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Abstract: Endotoxemia after cardiopulmonary resuscitation (CPR) is associated with unfavorable
outcome. Proprotein convertase subtilisin/kexin type-9 (PCSK–9) regulates low-density lipoprotein
receptors, which mediate the hepatic uptake of endotoxins. We hypothesized that PCSK–9 concentrations
are associated with neurological outcome in patients after CPR. Successfully resuscitated out-of-hospital
cardiac arrest patients were included prospectively (n = 79). PCSK–9 levels were measured on admission,
12 h and 24 h thereafter, and after rewarming. The primary outcome was favorable neurologic function
at day 30, defined by cerebral performance categories (CPC 1–2 = favorable vs. CPC 3–5 = unfavorable).
Receiver operating characteristic curve analysis was used to identify the PCSK–9 level cut-off for optimal
discrimination between favorable and unfavorable 30-day neurologic function. Logistic regression
models were calculated to estimate the effect of PCSK–9 levels on the primary outcome, given as odds
ratio (OR) and 95% confidence interval (95%CI). PCSK–9 levels on admission were significantly lower
in patients with favorable 30-day neurologic function (median 158 ng/mL, (quartiles: 124–225) vs.
207 ng/mL (174–259); p = 0.019). The optimally discriminating PCSK–9 level cut-off was 165 ng/mL.
In patients with PCSK–9 levels ≥ 165 ng/mL, the odds of unfavorable neurological outcome were
4.7-fold higher compared to those with PCSK–9 levels < 165 ng/mL. In conclusion, low PCSK–9 levels
were associated with favorable neurologic function.

Keywords: inflammation mediators; cardiac arrest; cardiopulmonary resuscitation; critical care
outcomes; emergency medicine; lipid metabolism

1. Introduction

Proprotein convertase subtilisin/kexin type 9 (PCSK–9) regulates the expression of low-density
lipoprotein (LDL) receptors (-R) on hepatocytes [1]. PCSK–9 binds to the LDL-R and facilitates the
intracellular degradation of the receptor. Thereby, it reduces hepatic LDL-R expression, LDL uptake
and consequently increases circulating LDL [2]. The discovery that people with gain-of-function
mutations have hypercholesterolemia [3] and those with loss of function mutations have low levels
of LDL and a lower risk to develop coronary events in spite of the presence other non-lipid-related

J. Clin. Med. 2020, 9, 2606; doi:10.3390/jcm9082606 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-1978-7064
https://orcid.org/0000-0003-4390-1362
https://orcid.org/0000-0001-5652-7977
https://orcid.org/0000-0003-2741-6877
http://dx.doi.org/10.3390/jcm9082606
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/9/8/2606?type=check_update&version=2


J. Clin. Med. 2020, 9, 2606 2 of 11

risk factors [4] resulted in the development of anti-PCSK–9 antibodies. Until now, two anti-PCSK–9
antibodies have been marketed: in the pivotal trials, alirocumab and evolocumab both demonstrated
potent lipid-lowering effects and both reduced the risk to develop cardiovascular events in risk
populations [5,6]. Additionally, a recent meta-analysis provides evidence that treatment with one of
the two marketed monoclonal PCSK–9 antibodies, alirocumab and evolocumab, significantly improves
lipid profiles of patients and reduces the risk of non-fatal major adverse cardiovascular events [7].

During infections bacterial endotoxins are bound to lipoproteins and cleared from circulation by
the LDL–R, which was demonstrated for both lipopolysaccharides (LPS) and lipoteichoic acid [8,9].
In this context, a negative effect of high concentrations of PCSK–9 on the clearance of lipopolysaccharide
and lipoteichoic acid was demonstrated in vitro [10,11]. Moreover, Levels et al. demonstrated that
infusion of 2 ng/kg bodyweight LPS decreased total cholesterol concentrations significantly and within
few hours [12]. Pajkrt et al., showed that infusion of recombinant human high-density lipoproteins
abolished the activation of coagulation after infusion of LPS, further indicating the connection of
lipoproteins and bacterial toxins [13].

During experimental endotoxemia, PCSK–9 knock-out mice produced significantly lower levels
of pro-inflammatory cytokines, including interleukin-6 (IL–6) and tumor necrosis factor–α (TNF–α).
This effect was also translatable to healthy volunteers: those with PCSK–9 loss-of-function mutations
had significantly lower levels of pro-inflammatory cytokines TNF–α and IL-6 during experimental
endotoxemia compared to healthy volunteers with PCSK–9 gain-of-function mutations [14]. In septic
shock patients with loss-of function mutations, 28–day survival was significantly improved compared
to those with gain-of-function mutations or without loss-of-function mutations [14]. In agreement
with this observation PCSK–9 levels were associated with organ failure [11]. It is noteworthy that
while inflammation itself increases PCSK–9 levels, acute endotoxemia may decreased them, making
interpretation of these levels complicated [2,15]. Only recently, some authors reported that for patients
suffering from bacteremia [16], from sepsis or from septic shock [17] lower levels of PCSK–9 were
associated with mortality. Thus, these results seem to contradict other studies at first. However,
findings of a human endotoxemia trial could provide a possible explanation: the infusion of 2 ng/kg
LPS in healthy volunteers decreased PCSK–9 levels by approximately 40% before they returned to
baseline [15]. Thus, one could conclude that sepsis or septic shock with long-term presence or repetitive
bouts of bacterial toxins in circulation, e.g., from a non-resolved site of infection, could therefore result
in decreased PCSK–9 levels and are likely to be associated with high mortality. The connection of
PCSK–9, lipoprotein levels and infections is intriguing and the first randomized trials that investigate
the effects of PCSK–9 antibodies on sepsis are currently being undertaken (NCT03869073).

During cardiopulmonary resuscitation (CPR) intestinal permeability increases enabling bacterial
translocation from the gut and causing endotoxemia [18]. These endotoxins contribute to the
inflammatory response during post-cardiac arrest syndrome (PCAS), which was associated with
unfavorable patient outcome [19]. Moreover, recent experimental data suggest that PCSK–9 could
be involved in the release of pro-inflammatory cytokines by macrophages after hypoxia and
reperfusion injury. The authors even suggest that PCSK–9 could alleviate the activation of the
nuclear factor “kappa-light-chain-enhancer” of activated B-cells (NFKB) pathway after experimental
myocardial ischemia [20]. Furthermore, PCSK–9 also interacts with the oxidized–LDL–receptor
(LOX–1), which is a central regulator of inflammation, atherogenesis and apoptosis of endothelial cells.
PCSK–9 promotes LOX–1 expression and uptake of oxidized LDL and consequently contributes to a
pro-inflammatory condition [21]. Thus, inhibition of PCSK–9 may therefore exert anti-inflammatory
and endothelium-protective effects [22].

Based on these data, we hypothesized that PCSK–9 levels may impact on PCAS by alleviating the
inflammatory response caused by (i) influencing the detoxification of translocated bacterial toxins and
(ii) altering the ischemia-reperfusion induced release of pro-inflammatory cytokines of macrophages
and thus be associated with patient outcomes after CPR.
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2. Materials and Methods

The independent review board of the Medical University of Vienna approved the study, which was
performed in accordance with the Declaration of Helsinki. A waiver was obtained for informed consent
at admission, and patients were informed of their study participation on regaining consciousness.

Adults (>18 years) with out-of-hospital cardiac arrest of presumed cardiac cause who had achieved
the return of spontaneous circulation (ROSC) at admission to the intensive care unit (ICU) of the
Department of Emergency Medicine at the Medical University of Vienna, were prospectively included
in this study. All patients suffered from acute coronary syndrome and underwent percutaneous
coronary intervention after admission. No-flow intervals were defined as the time from collapse
to start of CPR, low-flow time as the time from CPR start to sustained ROSC and sustained ROSC
as recovery of spontaneous circulation for more than 20 min. These intervals were established by
immediate, structured interviews with the dispatch center, involved emergency physicians, paramedics,
or bystander who performed the emergency call. All patients have undergone targeted temperature
management with target temperatures between 32 and 34 ◦C for 24 h. Rewarming was performed at
a rate of 0.25–0.5 ◦C. Resuscitation related parameters were analyzed and reported according to the
Utstein recommendations [23,24]. Patient demographics, co-medication, and concomitant diseases
were obtained by chart review. Laboratory data were obtained from the ISO-credited central laboratory
at the General Hospital of Vienna. Blood samples were obtained at admission, 12 h and 24 h after
admission and at rewarming. Ethylendiaminetetraacetic acid (EDTA) anti-coagulated blood was
centrifuged at 2000 g for 10 min. Plasma was obtained and stored at –80 ◦C until batch analysis.
PCSK–9 concentrations were measured by enzyme-linked immunoassays in EDTA plasma (Circulex
human PCSK–9 Elisa, MBL International, Woburn, MA, USA).

2.1. Definition of Multi-Organ Failure (MOF):

Multi-organ failure was defined as a failure of two or more organs within the first 48 h after
admission. Acute kidney failure was defined as an elevation of serum- creatinine ≥ 0.5 mg/dL within
the first 48 h. Acute shock liver was defined as an elevation of glutamate oxalacetate transaminase
(GOT) and glutamate pyruvate transaminase (GPT) > 10–100 fold within the first 48 h.

Respiratory insufficiency was defined as > 0.35 FiO2 (= inspiratory oxygen fraction) and
>0.1 mcg/kg/min epinephrine within the first 48 h.

2.2. Endpoints

The primary outcome was favorable neurologic function at day 30 after resuscitation, assessed
using the cerebral performance category (CPC) 5-points scale (CPC 1–2 = favorable neurologic function
vs. CPC 3–5 = a composite of unfavorable neurologic function and death). CPC was assessed by study
fellows through structured face-to-face or telephone interviews with the patient, the relatives, treating
physicians, or nursing home members.

30-day mortality was the secondary outcome.
We investigated the influence of PCSK–9 levels on these outcomes, but also associations with

inflammatory and other resuscitation specific parameters.

2.3. Statistics

We present continuous data as median ± quartiles, and categorised data as absolute count and
relative frequency. The Mann–Whitney U test was used to test for differences between two independent
group medians. For categorised data we used a chi-squared test. Receiver operating characteristic
curve (ROC) analysis was performed (i) to analyze specificity and sensitivity of PCSK–9 concentrations
to predict neurological outcome and (ii) to identify the PCSK 9 level cut-off for optimal discrimination
between favorable and unfavorable 30-day neurologic function (primary outcome). Additionally,
we performed ROC-analysis for the secondary endpoint 30-day mortality. To estimate the association
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between PCSK–9 levels, potential confounders and primary outcome we used logistic regression
analysis. We included covariables into the models based on clinical reasoning. Continuous variables
were categorised and used as index variables. If applicable, we added a separate category for missing
observations, otherwise no data-imputation for missing data was applied. We tested for linearity and
interactions of the main effects using the likelihood ratio test. The log rank test was used to compare
survival distributions between patients with PCSK–9 levels below and above the identified optimal
cut-off at admission. Cox-regression analysis was used to estimate the association of PCSK–9 levels
and the included co-variables with 30-day mortality and to assess potential confounding. The limited
sample size precluded the calculation of multivariable regression models. Therefore, we calculated
models only including sex and age to present adjusted odds (or hazard) ratios for these two factors.
Moreover, we calculated multiple linear regression models including all covariables, because this
procedure is more apt at dealing with small sample sizes (results are presented in the supplement,
Table S1). For data management and analyses we used Stata 14 (Stata Corp, College Station, Tx, USA)
and IBM SPSS Statistics (Version 26, IBM Corporation, NY, USA). Generally, a two-sided p-value less
0.05 was considered statistically significant.

3. Results

Seventy-nine patients were included in this prospective study, of whom 43 (54%) had an
unfavorable neurologic outcome and 26 patients (33%) died (Table 1). Baseline characteristics according
to the PCSK-9 cutoff of the secondary endpoint 30-day mortality are presented in the supplement
(Table S2).

Table 1. Baseline Characteristics: Categorical data are presented as counts and percentages, continuous
data as medians and interquartile ranges (IQRs).

Baseline Characteristics
Total

(n = 79)

PCSK-9–Levels (ng/mL)

<165
(n = 29)

≥165
(n = 50) p

Gender, male n (%) 61 (77) 25 (86) 36 (72) 0.149
Age, years (IQR) 59 (46–69) 56 (44–67) 59 (51–70) 0.222

Concomitant diseases, n (%)
Hyperlipidemia 20 (25) 5 (17) 15 (30) 0.212

DM II 16 (20) 7 (24) 9 (18) 0.516
Coronary artery disease 16 (20) 7 (24) 9 (18) 0.516

Hypertension 31 (39) 13 (45) 18 (36) 0.442
Smoker 26 (33) 9 (31) 17 (34) 0.788
COPD 8 (10) 3 (10) 5 (10) 0.961
PAD 6 (8) 0 (0) 6 (12) 0.054

Statine-use, n (%) 14 (18) 3 (10) 11 (22) 0.194
CPC 1/2, n (%) 36 (46) 20 (69) 16 (32) 0.002

Witnessed, n (%) 64 (81) 22 (76) 42 (84) 0.276
BLS, n (%) 55 (70) 19 (66) 36 (74) 0.375

Initial shockable rhythm, n (%) 59 (75) 22 (76) 37 (74) 0.855
Time to sustained ROSC, min (IQR) 25 (17–43) 20 (13–41) 29 (20–43) 0.056

No-flow time, min (IQR) 0 (0–3) 0 (0–3) 0 (0–3) 0.846
Low-flow time, min (IQR) 25.0 (16.0–40.5) 20 (10–38) 27 (20–41) 0.064

30-day survival, n (%) 53 (67) 24 (83) 29 (58) 0.025
Core body temperature (admission), ◦C (IQR) 35.3 (34.8–35.8) 35.5 (34.9–35.9) 35.2 (34.7–35.7) 0.314

Blood gas values (admission)
pH (IQR) 7.2 (7.0–7.1) 7.2 (6.9–7.3) 7.2 (7.1–7.2) 0.782

Lactate, mmol/L (IQR) 7.6 (5.2–10.0) 7.2 (4.4–10.6) 7.6 (6.1–9.9) 0.625
Laboratory values (admission)

Hemoglobin, g/dL (IQR) 13.9 (12.4–15.3) 14.1 (12.8–15.4) 13.8 (12.2–15.2) 0.444
Total Platelet count, G/L (IQR) 205 (169–245) 225 (179–250) 202 (163–245) 0.502

Leukocytes, G/L (IQR) 14.3 (10.5–18.9) 14.9 (8.7–19.1) 14.3 (11.0–18.4) 0.499
Troponin-T, ng/L (IQR) 64 (32–244) 130 (38–467) 54 (27–192) 0.153

Prothrombin-time, % (IQR) 77 (65–91) 72 (59–83) 81 (66–91) 0.184
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Table 1. Cont.

Baseline Characteristics
Total

(n = 79)

PCSK-9–Levels (ng/mL)

<165
(n = 29)

≥165
(n = 50) p

TG, mg/dL (IQR) 125 (81–173) 115 (76–154) 133 (83–179) 0.292
Creatinin, mg/dL (IQR) 1.1 (0.9–1.3) 1.2 (0.9–1.3) (0.9–1.3) 0.577

Albumin, g/L (IQR) 38 (34–40) 39 (36–41) 37 (33–41) 0.048
Cholinesterase, kU/L (IQR) 6.7 (5.4–8.0) 6.8 (5.1–8.1) 6.7 (5.5–7.8) 0.718

Total cholesterol, mg/dL (IQR) 163 (133–201) 160 (139–182) 166 (127–212) 0.897
ASAT (GOT), U/L (IQR) 135 (78–226) 135 (75–201) 137 (83–264) 0.600
ALAT (GPT), U/L (IQR) 112 (56–200) 107 (66–164) 127 (54–210) 0.640

Laboratory values
PCSK–9 (admission), ng/mL (IQR) 193 (145–239) 126 (115–147) 223 (194–266) 0.000

PCSK–9 (12 h), ng/mL (IQR) 210 (151–267) 156 (127–209) 239 (204–298) 0.000
PCSK–9 (24 h), ng/mL (IQR) 187 (198–457) 145 (108–213) 202 (178–244) 0.002

NSE (24 h), µg/L (IQR) 33.1 (21.4–54.4) 29.6 (20.3–44.8) 34.7 (22.1–57.6) 0.370
S-100 (24 h), µg/L (IQR) 0.15 (0.09–0.36) 0.10 (0.10–0.16) 0.17 (0.11–0.52) 0.007

CRP (admission), mg/dL (IQR) 0.2 (0.1–0.6) 0.2 (0.1–0.3) 0.3 (0.1–0.8) 0.045
CRP (12 h), mg/dL (IQR) 0.99 (0.6–1.6) 0.8 (0.5–1.1) 1.3 (0.7–2.1) 0.029
CRP (24 h), mg/dL (IQR) 4.2 (2.8–6.1) 3.8 (2.4–5.4) 4.4 (2.8–7.7) 0.270

CPC, cerebral performance category; DM II, diabetes mellitus II; COPD, chronic obstructive pulmonary disease; PAD,
peripheral arterial disease; BLS, basic life support; ROSC, return of spontaneous circulation; PCSK–9, proprotein
convertase subtilisin/kexin type 9; TG, triglycerides; ASAT, aspartate aminotransferase; GOT, glutamate oxalacetate
transaminase; ALAT, alanine aminotransferase; GPT, glutamate pyruvate transaminase; CRP, C-reactive protein;
NSE, neuro-specific enolase.

At admission, PCSK-9 levels were significantly lower in patients with favorable than in those
with unfavorable neurologic function (median 158 (quartiles: 124–225) ng/mL vs. 207 (174–259) ng/mL;
p = 0.019). Overall PCSK-9 levels changed only marginally in the first 24 h, but increased significantly
after rewarming (Figure 1).
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Figure 1. PCSK–9 (left panel) and CRP-levels (right panel) for favorable and unfavorable 30-day
neurologic function. Data are median ± IQR. PCSK–9, proprotein convertase subtilisin/kexin type 9.

3.1. Receiver Operating Characteristic Curve Analysis

The optimal PCSK–9 level cut-off for the discrimination between favorable and unfavorable
neurologic function was 165 ng/mL based on ROC analysis (area under the curve (AUC) = 0.67;
95% confidence interval (CI) 0.55–0.80, Figure 2). Sensitivity for this cut-off was 79% and specificity
was 56%.

The optimal PCSK–9 level cut-off for the discrimination between 30-day survival and 30-day
mortality was 180 ng/mL based on ROC analysis (AUC = 0.67, 95% CI 0.54–0.79, Figure 2) with a
sensitivity of 81% and a specificity of 51%.
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Figure 2. Receiver operating characteristic curve (ROC) analyses. Upper panel: ROC analysis for
unfavorable neurologic outcome, the optimal cutoff for PCSK–9 was <165/≥165 ng/mL. The area under
the curve (AUC) was 0.67 (95% confidence intervals 0.55–0.80). Sensitivity for this cutoff was 79%,
while specificity was 56%. Lower panel: ROC analysis for 30-day mortality, the optimal cutoff for
PCSK–9 was <180/≥180 ng/mL. The AUC was 0.67 (95% confidence intervals 0.54–0.79).

3.2. Neurologic Function

More patients with PCSK–9 concentrations < 165 ng/mL had a favorable neurologic function
(69%) compared to patients having PSCK-9 concentrations ≥ 165 ng/mL (32%, p = 0.001).

In crude unadjusted analysis patients with PCSK–9 levels ≥ 165 ng/mL were more likely to have a
favorable neurological outcome (odds ratio (OR) 4.72; 95% confidence intervals (95%CI) 1.76–12.66;
p = 0.007, Table S1). Likewise, elevated C-reactive protein (CRP) levels (≥0.5 mg/dL) at admission
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were more likely to have a CPC score of 3–5 (OR 3.29; 1.12–9.62; p = 0.03). Expectedly, patients with
multi-organ failure (MOF) were also more likely to have an unfavorable neurological outcome (OR 21.0;
6.53–67.53, p < 0.001). PCSK–9 levels were not associated with the occurrence of MOF.

In multivariable analysis we included PCSK–9 levels, initial heart rhythm, no-flow interval,
CRP levels, age and gender. The size of the sample did not allow for a multivariable analysis containing
all co-variables simultaneously, but multivariable analyses including each relevant co-variable
separately could indicate possible confounding by age (p = 0.041) or initial rhythm (p = 0.031) (Table S1).
We could not identify significant interactions. Statin intake may increase PCSK–9 concentrations [25],
but in our study we did not observe any influence on PCSK–9 levels on the outcome.

Additionally, we performed a multivariable logistic regression analysis including only sex, age
and PCSK–9 levels (≥165 ng/mL). The adjusted odds ratios were 4.46 (95%CI 1.61–12.38) for PCSK–9
and 1.04 (95%CI 1.00–1.08) for age, while sex was eliminated from the model.

3.3. Mortality

Thirty-day mortality was significantly higher in patients with PCSK–9 levels ≥180 ng/mL (18% vs.
46%; p = 0.006) (Figure 3).
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In crude, unadjusted analysis, patients with PCSK–9 levels < 180 ng/mL had a hazard ratio (HR) of
3.52 (95%CI 1.33–9.36, p = 0.012). Expectedly, age (HR 1.04, 95CI% 1.01–1.06, p = 0.015), MOF (HR 6.38,
95%CI 2.21–18.43, p = 0.001), initial shockable rhythm (HR 0.29, 95%CI 0.14–0.62, p = 0.001), and CRP at
admission (HR 1.22, 95%CI 1.07–1.39, p = 0.004) were also associated with mortality. Since the limited
sample size precluded a multivariable analysis including all relevant covariables simultaneously,
similarly to the above-mentioned analysis, we included the relevant co-variables separately, to test for
potential confounding. We cannot exclude confounding by age (p = 0.025), initial shockable rhythm
(p = 0.007) and elevated CRP levels (p = 0.02). Additionally, we calculated a limited multivariable
Cox regression model including only sex, age and PCSK–9 levels (</≥180 ng/mL). However, only age
(HR 1.04; 95%CI 1.01–1.08, p = 0.009) and PCSK–9 levels (HR 3.10, 95% CI 1.16–8.28) remained in the
model, while sex was eliminated in the backward elimination procedure.
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3.4. Additional Analyses

Since both, CRP levels and PCSK–9 levels were associated with neurologic function, we categorized
patients into four groups: low CRP and low PCSK–9, high CRP and low PCSK–9, low CRP and high
PCSK–9, high CRP and high PCSK–9. For PCSK–9 the respective cutoffs for neurologic function
(165 ng/mL) and for 30–day mortality (180 ng/mL) were used. For CRP levels no clear cutoff was
identifiable in ROC analysis and, therefore, the upper limit of normal (reference range < 0.5 mg/dL)
was used. There was a significant difference in the distribution of favorable and unfavorable neurologic
outcome (p = 0.007) and 30–day mortality (p = 0.005) over these four groups (Table 2).

Table 2. Outcome analysis for groups according to PCSK–9 and C-reactive protein levels.

Low CRP
Low PCSK–9

High CRP
Low PCSK–9

Low CRP
High PCSK–9

High CRP
High PCSK–9

Unfavorable neurologic
function (CPC 3–5)

28%
n = 25

50%
n = 4

61%
n = 31

79%
n = 19

30-day mortality 11%
n = 28

40%
n = 5

36%
n = 28

61%
n = 18

In a post-hoc analysis we analyzed whether neuron-specific enolase or the neuron-specific protein
S100, which were available for 52 and 51 patients (measured between 24 and 48 h after cardiac arrest),
respectively, correlate with PCSK–9 levels. However, no such correlation could be identified.

4. Discussion

In this study we analyzed PCSK–9 kinetics in patients successfully resuscitated from out of
hospital cardiac arrest and hypothesized an association with neurologic outcome and 30-day mortality.
We found that high PCSK–9 levels (≥165 ng/mL) at admission were associated with unfavorable 30-day
neurologic function (OR 4.72; 95%CI 1.76–12.66; p = 0.007) and an increased 30-day mortality (PCSK–9
≥180 ng/mL, 15% vs. 46%, hazard ratio 3.52 (95%CI 1.33–9.36, p = 0.012). Moreover, CRP concentrations
were lower in patients with PCSK–9 concentrations < 165 ng/mL at admission and after 12 h.

Loss-of-function mutations but also low PCSK–9 concentrations were associated with lower
mortality in septic patients, while high PCSK–9 levels were associated with organ dysfunction [11,14,26].
The assumed mechanism is a more rapid detoxification of bacterial lipids via higher LDL-R expression
and consequently a reduced inflammatory response [11,14]. Given the similarities between sepsis and
PCAS [27–29], we hypothesized that low PCSK–9 levels may be associated with favorable outcome
after out-of-hospital cardiac arrest and indeed our findings confirm this hypothesis. Moreover, recently
Lee et al. reported that in patients after cardiopulmonary resuscitation, total cholesterol, low-density
lipoprotein, as well as high-density lipoprotein differed between those with favorable or unfavorable
outcome, whereas especially high-density lipoprotein and total cholesterol were associated with clinical
outcomes after regression analysis [30].

Based on the underlying mechanism, we expected lower levels of inflammatory biomarkers in
patients with low PCSK–9 levels. However, we only observed lower CRP levels in the first 12 h after
admission. Of note, the causes for inflammation after CPR are multifactorial including increased
intestinal permeability, but also aspiration pneumonia, ischemic events, comorbidities, etc. Also,
therapeutic interventions including temperature management or pharmacological treatment may affect
the inflammatory response, which in sum may explain the missing association at later time points.
Similarly, to our findings Vaahersalo et al. reported that interleukin-6 levels only at admission, but not
at later time points predicted neurologic outcome [27].

Furthermore, recent data suggest that PCSK–9 could be involved in the release of pro-inflammatory
cytokines after hypoxia and reperfusion [22]. Moreover, PCSK–9 also interacts with LOX-1, the receptor
for oxidized LDL, which is upregulated in ischemic hearts [21,22]. Low levels of PCSK–9 (or inhibition
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of PCSK–9) could therefore exert beneficial effects–Of note, all patients included in this analysis had
an acute coronary syndrome as cause of cardiac arrest. It is therefore possible, that in this selected
cohort the associations of PCSK–9 levels with outcomes are especially pronounced. Thus, our findings
should be confirmed in other cardiac arrest populations, including patients with non-cardiac cause of
cardiac arrest.

PCSK–9 levels changed only marginally during the first 24 h, but increased significantly until
rewarming in both groups, while CRP levels increased constantly. The increase in PCSK–9 levels is
most likely caused by the inflammatory response [2]. Of note, during experimental endotoxemia in
healthy volunteers PCSK–9 levels initially decreased by approximately 40% before they returned to
baseline [15]. This observation ended after 24 h, but there were no increases in PCSK–9 in that period.
Any possible increases in that model would take at least 24 h, which corresponds well with our results.

Astonishingly, the marked difference in neurologic outcome in patients having PCSK–9
concentrations < 165 ng/mL (or < 180 ng/mL for 30–day mortality) cannot be explained by differences in
the “classical” CPR variables: bystander status, basic life-support, no-flow, low-flow intervals, time to
sustained ROSC, and initial heart rhythm differed only marginally. It is noteworthy that only patients
with sustained ROSC at admission were included in the trial.

In multivariate analysis none of the chosen factors remained significant. However, this may also
be caused by the small sample size in the study and should be re-evaluated in a larger sample.

Based on our results, low PCSK–9 levels may have beneficial effects on the neurologic outcome
after CPR. Thus, early pharmacologic inhibition of PCSK–9 may be an interesting treatment option to
improve neurologic survival. Further research may be warranted to elucidate its therapeutic potential.

Limitations: this is a cohort study with its inherent limitations. The population was selected
based on the inclusion and exclusion criteria, and we cannot exclude a potentially associated selection
bias. The effects of targeted temperature management on PCSK–9 levels and metabolism are unknown.
The sample size is limited and analysis in larger populations to confirm our results is warranted.
We did not measure endotoxins or other lipoprotein levels. All patients were treated with target
temperature management, which may influence PCSK–9 levels.

5. Conclusions

In conclusion, lower PCSK9 levels at admission were associated with favorable neurologic outcome
after CPR.
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