]
ANN MLR, IP Predicting physical properties of embryogenic callus and number of somatic embryos [25]

Arabidopsis thaliana DT, SVMs, NB Gaussian kernel Predict the plant abiotic stresses response through the miRNAs’ concentration [8]
Carrot (Daucus carota) RF - Precision agriculture-yield mapping [26]

Chrysanthemum
ANN GA Modeling and optimizing of in vitro sterilization [27]

ANFIS GA Modeling and optimizing of somatic embryogenesis [3]
ANN, SVMs MLP Modeling effect of plant growth regulators on somatic embryogenesis [15]

Cucumber (Cucumis sativus) CNN IP Segmentation and quantification of powdery mildew disease [28]
Garnem (G × N15) Prunus rootstock ANN GA Prediction and optimization of mineral salts of in vitro culture medium [29]

ANN GA Modeling and optimizing of in vitro hormonal
combination [30]

ANN GA Modeling and optimizing of new in vitro culture medium [31]

Grapevine rootstock ANN Principal coordinate
analysis, UPGMA Genetic diversity assessment through molecular markers (RAPD-SSR) dataset [32]

Maize (Zea mays L.) CNN IP Identification of haploid and diploid maize seeds [33]
CNN IP Classification model to identify the infected and healthy leaves [34]
CNN IP Plant diseases recognition [35]
CNN IP Identification and classification of drought stress [19]

Okra (Abelmoschus esculentus L.) DNN IP High-throughput salt-stress phenotyping [36]
Pearl millet (Pennisetum glaucum) DNN IP Identification of mildew disease [37]

Potato (Solanum tuberosum) ANN IP Identification and discrimination of potato varieties [38]
RF Classification of Phytophthora infestans infected cultivars [17]

Rapeseed (Brassica napus) ANN MLP Seed yield modeling [39]
CNN IP Stand count estimation [40]
ANN MLP Multicriteria yield prediction based on meteorological data and mineral fertilization data [41]
ANN MLP Early prediction and simulation of seed yield based on meteorological and mineral fertilization data [42]

Rice (Oryza sativa) CNN Plant diseases and pest recognition [43,44]
Safflower (Carthamus tinctorius L.) ANN MLR Seed yield modeling [45]

Sesame (Sesamum indicum L.) ANN MLR Oil content modeling [46]

ANN, SVMs RBF, ERBF, GRNN,
M5-Rule, M5-Tree, MLR Estimation of oil and protein content [47]

Soybean (Glycine max) CNN IP Estimation of seeds per pod [48]
DNN IP Evaluation of stomatal density diversity [49]

Tomato (Lycopersicon esculentum L.) ANN MLR, IP Modeling of callus induction and regeneration in anther culture [50]
CNN IP Evaluation of disease severity [51]

Wheat (Triticum aestivum L.)

ANN MLP Estimation of salinity tolerance [52]
ANN MLP Prediction of seed yield based on meteorological data and information on mineral fertilization [53]
ANN MLP Prediction and simulation of seed yield with qualitative and quantitative data sets [54]
CNN IP Quantification of spikes [55]
DNN LSTM Production forecasting [56]
CNN - Genomic selection [57]

ANN, GRNN MLP Modeling in vitro shoot regeneration [58]
ANN MLP Analysis of concentration of ferulic acid, deoxynivalenol, and nivalenol [59]

White ginger (Hedychium coronarium) ANN MLP Prediction and optimization of coronarin D content [60]

ANFIS—adaptive neuro-fuzzy inference system; ANN—artificial neural networks; CNN—convolutional neural networks; DNN—deep neural network; DT—decision tree; ERBF—extended
radial bases function; GA—genetic algorithm; GRNN—generalized regression neural network; IP—image processing; LSTM—long short term memory; MLR—multiple linear regressions;
MLP—multilayer perceptron; NB—Naïve Bayes; RBF—radial bases function; RF—random forest; SVMs—support vector machines; UPGMA—unweighted pair group method with
arithmetic mean.
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2. Traditional Plant Breeding

2.1. Assessment and Classification of Genetic Diversity

One of the most important prerequisites of plant breeding programs is genetic diversity,
which enables selection of important accessions and their use in future breeding programs [61].
Morphological, biochemical, and physiological markers have been analyzed to investigate the genetic
diversity of different plants. Morphological features are the simplest to measure and do not require
special tools or techniques. The statistical analysis of these markers can prove the existence of genetic
diversity among studied genotypes. Niazian et al. [62] used analysis of variance (ANOVA) and
estimated the coefficient of variation (CV) of different agro-morphological traits (plant height, number
of branches, number of umbels, number of umbellets in an inflorescence, biological yield, and single
plant yield) of eight ecotypes of ajowan medicinal plant (Carum copticum L.) and observed significant
genetic diversity.

Molecular/genetic markers are another group of markers which enable assessment of genetic
diversity and discrimination of the genotype. Amplified fragment-length polymorphism (AFLP),
restriction-fragment length (RFLP), randomly amplified polymorphic DNA (RAPD), simple sequence
repeat (SSR), intersimple sequence repeats (ISSR), and single nucleotide polymorphism (SNP) are
the most commonly used molecular markers to study genetic diversity and species identification in
different target plants [63]. These genetic markers estimate phylogenetic relationships and identify
varieties more reliably and effectively than morphological markers [64]. Although molecular markers
are more effective than morphological markers in the assessment of genetic diversity and discrimination
and identification of various plant genotypes, there are some technical and/or economic limitations [65].

Classical multivariate analyses such as cluster analysis, discriminant function analysis,
and principal component analysis (PCA) have been used for the classification and grouping of
different genotypes in various plant species by means of morphological, biochemical, physiological,
and molecular markers [61,64,66–68]. Object detection through deep learning algorithms could be
used for efficient genetic diversity assessment and classification of plant genotypes. The use of
CNN to classify morphological parameters is an appropriate alternative to conventional classification
methods, such as k-nearest neighbor, probabilistic neural network, support vector machine, genetic
algorithm, and PCA, all of which are time consuming and require feature extraction [65,69]. In soybeans
(Glycine max (L.) Merr.), the genetic diversity of 90 accessions was detected through high-throughput
evaluation of stomatal density [49]. In Cinnamomum osmophloeum Kanehira (Lauraceae), deep CNN was
applied for differentiating between morphologically similar species, and accuracy of CNN classifiers
was better than SVMs classifiers (96.7% vs. 74.6%) [70]. Sant’Anna et al. [71] compared the performance
of ANN with Fisher’s classical multivariate statistical technique and Anderson’s discriminant functions
to assess the genetic diversity and classify 10 plant populations. They observed that ANN-classified
populations with high and low differentiation were better than classical methods, as there were
fewer wrongly classified individuals. Linear discriminant analysis and nonlinear artificial neural
network methods were applied to identify and discriminate 10 potato varieties with morphological
data obtained through image processing. The correctness of classification of the ANN method was
100% [38].

As was mentioned above, machine learning can also be used for classification through molecular
markers data. DNA/RNA sequences can be used for training CNNs and applications in plant
molecular biology and classification of genotypes through molecular markers [9]. Different machine
learning models were used to identify true single nucleotide polymorphisms (SNPs) in allopolyploid
peanuts (Arachis hypogaea L.). The selection of true SNPs by means of real peanut RNA sequencing
(RNA-seq) and whole-genome shotgun (WGS) resequencing data resulted in above 80% accuracy [72].
Costa et al. [32] applied a neural network algorithm to infer the genetic diversity and group allelic
frequencies obtained by RAPD and SSR molecular markers in grapevine rootstock varieties and
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found three genetically diversified clusters among 64 grapevine rootstocks analyzed. Deep learning
techniques enable prediction of plant phenotypes from their genome data [9].

Artificial neural networks have also been applied for genomic prediction and genomic selection in
different plant species [73–75]. The phenotypes of 2000 Iranian bread wheat landrace accessions were
predicted from genomic dataset collected from 33,709 DArT markers using a deep convolutional neural
network. Authors reported that the Pearson’s correlation coefficients between observed and predicted
phenotypic values (grain length, grain width grain hardness, thousand-kernel weight, test weight,
sodium dodecyl sulfate sedimentation, grain protein, and plant height) in deep CNN were more than
other genomic selection methods [57].

2.2. Yield Component Analysis and Indirect Selection (Prediction)

An increase in the economic yield (seed yield, oil yield, sugar yield, essential oil yield, biomass
yield, straw yield, lint percentage, etc.) is always the target of most breeding programs. However, yield
is a highly complex quantitative trait, which is usually controlled by several genes, and it is strongly
influenced by the environment. Therefore, yield traits have low heritability and direct selection does
not improve such complex traits. Instead, plant breeders usually prefer to use simpler highly correlated
traits to have greater influence on yield. Selected yield component(s) will be used as “selection criteria”
in future studies, i.e., indirect selection [2,76]. Classical single variable and multivariate linear methods,
such as correlation coefficient analysis, PCA, path analysis, and multiple regression analyses (stepwise,
forward, and reverse), have been used in classical plant breeding to interpret relationships between
plant traits and improve important quantitative properties like yield and tolerance to biotic and abiotic
stresses. The correlation coefficient analysis and path analysis have been used to evaluate a simple
relationship between two traits and identify cause/effect relationships between correlated variables,
respectively [24]. Regression-based methods are the most effective multivariate statistical methods for
indirect selection purposes. They are based on a linear relationship of a dependent variable (Y) as a
function of multiple independent variables. These multiple variables create a complicated condition
for interpretation. However, some reduction techniques, such as PCA and factor analysis, are able to
concentrate the original multiple variables in a few complex variables [77].

Stepwise, forward, and reverse regression analyses have been used to determine the effects of yield
components on different economic quantitative characteristics in various crops. Backward stepwise
regression was used to find the relationship between changes in grain yield and yield components of
rice (Oryza sativa L.) in terms of the relative response ratio to elevated CO2 [78]. Stepwise regression
was used to determine the components of sugar beet (Beta vulgaris L.) yield affecting the yield of sugar
under water deficit regimes and foliar application of jasmonic acid [76]. Zou et al. [77] applied stepwise
regression analysis to identify the yield components involved in drought resistance of cotton seedlings
(Gossypium hirsutum L.). Despite all the advantages, there is one major drawback to regression-based
models in classical plant breeding studies—it is impossible to analyze nonlinear relationships of
dependent and independent variables [2,79]. The application of nonlinear machine learning algorithms
in yield component analysis and indirect selection studies enables the interpretation of nonlinear
relationships between dependent and independent variables, the contribution of yield components to
yield and prediction of economic quantitative characteristics. ANN was more efficient than multiple
linear regressions (MLR) in the prediction of seed yield [2] and essential oil content [24] of ajowan
(Trachyspermum ammi L.). Emamgholizadeh et al. [79] found that ANN predicted the yield of sesame
seeds (Sesamum indicum L.) better than MLR. The ANN model was characterized by lower root mean
square error (RMSE) and higher determination coefficient (R2). The analysis of the sensitivity of the
ANN model showed that the number of capsules per plant and the flowering time were, respectively,
the most and the least significant variables to the yield of sesame seeds. Artificial neural networks have
successfully predicted the yield of apples, pears, chives, and onions, allowing for data on crop diseases,
time until harvest (based on the date), current temperature, humidity and precipitation (amount of
snowfall) in the area, amount of sunshine, ground temperature, atmospheric pressure, and moisture
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evaporation in the ground [80]. ANNs have also been used to predict the yield of winter rapeseed and
winter wheat on the basis of meteorological data (air temperature and precipitation) and information
on the use of mineral fertilizer [41,42,53,54]. The superiority of DNN (Long Short-Term Memory) over
the auto regressive integrated moving average (ARIMA) model in predicting wheat production has
been reported [56]. Deep CNN classification has been applied for image-based ear counting of wheat
with high level of robustness, without considering of variables, such as growth stage and weather
conditions [55].

Neural networks have also been used to estimate and predict the qualitative characteristics of
different plants. The ANN model predicted the oil content in sesame more accurately and efficiently
than the MLR model [46]. Parsaeian et al. [47] applied a multilayer perceptron (MLP)-ANN to estimate
the oil and protein content in sesame on the basis of 138 morphological features measured in 125 sesame
seed genotypes. The morphological characteristics of seeds were measured through image processing.
The qualitative parameters of oil and the protein content in sesame seeds estimated by means of R2

and RMSE statistics revealed the superiority of MLP over the radial basis function (RBF), extended
RBF (ERBF), GRNN, M5-Rule, M5-Tree, support vector machine regression, and linear regression
models [47]. Niedbała et al. [59] developed a multilayer perceptron ANN to assess the influence
of the cultivar and weather conditions on the concentration of ferulic acid and correlate its content
with the concentration of deoxynivalenol and nivalenol in 23 winter wheat genotypes with different
Fusarium resistance. Independent variables consisted of 14 features, including 12 quantitative data
and 2 qualitative data. The sensitivity analysis of neural networks showed that the experiment variant
and winter wheat cultivar were the most important determinants of the concentration of ferulic acid,
deoxynivalenol, and nivalenol in winter wheat seeds [59]. Ray et al. [60] applied an MLP-ANN model
to assess the effects of topographic, soil, and environmental factors (18 input parameters, including
soil nutrients and climate factors) on the content of active constituent of coronarin D in white ginger
lily (Hedychium coronarium). The sensitivity analysis of the ANN showed that altitude, manganese,
and zinc were the most important variables predicting the coronarin D content.

2.3. Yield Stability and Genotype × Environment Interaction

The environment (climate and soil), agricultural operations (sowing-cultivation-harvesting),
and plant genotype are the factors that affect the yield and productivity of crops. The relationships
(direct and/or indirect) and interactions between these factors create a complex situation determining
the potential yield of plants [39]. Environmental variations and the genotype × environment interaction
(GEI) are the factors that cause year to year variations in the yield and phenotypic trait of a specific
genotype. The choice of a genotype for a target trait is a complex and difficult task because of the
GEI, as different genotypes respond differently to varied environmental conditions. The estimation
of relative performance of genotypes over the environments, through stability analysis is a perfect
solution to these yearly variations [81]. Finlay and Wilkenson’s regression analysis and coefficient [82];
Eberhart and Russel’s coefficient of regression (S2

di) [83]; Wricke’s ecovalence (Wi) [84], Shukla’s
procedure of stability variance [85], coefficient of variance (CV) [86], and Lin and Binns cultivar
performance measure [87] are classical univariate approaches used for the assessment of the GEI. Linear
regression analysis and variance components are the main aspects of these methods [88]. Apart from
the aforementioned statistic methods, the sustainable yield index (SYI) [89] is used to evaluate the
effects of agricultural practices on crop yield sustainability [90]. All these methods are parametric,
and therefore, the assumptions of the distribution of data and the homogeneity of variance should
be considered before they are applied [91]. There are nonparametric univariate methods to evaluate
the GEI, including Si

1, Si
2, Si

3, and Si
6 stability parameters [92,93], Kang parameter [94], Ketrank and

Ketyield plots [95], Fox-rank [96], and Star [91]. These nonparametric stability statistics are analytical
clustering procedures that determine the stability of genotypes on the basis of ranks rather than data
and free from modeling assumptions. A genotype is considered stable if its ranking is relatively
constant across environments [91].
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Principal component analysis, cluster analysis, additive main effects and multiplicative interactions
(AMMI), and genotype plus genotype × environment interaction biplot (GGE) are multivariate
procedures enabling examination of multidirectional aspects of the GEI by imaging the response of
a genotype in an E-dimensional space [91]. Multivariate stability analyses are more powerful and
precise than univariate approaches. However, these are complex methods that do not provide a simple
measure of yield stability for a reliable ranking of genotypes. Limited access to software is another
bottleneck of these methods [91]. In a recent study, both linear and nonlinear regression models were
applied to estimate the influence of climate variables (precipitation, sunshine duration, average relative
humidity, maximum temperature, minimum temperature, and average temperature) on the growth
and yield-related characteristics of cotton (the cotton height at the flowering stage, stalk weight, yield
of cotton seeds, and lint percentage). The authors found that the interpretation of linear regression
equations was generally lower than the interpretation of nonlinear equations [97]. There was a linear
relationship or a relatively complex nonlinear relationship between the cotton growth indicators and
climate variables in one site of their study, but they did not find the best equations for the cotton growth
indices and the influence of climate variables on the cotton growth indices at several sites. In addition,
the authors developed one regression model for each condition [97]. When several independent
variables and several dependent variables are of interest, i.e., multiple-independent variables versus
multiple-dependent variables, ANN can reduce the required analyses and result in higher accuracy [25].
It is clear that an ANN model can find the best equations in all studied environments in a faster and
more precise manner by considering other factors such as soil and cotton properties. Plant growth
indices and climate variables could be entered into an ANN model as dependent and independent
variables, respectively. Then, linear and nonlinear relationships between the variables can be considered
through powerful ANN models. There are well-recognized statistical and biological limitations to
regression approaches. ANN modeling would enable breeders to evaluate the GEI and genetic stability
of a large number of genotypes faster and more precisely. Coupled artificial intelligence (ANN) with
deep phenotyping is a valuable tool for understanding plant–environment interactions [98].

2.4. Biotic and Abiotic Stress Assessment

Plants are exposed to various biotic and abiotic stresses. Different approaches have been
applied to assess the tolerance and resistance of plant genotypes to these stresses and to identify
superior genotypes.

There have been numerous breeding attempts to combat drought stress. Plants’ tolerance to
drought has been studied through some statistical indices, such as tolerance (TOL), mean productivity
(MP), stress susceptibility index (SSI), geometric mean productivity (GMP), harmonic mean (HARM),
relative drought index (RDI), stress tolerance index (STI), yield index (YI), yield stability index (YSI),
and modified stress tolerance index (K1STI and K2STI) [99–106]. These classical approaches are
based on morphological data, mainly yield generated under nonstress (Yp) and stress (Ys) conditions.
However, apart from morphological attributes, there are many physiological and biochemical pathways
involved in plants’ response to environmental stresses. Secondary metabolites, cellular antioxidants,
plant growth regulators, compatible solutes, and polyamines are all involved in plants’ response
to biotic and abiotic stresses [107,108]. Combining phenomic data with metabolomic and genomic
data is an efficient strategy to assess plants’ responses to biotic and abiotic stresses [109]. Classical
multivariate statistical methods are not efficient enough to manage such a large volume of data
(multiple independent variables versus multiple dependent variables). Linear regression is the most
common technique used for the detection of nutrition deficiencies through the RGB image technique.
However, features extracted from digital images with nonlinear relationship with nutrient content
cannot be explained through linear regression model [110]. Machine learning techniques, along with
digital images, could be used to model and predict genotypes’ responses to stressful conditions and
find the ones that are more resistant to stress and nonstress environments by analyzing all phenomic
and omics (metabolomic and genomic) data. Big data—imaging and remote-sensing data—can be
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interpreted through machine learning for high-throughput stress phenotyping [111]. Ravari et al. [52]
applied an MLP-ANN and the TOL, MP, GMP, HM, SSI, STI, YI, and YSI indices to predict the salinity
tolerance of 41 Iranian wheat cultivars (Triticum aestivum L.). They found that the YSI, MP, GMP,
and STI were the best predictors of salinity-tolerant cultivars. In Arabidopsis (Arabidopsis thaliana),
miRNA expressions were used as input features to predict plant responses to abiotic stresses of drought,
salinity, cold, and heat using machine learning models of decision tree (DT), SVM, least-square support
vector machines (LSSVM), and Naïve Bayes (NB). It was concluded that miRNA-169, miRNA-159,
miRNA-396, and miRNA-393 had the highest contributions to plant response towards abiotic stresses
and the SVM with Gaussian kernel had better performance than other machine learning methods
in prediction of plant stress response (R2 = 0.96) [8]. Deep CNN along with traditional machine
learning method was used for identification and classification of maize drought stress through the
field-obtained data under optimum moisture, light drought, and moderate drought stress. Authors
reported identification accuracy of 98.14%, which was more than Gradient Boosting Decision Tree
(GBDT) method [19].

Deep CNNs have been widely used to classify and detect various plant diseases—biotic
stress [112–115]. Image recognition and classification of maize leaf diseases, including northern
corn leaf blight (Exserohilum), common rust (Puccinia sorghi), and gray leaf spot (Cercospora) diseases,
have been conducted using deep CNN with an accuracy of 93.35% [116]. In cucumber (Cucumis sativus),
a semantic segmentation model based on CNN was developed to segment the powdery mildew disease
on leaf images at pixel level, and pixel accuracy of CNN model (96.08%) was more than segmentation
methods of K-means, Random forest, and GBDT [28]. In pearl millet (Pennisetum glaucum), DNNs
has been applied for identification of mildew disease, and accuracy of 95.00% was reported for the
developed model [37].

2.5. Classical Mating Designs and Hybrid Breeding Programs

The integration of statistics into genetics led to some classical mating designs such as mean
generation analysis [117], diallel crosses analysis [118–120], line × tester analysis [121], North Carolina
designs [122], and triple test cross [123,124]. These methods have been used for genetic analysis of
crops in order to find the nature of gene actions (additive, dominance, and epistasis) involved in
controlling important morphological, phenological, and yield component characteristics, to calculate
broad and narrow sense heritability and predict the outcomes of cross-breeding programs.

The prediction of parental combinations is critical to the choice of superior combinational
homozygous parental lines in F1-hybrid breeding programs [125]. However, it is a challenging task
with a large number of cross combinations when there are many inbred parental lines. Therefore,
the prediction of the yield performance of cross combinations of parental lines may significantly reduce
the required time and budget of F1-hybrid breeding programs [126]. ANN could be used to predict
parental combinations and calculate the correct values of general and specific combining abilities (GCA
and SCA) in mating designs, such as topcross, line × tester, and diallel cross. Khaki et al. [126] applied
matrix factorization and a neural network to predict the yield performance of cross combinations
of inbreds and testers of unsown maize on the basis of historical yield data collected from the
crossing of other inbreds and testers. The proposed model was significantly better than other models
such as deep factorization machines (DeepFM), generalized matrix factorization (GMF), LASSO, RF,
and neural networks.

3. Applications of Machine Learning in In Vitro-Based Plant Biotechnology

Biotechnology-based breeding methods (BBBMs) complement classical breeding methods in rapid
plant improvement. In vitro regeneration, as the main core of many in-vitro-based breeding methods,
has numerous plant breeding applications. In situ and ex situ conservation and micropropagation
(proliferation) are direct applications of in vitro regeneration [127]. In endangered rare plant species,
like medicinal plants, in vitro culture is an effective strategy for mass propagation, germplasm
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conservation, and production of bioactive compounds [128]. Several factors determine the fate of
cultured cells in in vitro regeneration of plants. These are the plant genotype, plant growth regulators
(PGRs), culture medium components, explant type, explant age, enhancer additives-elicitors, etc. [127].
These factors can be divided into three main categories: initial triggers of regeneration (environmental
signal inputs and physical stimuli), epigenetic and transcriptional cellular responses to the initial
triggers, and molecules that manage the formation and development of the new stem cell niche [129].
The combination and interactions between these factors lead to multifactorial nature of the in vitro
plant regeneration process. Basal culture medium components, plant genotype, PGRs, explant type,
and explant age are all multilevel factors with different applicable combinations. The inclusion
of other factors results in a very complex situation for interpretation. Plant cells and tissues have
nondeterministic and nonlinear developmental patterns in a stressful in vitro environment [130].
The analysis of variance of factorial experiments and simple means comparison analysis with classical
methods such as LSD, Tukey’s HSD, and Duncan’s test, are the main statistical methods used to interpret
the effects of interaction between effective factors in most in vitro regeneration studies [128,131,132].

Murashige and Skoog (MS), modified MS (MMS), Gamborg’s B5 medium Woody Plant Medium
(WPM), and Driver and Kuniyuki Woody Plant Medium (DKW) are the most commonly used basal
culture media in in vitro regeneration studies. Basal medium manipulation is a promoting strategy
that has been applied to increase the output of in vitro studies [133]. However, due to the large number
of micro- and macroelements in the culture medium, it is difficult to manipulate their concentrations.
In this situation, prediction of the effect of culture media components on the target characteristics
of in vitro regenerants is the right solution. Artificial neural networks have been applied in these
experiments to predict the best culture media components for efficient propagation of different plant
species [29,31,134].

Different combinations of auxin and cytokinin PGRs can determine the developmental fate of
cultured cells and tissues toward organogenesis and/or somatic embryogenesis. The cytokinin/auxin
ratio is also very important in in vitro studies [135]. Niazian et al. [131] found that
2,4-dichlorophenoxyacetic acid (2,4-D) combined with kinetin resulted in indirect somatic
embryogenesis of cultured hypocotyl segments of ajowan medicinal plants, whereas a combination of
3-methoxy(-6-benzylamino-9-tetrahydropyran-2-yl) purine and naphthalene acetic acid led cultivated
explants toward an indirect shoot regeneration pathway. Arab et al. [30] combined artificial neural
networks and genetic algorithms to predict and optimize the effect of cytokinin–auxin plant hormone
(BAP, KIN, TDZ, IBA, and NAA) combinations and concentrations on the number of microshoots
per explant, the length of microshoots, developed callus weight, and the quality index of plantlets
in in vitro proliferation of Garnem (G ×N15) rootstock. The ANN model predicted the number and
length of microshoots with high accuracy. The highest values of the variable sensitivity ratio for the
proliferation rate were related to the BAP (19.3), KIN (9.64), and IBA (2.63) inputs. An MLP-ANN
was developed to predict the physical properties of embryogenic callus and the number of somatic
embryos in in vitro regeneration of ajowan under the effect of different combinations of the explant
age, concentrations of 2,4-D, kinetin, and sucrose inputs [25]. The ANN model predicted the physical
properties of embryogenic callus (area, perimeter, Feret diameter, roundness, and true density) and the
number of somatic embryos better than the multiple linear regressions. Fifteen-day-old hypocotyl
explants × 1.5 mg/L 2,4-D × 0.5 mg/L Kin × 2.5% (w/v) sucrose was the best combination of inputs with
the highest measured and predicted number of somatic embryos [25].

Apart from culture medium components and PGRs combination, ANN has been applied to
model the sterilization step of in vitro regeneration. Hesami et al. [27] applied an MLP-ANN along
with a genetic algorithm to model and optimize the contamination frequency and explant viability
under the influence of seven input variables, i.e., HgCl2, Ca(ClO)2, nanosilver, H2O2, NaOCl, AgNO3,
and immersion times, in an in vitro culture of chrysanthemum. The lowest contamination frequency
(0%) and the highest explant viability (99.98%) resulted from 1.62% NaOCl at 13.96 min immersion
time. The sensitivity analysis of the ANN showed that the immersion time was the most important
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variable affecting the contamination frequency and explant viability [27]. ANNs are also used to
simulate in vitro growth of plant tissue cultures, distinguish embryos from nonembryos, predict the
formation of plantlets from embryos, estimate the biomass of cell cultures, simulate the distribution of
temperature in a culture vessel, identify and estimate the in vitro induced shoot length, and cluster
in vitro regenerated plantlets [130].

Other in vitro-based breeding methods, such as artificial polyploidy induction, doubled haploid
production, plant gene transformation, and genome editing methods also have multifactorial nature
and require multivariate statistical methods to interpret the results. Different chemical enhancers can
be used in in vitro doubled haploid production methods (induced parthenogenesis and androgenesis)
to improve the haploid induction efficiency, e.g., PGRs, osmoprotectants, cellular antioxidants, reactive
oxygen species scavengers, polyamins, stress hormones, chlormequat chloride, compatible solutes,
DNA demethylating agents, histone deacetylase inhibitors, cell wall remodeling agents, ethylene
inhibitors, and other applicable additives. They enhance tolerance to inductive stresses and improve the
final efficiency of doubled haploid production [108]. ANN models may improve the efficiency of in vitro
doubled haploid production and solve the problem of recalcitrant species/genotypes by predicting the
best combination(s) of these additives in interaction with other influencing factors, such as the plant
genotype, the surrounding environment of donor plants, physical treatments (inductive stresses) of
cultured gametophytic cells, the developmental stage of initial gametophytic cells, and culture medium
components. The ANN predicted the callus induction percentage in androgenesis (anther culture) of
tomato (Lycopersicon esculentum L.) under the influence of plant genotype, the concentrations of 2,4-D
and kinetin PGRs, and the concentration of gum Arabic better than the MLR model [50].

Plants’ vigor and performance are commonly enhanced by mitotic-induced polyploidy. It consists
in in vivo and in vitro application of mitotic spindle poisons [136]. In vitro-induced polyploidy is a
multifactorial procedure. The efficiency of in vitro-induced polyploidy may be affected not only by
in vitro regeneration parameters (basal culture medium components, combination of PGRs, additives,
etc.) but also by the plant genotype, the developmental stage of initial explants as well as the
type, dosage, and duration (exposure time) of the application of the antimitotic agent. Due to the
genotype dependency, different genotypes of plant species exhibit different responses to concentrations
of the antimitotic agent applied [137]. This results in significant interaction of the plant genotype
and antimitotic agent in artificial polyploidy induction. Although there have been no reports on
the application of ANN to model and predict the results of in vitro-induced artificial polyploidy, it
might increase the efficiency by predicting and finding the best combination and interaction of all
influential factors.

Agrobacterium-mediated gene transformation is a well-known method of plant gene transformation
and genetic engineering. However, various parameters must be optimized for an efficient gene delivery,
including the Agrobacterium strain cell density, the time of inoculation, the type and concentration
of antibiotics to kill Agrobacterium, the type and concentration of selectable antibiotics, and the
concentration of acetosyringone [138]. These influencing factors along with in vitro regeneration
factors result in a multi-variable nature of Agrobacterium-mediated gene transformation [127]. It is
obvious that machine learning algorithms could be used to predict and optimize Agrobacterium-mediated
gene transformation, especially in important Agrobacterium-recalcitrant plant species.

4. Coupled Machine Learning-Image Processing for High-Throughput Phenotyping and
Precision Agriculture

Classical measurement of plants’ physical features by visual assessment is a laborious,
time-consuming, costly, and error-prone process in both conventional and in vitro-based plant breeding
studies. This step can be accelerated and facilitated by the machine vision method, which is more
accurate and precise than visual assessment. Nondestructive measurement of physical features,
both outdoors and in vitro, is another important advantage of image processing [25]. Automated
non-invasive fast scoring of several plant traits through high-throughput phenotyping platforms can
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speed up and facilitate the phenotyping of plant populations and selection of superior varieties [139].
The integration of precise measured image-based characteristics with omics data could help to identify
the key traits involved in the mechanisms of stress tolerance and acclimation [109]. On the other hand,
the ability of deep learning in the identification of plants’ features provides a great opportunity for
further advances in image analysis [98]. Combined image processing (for feature extraction) and
machine learning (for data analysis) is a powerful strategy required for faster and precise image-based
plant phenotyping [140]. The use of deep learning techniques in computer vision can accelerate plant
breeding programs such as plant phenotyping and classification of genotypes [141]. Coupled image
processing-ANN has been used to measure phenotypic characteristics and assess genetic diversity and
classify different plant species [38,65,142,143]. Deep learning, especially CNN, has become a powerful
tool for image analysis in recent years [49]. Uzal et al. [48] applied a computer vision method for feature
extraction along with developed convolutional neural networks to estimate the number of seeds in
soybean pods and then to classify the obtained data. In most cases, the convolutional neural networks
learnt to detect each seed in the pod, which indicates their high classification efficiency. There are other
advanced imaging techniques, which are more efficient than simple visualization techniques and can
be used to analyze in-field images instead of indoor methods. Recently, an R-based pipeline has been
developed, which enables analysis of orthomosaic images from agricultural field trials and calculation
of the number of plants per plot, canopy cover percentage, vegetation indices, and plant height [139].
A deep neural network model trained with such in-field images could very effectively classify and
estimate desired characteristics from in-field images [48]. Coupled image processing-artificial neural
network has been used in BBBMs for in vitro modeling of somatic embryogenesis in ajowan [25] and
androgenesis-based haploid induction in tomato [50]. Plant phenotyping and precision agriculture
could be significantly different in terms of the spatial and temporal resolutions, although both
generate big data sets in a format of image. These are information- and technology-based domains
with specific demand and challenges. Precision agriculture is an agricultural management system
based on spatial and temporal variability in crop and soil factors within a field (with environmental
parameters). However, in phenotyping systems, the crop field parameters are homogenous and datasets
in molecular, cellular, and whole plant levels are considered for plant phenotyping. Precision agriculture
examines spatial heterogeneities within crop stands, whereas the appearance and performance of
a genotype under distinct environmental conditions are examined in plant phenotyping [144,145].
High-throughput salt-stress phenotyping has been reported in okra (Abelmoschus esculentus L.) through a
trained DNN using physiological and biochemical traits, such as fresh weight, SPAD, elemental contents,
and photosynthesis-related parameters, measured from 13 genotypes under salt stress treatment [36].
Establishment of high-throughput phenotyping platforms (HTPPs) to phenotype physiomorphological
traits under highly heterogeneous field environment, in a precise, labor-, and cost-effective manner,
is essential to bridge the gap between genomics and phenomics [146]. Machine learning algorithms
can be used for image-based plant stress phenotyping in a wide scale from leaf and canopy to
filed range. Identification, classification, quantification, and prediction of big data, obtained from
higher-throughput phenotyping systems such as unmanned aerial system (UAS) technology and
ground robots, can be conducted through deep learning algorithms [147]. In carrot (Daucus carota),
a precision agriculture approach was conducted through on-farm punctual carrot sampling data
incorporated into the satellite imagery data using a random forest regression algorithm. Accuracy of
developed model to predict carrot yield using database composed of spectral bands was acceptable
(R2 = 0.82; RMSE = 2.64 mg ha−1; MAE = 1.74 mg ha−1) [26].

5. A Proposed Idea for Plant Ploidy Level Determination through Image
Processing-Machine Learning

In chromosome engineering studies (polyploidy and haploid induction), one important step
is taken to verify the ploidy level. It can be confirmed through direct (chromosome counting) or
indirect methods (morphological and anatomical indicators and flow cytometry). Although the direct
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method of chromosome counting is reliable and unambiguous [148], it is laborious, time consuming,
and complicated and requires highly skilled operators [149]. Indirect verification of the ploidy level
through classical markers, such as stomatal morphometric data (stomatal density per unit area,
the number and size of stomata), the density of chloroplasts per stomatal guard cells, size of guard
cells and pollen size, is a rapid and simple method [150], but not completely reliable. Flow cytometry
is a reliable method based on direct correlation between the nuclear DNA content and ploidy level.
However, according to a recent study, the comparison of the DNA content in standardized leaf punch
samples is not a reliable method to recognize putative doubled haploids, as there is a DNA content
equivalence between haploid and diploid samples [151].

Machine learning algorithms can be used for ploidy level identification of plants. Recently, a deep
learning-based object detection algorithm has been developed for evaluating the stomatal density and
elucidating the variation in the stomatal density among various soybean accessions [49]. This DNN
could also be useful for ploidy level prediction. There have been two reports on the use of other
methods to identify the ploidy level in plants. Altuntaş et al. [33] used convolutional neural networks
to recognize haploid and diploid maize seeds through R1-nj anthocyanin color marker data of 1230
haploid and 1770 diploid maize seed images. The accuracy and sensitivity of the model amounted to
94.22% and 94.58%, respectively [33]. Remote sensing has also been applied to determine the ploidy
level of quaking aspen (Populus tremuloides Michx.) [152].

Here, we offer another idea to identify the ploidy level of plants through coupled image
processing-supervised deep neural network using visual data of cellular patterning of the epidermal
layer. Haploids have smaller and more densely packed epidermal and mesophyll cells (more cells per
same unit area) than doubled haploids. This results in an equivalent DNA content per unit leaf area for
haploids and their counterpart diploids [151]. Cellular patterning in the epidermis and mesophyll can
be specific to each ploidy group. Therefore, epidermal cell patterning (size shape and number) could
be used as ploidy level recognition and classification criteria [151]. The use of imaging techniques
for precise feature extraction of leaf punch samples (the cellular pattern, including the cell size and
number) and the subsequent modeling of captured images (classification modeling) through deep
learning approaches, particularly CNN, results in an image-based model, which can be used to estimate
the ploidy level in chromosome engineering studies of different plant species (Figure 3). It is a more
precise, fast, and cost-effective method of ploidy level distinction, which could also be used in other
branches of plant science, e.g., in genetic diversity, evolutionary, and species invasiveness studies.Agriculture 2020, 10, x FOR PEER REVIEW 16 of 24 
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6. Conclusions

Most classical statistical methods use only simple statistics and few influential factors to assess
the biological features of plants. For example, Yp and Ys are the only indices used to identify
drought-tolerant plant genotypes in yield-based drought tolerance assessment methods. However,
there are other influential factors, such as cellular, physiological, and phytochemical pathways,
which are involved in plants’ responses to environmental stress. The tolerance of different plant species
to biotic and abiotic stresses, as complex biological processes, can be efficiently enhanced through
large-scale analysis of phenomic, metabolomic, and genomic data. Machine learning models are
capable of processing large amounts of data (imaging and remote-sensing data) for high-throughput
stress phenotyping. The analysis of different omics and phenomic data may result in more precise
interpretation of GEI and yield stability. Plants’ qualitative and quantitative characteristics can be
predicted more precisely by analysis of climate data (temperature, humidity, sunshine, precipitation,
etc.), soil factors, agricultural operations data (harvest date, information on diseases, crop status,
ground temperature, etc.), topographic, and meteorological data. Big data analysis enables more
efficient classification of plants’ phenotypes and genotypes. Machine learning techniques are able to
manage large amounts of data in various areas of plant breeding, which can lead to more accurate
results and better interoperation than classical statistical methods. Artificial neural networks can be
used for pattern recognition, nonlinear regression, and classification purposes in plant tissue culture
studies because they can handle binary, continuous, categorical, and fuzzy datasets. The present
review can give an overview of applications of machine learning to plant breeders. It would be helpful
to adopt the correct method of data analysis in future studies, which in turn can increase the output
of studies.
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