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Abstract: The use of aerial imagery in agriculture is increasing. Improvements in unmanned aerial 

systems (UASs) and the hardware and software used to analyze imagery are presenting new options 

for agricultural studies. One of the challenges associated with improving crop performance under 

water deficit conditions is the increased variability in the growth and development inherent in low 

water settings. The nature of plant growth and development under water deficits makes it difficult 

to monitor the response to environmental changes. Small field and plot-level experiments are often 

variable enough that averages of seasonal crop characteristics may be of limited value to the 

researcher. This variability leads to a desire to resolve fields on finer temporal and spatial scales. 

While UAS imagery provides an ability to monitor the crop on a useful temporal scale, the spatial 

scale is still difficult to resolve. In this study, an automated computer software framework was 

developed to facilitate resolving field and plot-level crop imagery to finer spatial resolutions. The 

method uses a Binary Large Object (BLOB)-based algorithm to automate the generation of areas of 

measurement (AOMs) as a tool for crop analysis. The use of the BLOB-based system is demonstrated 

in the analysis of plots of cotton grown in Lubbock, Texas, during the summer of 2018. The method 

allowed the creation and analysis of 1133 AOMs from the plots and the extraction of agronomic data 

that described plant growth and development.  
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1. Introduction 

Agricultural fields are an orderly collection of plants that promote efficient and equal access to 

resources. Efficient crop management is based upon meeting the resource demands of a crop in the 

proper amounts at the proper times.  

Variation from the desired populations and distribution of plants within a field can reduce yield 

as compared to a more uniform planting [1–4]. Understanding the resource demands of the crop 

(radiation, water, and nutrition), and planting in a manner that provides for those needs, is an 

essential part of modern agriculture.  

While a uniform crop stand is a goal at planting, variation in emergence and seedling survival 

is common and the result is the non-uniformity of crop stands. Replanting to achieve uniformity is 

an option but producers are often uncertain about the value of replanting, since, if the replant does 

not increase yield, it is seen as waste of time and resources. Data-based replant decisions require 

information on the extent of stand variability and the potential effect of that variability on yield, 

perhaps one hundred days later. 
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Cotton is a crop whose perennial nature results in a flexible growth habit, with a relatively 

flexible relationship between in-field plant density and yield [1]. This flexibility complicates stand 

assessments and replant decisions [3–7]. 

The optimal seeding rates and the crop outcomes for cotton have been the subject of numerous 

studies [4–10]. In spite of those efforts to understand the relationship between stand variability and 

yield, the question of what constitutes an “acceptable stand” in rainfed cotton remains complex and 

difficult to determine under field conditions. New tools and approaches might be useful for the 

required detection and characterization of crop growth [11] and development in variable stands. 

Aerial images of crops provide a useful perspective regarding identifying and quantifying crop 

uniformity [6,11,12]. Recent improvements in tools for aerial imaging in an agricultural setting have 

led to the increased use of Unmanned Aerial Systems (UASs) in research and production 

environments [13–21]. UAS measurements make it possible to view not only fields and plots, but 

individual plants [13,14] and individual components of single plants [15–17]. This improved 

measurement efficiency presents challenges in terms of the amount of data that can be collected and 

perhaps, most importantly, how these data streams can be analyzed in an agriculturally relevant 

setting [18–21]. 

Image analysis in crops generally involves the extraction of plant information that is associated 

with field locations represented in images. 

In an aerial image of a crop, plants comprise a very small fraction of the image at emergence 

and, by the end of the season, comprise a larger fraction of the image data. To focus an analysis on 

the plant-containing pixels, the plant pixels must be separated from the background. An area of 

measurement (AOM) is a defined collection of pixels that delineates a region of interest in the image. 

AOMs can be defined in a variety of image analysis programs (e.g., ImageJ, GIMP). As the number 

and size of images and the number of AOMs desired increases, the manual creation of AOMs can 

become time consuming and a source of error itself. In variable cotton stands the number of AOMs 

required to describe the variability can become large and computer automation of the AOM creation 

process becomes increasingly more valuable. A Binary Large Object (BLOB) is a collection of binary 

data stored as a single entity [22]. BLOBs, which can be generated using a computer algorithm, can 

delineate a collection of contiguous pixels and can be used for the creation of AOMs. 

In order to reduce the effects of environmental stresses on cotton, it is important to understand 

the patterns, severity, and mechanisms of stress on seasonal timeframes. The collection of field data 

is an obstacle to the development of an actionable understanding of yield losses due to stress. The 

ability to automate crop monitoring over time will allow the collection and analysis of field data on 

a greater scale. 

The goal of this study was the development of a BLOB-based protocol to create and define AOMs 

for the extraction of agronomic data from cotton aerial images. Open source software was used in the 

system to enhance user access and reduce cost. 

2. Materials and Methods  

2.1. Agronomic Information 

Upland Cotton (Gossipium hirsutum L.) was grown in small plots in the summer of 2018 in 

Lubbock, Texas (33°34′40′′ N, 101°53′24′′ W). All plots were planted on a 1 m row spacing around a 

center pivot. Planting dates were March 15 for plot 1, April 12 for plot 2 and May 29 for plot 3. Plots 

were rainfed with 248 mm in plot 1, 214 mm in plot 2 and 364 mm in plot 3. Conventional tillage was 

used, while herbicide and insecticide application followed established best practices. 

2.1.1. Plot Information, Seed, and Plant Counts 

Plot area (m²) was defined as the planted area of the field. Plots were hand measured before 

planting and marked with flags in the field. After planting, UAS flights were flown and plots were 

measured digitally using geographic information system (GIS) software. All plots were seeded at a 

rate of 100,000 seeds/ha. UAS data was collected on June 5 and 14, with a 75% image overlap and 75% 
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image sidelap at a height of 20 m. The lighting conditions were variable, with minimal shadowing 

behind the plants in both flights. These flights were composited into orthomaps, which were later 

used for digitized hand counting in GIS software. Digitized counts were made by placing a point 

layer in the GIS software and later totaling the points placed in that layer. This was done for all plots 

in the study. Total planted areas of the plots were used for calculations of seeds/plot based on the 

100,000 seeds/ha seeding rate.  

2.1.2. Maximum Canopy Calculations 

UAS data was collected on August 13, with a 75% image overlap and 75% image sidelap at a 

height of 50 m for plot 1. The lighting was optimal, with minimal shadowing and near solar noon. 

UAS data was collected September 6 and 11, with a 75% image overlap and 75% image sidelap at a 

height of 35 m for plots 2 and 3. The lighting on September 6 was optimal ambient light conditions, 

with no shadowing on the crop. The September 11 flight was taken early in the morning, with large 

shadowing effects on the crop. The cotton crop, at this point in the season, had reached physiological 

maturity with initial fruiting sites entering the boll opening stage. The UAS data collected on these 

flights was later used for cotton plant canopy isolation and further image analysis. Final canopy area, 

as percentage of plot size, was calculated using the extracted plant canopy from these orthomaps. 

The extracted plant canopy area was calculated using built-in area calculations of polygons in the GIS 

software. The area calculated was then divided by the total planted area for the plot to determine the 

final canopy area (% of plot size). 

2.1.3. Maturity and Yield 

The maturity date of each plot, defined as 60% open bolls, was 140 days after planting (DAP) for 

plot 1, 129 DAP for plot 2, and 143 DAP for plot 3. Maturity dates were determined through visual 

inspection of all plots. All yield is reported as seed cotton weight. The plot-level yields were obtained 

using a 4 row cotton stripper in December. Yield in BLOBs was estimated from an aerial imaging 

algorithm. The yield algorithm was developed on white pixel counts in a total of eighty 1-meter 

spaces that were subsequently hand harvested. UAS data was collected on October 4 and 26, with a 

75% image overlap and 75% image sidelap at a height of 35 m and 30 m respectively. The lighting 

conditions of the orthomaps were variable, with a more ambient occluded light on October 4 and a 

near solar noon flight on October 26. These flights were used for aerial yield estimation in plot 1. UAS 

data was collected on November 9, with a 75% image overlap and 75% image sidelap at a height of 

35 m. This flight was used for aerial yield estimation in plots 2 and 3. The flight was near solar noon 

with some light shadowing on the crop.  

2.2. UAS Imaging System and Image Processing 

The image capture platform used was a DJI Phantom 4 Pro UAS. This UAS was equipped with 

the stock original equipment manufacturer (OEM) 20 megapixel RGB camera (DJI Industries, 

Shenzhen, China). At the 20 megapixel resolution, the ground sample distance (GSD) varied from a 

minimum of 0.59 cm/pixel at 20 m to a maximum of 2.95 cm/pixel at 100 m above ground level (AGL). 

The camera on this device was mounted to a gimbal that utilizes an automatic stabilization feature to 

ensure that, at the time of image capture, the camera is facing directly towards the ground. A down-

facing camera at the time of image capture results in a nadir view in the raw image data which 

facilitates the orthomap creation process.  

UAS image data was collected at the USDA-ARS Plant Stress and Water Conservation 

Laboratory in Lubbock, Texas (33° 35' 40.85"N, 101° 54' 4.99"W). The cotton crop in the scene was part 

of a rain-grown cotton matrix, experiment where entries have both a unique planting date and water 

treatment [23]. The matrix experiment is comprised of entries planted over a range of planting dates 

and the aerial imagery used in this study was collected according to the protocol of the matrix 

experiment. 
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2.2.1. UAS Image Processing 

UAS data processing was conducted using an in-house, open-source software framework that 

allows for end-to-end UAS data collection and analysis. The workflow for processing aerial image 

data begins with the act of collecting raw image data with an UAS. All flights were planned with the 

DroneDeploy flight planning software (DroneDeploy mobile ver. 4.0.0). Once the flight plan has been 

generated, the flight mission is conducted resulting in an image data set typically comprised of 

several hundred images. These raw image data sets from each flight mission were then composited 

into singular, high-resolution, 2D orthomaps with OpenDroneMap [24]. OpenDroneMap (ODM) is 

an open-source mapping software that allows users to produce both 2D and 3D maps of a given 

scene. The resultant orthomaps are imported into QGIS (QGIS ver. 3.8.1) [25] which is an open-source 

geographic information system (GIS) software. The accuracy and alignment from one orthomap to 

the next was evaluated and corrected through the native georeferencing capabilities in QGIS. The 

observed level of precision with respect to the consistent alignment of objects in successive orthomap 

scenes is ±5 cm. The AOMs were hand digitized in QGIS to identify the individual plantings in the 

orthomap scenes. This was performed by creating a vector layer in QGIS that served as a polygon 

mask. That polygon mask allows for the raster data that falls within the polygon space to be extracted. 

In other words, the orthomap raster layers were “clipped” using polygons and individual plantings 

were extracted for further analyses. 

2.3. BLOB-Based AOM Creation 

The planting-level extracted AOMs served as the basis for the binary large object (BLOB) 

analysis. BLOB detection is a technique that utilizes one of many algorithms to facilitate the detection 

and extraction of connected pixels in binary image data. Python (Python ver. 3.7) [26] and the 

OpenCV (OpenCV ver. 4.0.0) [27] library provide several ways to isolate connected pixels in such 

data. The BLOB-based AOMs are formed after connected pixel areas are extracted from the binary 

image and serve as a basis for plant-level extractions of data on single or groups of plants. BLOB-

based AOM detection in this research was implemented through a three-part process: (1) cotton plant 

canopy isolation, (2) image thresholding, and (3) BLOB identification/extraction. 

2.3.1. Cotton Plant Canopy Isolation 

The growth of cotton in this experiment was evaluated and characterized by observing the 

nature of canopy development as captured in a series of orthomap raster layers managed in QGIS. 

The maximum canopy size and the extent to which said canopy is congruous over the length of a 

single row are two primary cotton growth characteristics that defined the analysis in this research. 

Because these two characteristics are aspects of the cotton crop canopy, the first phase of the BLOB 

analysis was the task of separating the cotton canopy from the rest of the scene in each of the three 

plantings. This task was performed by evaluating red, green, and blue (RGB) pixel intensities for all 

pixels in each of the three planting-level AOM extractions. Images were not adjusted for color 

calibration other than auto-white balancing from the UAS camera system. The logic driving the 

canopy extraction was to use Python and OpenCV to create a mask comprised solely of pixels where 

the green band (G) pixel intensity was greater than both the blue (G>B) and red band (G>R) pixel 

intensities (G>B, G>R). This is a simple yet effective approach to isolate the green pixels in the scene 

that represent living biomass such as the plant canopy. The mask is then applied to the planting-level 

AOM extraction, effectively removing all elements of the scene that are not plant related. 

After the cotton canopy has been isolated, the planting-level AOM extractions were subjected to 

a thresholding process that was implemented with the binary thresholding methods native to the 

OpenCV library. Binary thresholding is a process that converts all pixel intensity values in a single 

channel image to either the minimum (0) or maximum (255) possible values. All extracted AOM 

image data in this research was eight-bit data, resulting in a bit-depth of 256 (28). The range of possible 

pixel intensities in this case is 0–255 inclusive, and so binary thresholding will result in a single 

channel image, where all pixel intensities are either 0 or 255. The thresholding process requires the 
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user to provide a thresholding value that acts to determine whether a pixel will either be thresholded 

to 0 or 255 depending on whether the pixel intensity is either above or below the threshold. This 

threshold was determined by visually comparing the plant to the background scene. If the pixel 

intensity is below the threshold value, then the binary thresholding process will set that pixel to 0, 

otherwise, in the case were the pixel is above the threshold, the value will be set to 255. This process 

results in a single-channel, black and white, binary image where all pixel intensities are either 0 

(black) or 255 (white). The image threshold is a result of the plant canopy isolation and serves to 

isolate green canopy. Elements in the scene that are determined to be green are set to 255, and 

everything else below the previous canopy isolation threshold is set to 0. 

2.3.2. BLOB Identification and Extraction 

After the planting-level AOM extractions had been masked and thresholds applied, the final 

step was to programmatically isolate and extract the BLOB-based AOMs. BLOB 

identification/extraction was performed with the cv2.findContours method native to OpenCV. This 

algorithm [28] identifies a curve that joins all continuous points along a contoured boundary and 

retrieves them from the image. With planting-level AOM extractions masked and subjected to binary 

thresholding, the boundary between the white BLOBs and the black background is pronounced and 

easily detectable. As a result, the cv2.findContours method returns a list of all contour data. The 

contoured data was used to iteratively extract data from the plantings for each BLOB-based AOM. 

The contours and respective label data were saved to a file. Along with individual BLOB-based 

AOMs, the entire set of BLOB-based AOMs for each planting were collectively extracted and saved. 

These BLOB-based AOM sets, for each planting, were imported back into QGIS and georeferenced 

to ensure alignment with the existing orthomap data managed in QGIS. This alignment results in a 

QGIS vector layer of polygons representing all BLOB-based AOMs in each of the three plantings. 

Figure 1 shows the workflow of the UAS image processing and yield estimation process using BLOB-

based AOMs. 

 

Figure 1. Flowchart of the unmanned aerial systems (UAS) image processing and yield estimation 

with a binary large object based area of measurement (BLOB-based AOM) data. 
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3. Results and Discussion 

3.1. Agronomic Plot-Level Data 

The planting density was approximately 10 seeds/meter of row (100,000 seeds/ha) and at a 100% 

emergence value the total number of plants/plots could be 7450 for plot 1, 8656 for plot 2 and 9920 

for plot 3. Plot 1 was 992 m² and had 9920 seeds planted, plot 2 was 866 m² and had 8656 seeds 

planted, and plot 3 was 745 m² and had 7450 seeds planted based on plot area. Digitized hand counts 

of plants showed that plot 1 had 1107 plants, plot 2 had 1598 plants, and plot 3 had 3067 plants. Table 

1 shows the number of plants in each planting based on digitized hand counting at 60, 54, 45 DAP 

for plots 1, 2, and 3 respectively. The number of planted seeds that germinated and emerged by 30 

DAP varied with planting date with the highest % in the latest planting (41% in plot 3).  

Days required to reach maximum canopy was relatively consistent at approximately 110 DAP. 

Maximum canopy area varied from 189 to 268 m². Maturity dates among the plot varied by 13 days. 

The plot-level yield in the three plots was obtained using a 4 row cotton stripper in December. 

Total seed cotton yield was 1353 kg/ha in plot 1, 1179 kg/ha in plot 2, and 944 kg/ha in plot 3.
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Table 1. Plot-level agronomic data for three plantings. 

Plot 
Plant 

Date 

Plot Area 

(m²) 
Seeds Plants 

Plants (% of 

seed) 

Days to Maximum 

Canopy 

Maximum Canopy 

Area (m²) 

Final Canopy Area (% of 

plot Size) 

Days to 

Maturity 

Yield Seed Cotton 

(kg/ha) 

1 March 15 992 9920 1107 11% 112 193 19.4 140 1353 

2 April 12 866 8656 1598 18% 108 268 30.96 129 1179 

3 May 29 745 7450 3067 41% 110 189 25.43 143 944 
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3.2. Plot-Level Imagery Analysis 

Images were filtered to extract green pixels that represent plant material. Figure 2 shows pre-

processed orthomap plot-level AOM images of the three plots taken near the end of the season. Stand 

uniformity in the plots was highly variable at the end of the season. Much of the variation is a result 

of early versus later planting dates with plots 1 and 2 planted in late spring (March 15 and April 12) 

and plot 3 was planted on May 29. The images in Figure 2 were acquired at 153 DAP for plot 1, 147 

DAP for plot 2, and 100 DAP for plot 3. The total planted row area (one-meter row spacing) for each 

plot was 992 m² for plot 1, 866 m² for plot 2, and 745 m² for plot 3.  

   
(a) (b) (c) 

Figure 2. Red, green, and blue (RGB) orthomap image of three cotton plots. Images were acquired 

near the end of the growing season and show the maximum extent of canopy area. Panel (a), plot 1, 

was planted on March 15, 2018 and imaged 153 days after planting (DAP). Panel (b), plot 2, was 

planted on April 12, 2018 and imaged 147 DAP. Panel (c), plot 3, was planted on May 29, 2018 and 

imaged 100 DAP.3.3. Maximum Canopy Size and Analysis. 

Final canopy area (% of plot size) was calculated using the extracted plant canopy at initial stages 

crop maturity (Table 1). Estimated final total canopy cover for each plot is 193 m² for plot 1 at 112 

DAP, 268 m² for plot 2 at 108 DAP and 189 m² for plot 3 at 110 DAP. As a fraction of the total planted 

area in each plot, the final canopy cover was 19.4% in plot 1, 30.96% in plot 2 and 25.43% in plot 3. 

3.4. Summary of Plot-Level Image Analysis 

The analysis of the plot-level images (Table 1) provided the basis for assessments of crop 

characteristics including; 1) final canopy area (m², measured ground cover fraction at maturity), 2) 

days to maximum canopy area (m², ground cover fraction over time series), 3) plant population (from 

manual counts), and yield (estimated). Within-plot information may provide additional information 

on plant performance needed to understand the crop responses to factors such as soil variability, 

seedling vigor, weed pressure and germplasm choices. Finer spatial resolution, such as individual 

plant level resolution, is needed to address these issues. 

3.5. Automated BLOB-Based AOM Creation 

A BLOB-based approach was developed to define AOMs for data extraction and analysis in each 

of the three plots. These geo-registered BLOB-based AOMs provide the ability to extract plant data 

from spatiotemporal imagery collected from planting to harvest. 

Virtually all in-season crop information occurred within the areas of the field delineated by the 

end-of-season canopy AOMs. The end-of-season AOMs can be applied backward in time on image 

sequences from the start to the end of the growing season.  
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In terms of the extraction of data from a sequence of images, the accuracy of the data returned 

for each pixel in an image or in an AOM is dependent on the precision attained in the geo-registration 

process. In this analysis, the location of a given AOM in a series of images was subject to positional 

variation of ±5 cm. The 5 cm positional resolution of an AOM should be viewed in light of the fact 

that plant canopies are biological and not rigidly defined objects. Canopies are commonly subject to 

random movement in the range of 5 cm due to wind and other biotic factors. Additionally, for cotton, 

heliotropic and water status-induced leaf movements are common. 

Image-to-image shifting of an AOM in an image can result in “clipping” of the AOM near an 

edge that can result in exclusion of the plant material from the analysis. In terms of the reliable 

extraction of data from AOMs applied to seasonal image sequences, the inclusion of bare soil beyond 

the outside of the AOM (plant material) does not result in errors in the measurement of characteristics 

of plants within the AOM. This potential source of variability can largely be accounted for by 

oversizing the AOM by an amount that will offset “movement” of the AOM in sequential images. 

The end-of-season plot images with the resulting BLOB-based AOMs are shown in Figure 3. A 

total of 1133 BLOBs were defined in the three plots. The number of BLOBs varied among the plots, 

with a total of 317 BLOBs in plot 1, 391 BLOBs in plot 2 and 425 BLOBs in plot 3. Table 2 shows 

summary characteristics of the BLOBs for each plot. 

   

(a) (b) (c) 

Figure 3. Results of the application of the binary large object (BLOB) algorithm to the orthomap red, 

green, and blue (RGB) images of the three plots. A total of 1133 BLOBs were defined in the three plots. 

The number of BLOBs varied among the plots, with a total of (a) 317 BLOBs in plot 1, (b) 391 BLOBs 

in plot 2 and (c) 425 BLOBs in plot 3. 

Table 2. Summary statistics of binary large objects (BLOBs) for three plantings. 

Plot 

Number 

Number of 

BLOBs 

Mean BLOB 

Size (m²) 

Minimum BLOB 

Size (m²) 

Maximum BLOB 

Size (m²) 

1 317 0.93 0.12 6.95 

2 391 0.69 0.03 9.55 

3 425 0.45 0.04 4.640 

3.6. BLOB Color Mapping for Visualization 

Given the relatively large number of BLOB-based AOMs that can be extracted from field plots, 

the interpretation of the data can become potentially complex. The ability to visualize the plant 

characteristics as an initial step in interpretation is potentially useful. The production of color-coded 

images of AOMs in a GIS environment allows for the visualization of agricultural characteristics of 

the plants within BLOB-based AOMs.  
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Figure 4 shows the BLOB images for all three plots with yield indicated in color. The scale is 

common for all three plots and differences (and similarities) in yields between plots are evident. The 

generally higher yield in plot 1 versus plot 2 and the ranges of yield values are evident. Figure 5 

shows a representation of within plot targeted analysis using BLOB-based AOMs in red (a) and a 

visual representation of the selected BLOB-based AOMs in panel (b). Figure 6 shows three plant 

characteristics of the BLOB with the values mapped as colors. Panel (a) shows yield (g) per BLOB, 

panel (b) shows yield (g) per plant and panel (c) shows the number of plants per BLOB. This approach 

makes it possible to visualize the variation in the plants within a BLOB with relative ease. While the 

three images in Figure 6 represent a single point in in the season, it is possible to visualize the changes 

in BLOBs over time by applying color mapping to sequential images.  

The data in Figures 4–6 demonstrate the extraction of yield and plant number data from BLOB-

based AOMs. Using this method, the rates of change in crop characteristics such as flowering, canopy 

cover, and height over a season and could be visually represented as well. 
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Figure 4. Binary large object (BLOB) image of plots 1, 2, and 3 with the yield (g/BLOB) mapped as BLOB color. The same symbology is assigned to all three plots. 
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(a) (b) 

Figure 5. Panel (a), subset of binary large object-based areas of measurement (BLOB-based AOMs) selected for data extraction from plot 2. BLOBs were chosen to 

represent a variety in terms of size and distribution within the plot. Panel (b), shows the BLOBs for comparative purposes. 
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Figure 6. Binary large objects (BLOBs) mapped with color to indicate extracted plant characteristics. 

(a) Yield (g) per BLOB; (b) yield (g) per plant; (c) number of plants per BLOB. 

3.7. BLOB Data Extraction 

The ability to resolve a crop into groupings of plants in a field at a resolution of 5 cm² is 

potentially useful as a tool for monitoring the growth and development down to the single plants 

and groups of plants on a field scale. The distribution of end-of-season BLOB-based AOMs provides 

the ability to go back in time by monitoring the development of a plant, or group of plants, across a 

series of sequential images. 

(a) 

(b) 

(c) 
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To demonstrate the extraction of crop data from sequential BLOB-based AOMs, 10 BLOBs in 

plot 2 were chosen for analysis. Figure 5 shows total of 10 BLOBs that were chosen to represent a 

variable range of the BLOBs in plot 2 with respect to size and shape. The 10 BLOBs chosen for analysis 

are highlighted in red. The goal was to create a collection of BLOBs that were representative of the 

variation in the image. Some were isolated round BLOBs of relatively small size (BLOB #3 with one 

plant in 0.33 m²). Others were oblong of varying lengths and sizes (BLOB #1 with 55 plants in 9.55 

m²). The following characteristics, shown in Table 3, were associated/extracted from the 10 BLOBs; 

area (m²), plants/BLOB, time from planting to maximum canopy area, yield (kg/ha), and yield per 

plant (g/plant). 

Table 3. Targeted analysis of BLOBs in planting 2. 

BLOB 
Area 

(m²/BLOB) 
Plants/BLOB Plants/m² 

Days to 

Maximum 

Canopy 

Canopy 

Expansion 

(cm²/day/plant) 

Yield 

(g/BLOB) 

Yield/m² 

(g) 

Yield 

(g/plant) 

1 9.55 55 5.7 108 16 3353 351 60 

2 2.74 19 6.9 108 13 1613 587 85 

3 0.33 1 3.0 102 32 182 552 182 

4 2.61 11 4.2 109 22 1208 463 110 

5 1.13 3 2.6 117 32 689 610 230 

6 0.74 1 1.4 131 56 340 459 340 

7 1.14 6 5.3 109 17 670 588 112 

8 0.85 3 3.5 108 26 374 440 125 

9 1.77 11 6.2 109 15 757 428 69 

10 3.02 42 13.9 109 7 1457 482 35 

The results in Table 3 demonstrate the extraction of crop characteristics from BLOB-based 

AOMs. The area (m²) of the BLOBs varied from 0.33 to 9.55. The number of plants per BLOB varied 

from 1 to 55 with the area of the BLOBs increasing with the number of plants per BLOB (Figure 7A) 

The number of days required for the canopy to reach its maximum area in each BLOB was generally 

similar and varied from 108 to 131 days at an average of 111 days (Figure 7B). The seasonal rate of 

canopy expansion varied among BLOBs and was a function of the number of plants in the BLOB 

(Figure 7C). As the number of plants in a BLOB increased the rate of canopy expansion declined. The 

yield as grams (g) for each BLOB varied from 182 g for BLOB 3 to 3353g for BLOB 1. The yield (g) as 

a function of the area of the BLOB (m2) (Figure 7D) was variable, with a mean of 523 g/m2, a minimum 

of 427 g/m2 in BLOB 9 and a maximum of 626 g/m2 in BLOB 1. The yield per plant (g) as a function 

of the number of plants in a BLOB varied across the BLOBs, with a mean of 140 g/plant, a minimum 

of 35 g/plant in BLOB 10, and a maximum of 340 g/plant in BLOB 4 (Figure 7E). These results 

demonstrate the data that can be extracted from the BLOB-based AOMs using this approach. It is 

possible that significant insights into plant responses to growth conditions could be derived from a 

BLOB analysis. 
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Figure 7. Agronomic data extracted from 10 binary large object-based areas of measurement (BLOB-

based AOMs). (A) Area of a BLOB as a function of the number of plants per BLOB. (B) Number of 

days required for the canopy to reach its maximum area. (C) The seasonal rate of canopy expansion. 

(D) The yield (g) as a function of the area of a BLOB. (E) The per plant yield as a function of the 

number of plants in each BLOB. 

4. Conclusions 

In this study, the use of a computer framework to define relatively large numbers of AOMs, as 

BLOBs, based on aerial observations of the plants themselves has been demonstrated. The application 

of an automated BLOB-based AOM approach enhances the utility of a UAS, as a tool, to measure 

crop growth and development. The analysis of the plots using BLOB-based AOMs when compared 

to that based solely on AOMs drawn around the plot boundaries suggests that the increase in 

resolution could be useful, particularly in plots that are non-uniform. 

This BLOB-based approach provides a means to resolve even relatively small plots of plants into 

hundreds of elements ranging in size from single to multiple plants. The creation of BLOBs in images 

taken at any point in time and applying those BLOBs to images from other times during a season 

allows for the efficient and reliable extraction of time-series data from a seasonal image sequence. 

The creation of BLOB-based AOMs using end-of-season images limits time series extractions to the 

areas of the field where there are plants at season’s end and thus, where yield was produced. The use 
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of plant-based BLOBs allows the researcher to identify the relatively small number of objects of 

importance from the billions of observed pixels of data in an experimental plot.  

Strengths of the approach include: 

(1) BLOB generation can be automated to a great extent.  

(2) The ability to define AOMs based on end-of-season canopy area provides a means to track 

growth and development from planting to harvest.  

(3) The ability to assign and modify AOMs at any point in the season allows flexibility inherent to 

this method. 

Weaknesses of the approach include: 

(1) Automated AOM selection can produce many AOMs that may require complex data 

management approaches to utilize.  

(2) The number of AOMs that can be extracted from uniform plots is reduced. In uniform plots, the 

AOMs may be limited to the number of rows.  

(3) Between-row canopy closure results in AOMs that cross rows and reduces the scale of 

resolution. 

This BLOB-based AOM approach may be a useful tool in agricultural image analysis. The ability 

to extract data at a single plant level over a season may provide valuable insight into crop responses 

to environmental variation in the field. 
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