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Abstract: Low high-density lipoprotein-cholesterol (HDL-c) is the most remarkable lipid trait both in
mild-to-moderate chronic kidney disease (CKD) patients as well as in advanced renal disease stages,
and we have previously shown that reduced lecithin:cholesterol acyltransferase (LCAT) concentration
is a major determinant of the low HDL phenotype. In the present study, we test the hypothesis that
reduced LCAT concentration in CKD contributes to the progression of renal damage. The study
includes two cohorts of subjects selected from the PLIC study: a cohort of 164 patients with CKD
(NefroPLIC cohort) and a cohort of 164 subjects selected from the PLIC participants with a basal
estimated glomerular filtration rate (eGFR) > 60 mL/min/1.73 m2 (PLIC cohort). When the NefroPLIC
patients were categorized according to the LCAT concentration, patients in the 1st tertile showed the
highest event rate at follow-up with an event hazard ratio significantly higher compared to the 3rd
LCAT tertile. Moreover, in the PLIC cohort, subjects in the 1st LCAT tertile showed a significantly
faster impairment of kidney function compared to subjects in the 3rd LCAT tertile. Serum from
subjects in the 1st LCAT tertile promoted a higher reactive oxygen species (ROS) production in renal
cells compared to serum from subjects in the third LCAT tertile, and this effect was contrasted by
pre-incubation with recombinant human LCAT (rhLCAT). The present study shows that reduced
plasma LCAT concentration predicts CKD progression over time in patients with renal dysfunction,
and, even more striking, it predicts the impairment of kidney function in the general population.

Keywords: lecithin:cholesterol acyltransferase; chronic kidney disease; high-density lipoproteins

1. Introduction

Chronic kidney disease (CKD) has a major public health impact all over the world, due to
its systemic nature [1] and the link with multiple risk factors [2]. The risk of hospitalization and
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overall mortality increases with the decrease of the renal function and the increase in albuminuria,
a sign of advanced renal damage typical of diabetics [3]. While traditional risk factors (diabetes,
hypertension, and hypercholesterolemia) contribute to the elevated cardiovascular risk at early CKD
stages, inflammation, malnutrition, loss of body weight, muscular mass, and cachexia become more
dominant during advanced stages and predict the mortality rate. In this “reverse epidemiology” context,
low cholesterol levels determine the highest rate of cardiovascular morbidity and mortality [4,5].

We have previously demonstrated that reduced high-density lipoprotein (HDL) cholesterol is
the most remarkable lipid trait both in mild-to-moderate CKD patients [6] and in hemodialysis
patients [7]. These initial observations were later confirmed in different populations [8,9]. The uremic
and inflammatory status are known to alter HDL lipid and protein composition; HDL from CKD patients
present with reduced levels of apolipoprotein (apo)A-I, apoA-II, lecithin:cholesterol acyltransferase
(LCAT) and paraoxonase, while pro-oxidant factors such as malondialdehyde, myeloperoxidase,
and symmetric dimethylarginine are increased [7,10–12]. CKD also affects the HDL subclass distribution;
patients with CKD show an increased content of pre-beta HDL (preβ-HDL), owing to the reduced LCAT
activity [7]. All these modifications are believed to compromise some key HDL functions, such as the
ability to promote cholesterol efflux [11,13,14] and to promote endothelial nitric oxide production [12]
and also hamper the anti-inflammatory properties [15]. Interestingly, the HDL profile observed in
CKD patients mirrors the profile found in carriers of genetic LCAT deficiency [16], possibly due
to the acquired LCAT deficiency in CKD [7]. Since the alterations in the lipid/lipoprotein profile
in LCAT-deficient carriers are involved in the pathogenesis of renal disease [17], which represents
the first cause of morbidity and mortality in these subjects [18], we test the hypothesis whether the
reduced LCAT concentration in CKD contributes to the progression of renal damage. Moreover,
we investigate whether low plasma LCAT concentration predicts CKD incidence and evolution in the
general population. Finally, we test in vitro the impact of serum from subjects with low plasma LCAT
concentration on oxidative stress in podocytes and tubular cells.

2. Materials and Methods

2.1. Study Cohorts

The study included two subsets of subjects selected from the PLIC study [6,19–21], an epidemiological
and prospective large survey of the general population of the northern area of Milan conducted at the
Center for the Study of Atherosclerosis, Bassini Hospital (Cinisello Balsamo, Milan, Italy). The study
was approved by the Ethic Committee of the University of Milano (SEFAP/Pr.0003).

The first cohort included 164 patients with CKD at the basal visit (the NefroPLIC cohort).
This population has been previously described in detail [6,22]. Briefly, CKD patients were enrolled
through the outpatient ambulatory of the Unit of Nephrology and Dialysis of Bassini Hospital
and followed-up for 84 months. Patients with any of the following conditions: inflammatory or
infectious disorders, congenital or hereditary kidney diseases, previous dialysis (either peritoneal or
hemodialysis), glomerulonephritis, cardiovascular events in the previous six months, microvascular
complications (either as retinopathy, neuropathy, foot ulcers or gangrenes), previous major cardiac or
vascular surgery, malignant neoplasms, and thyroid dysfunction were excluded from the study.

The second cohort consisted of 164 subjects randomly selected from the PLIC cohort with
comparable age, relative prevalence of men and women, and with a median basal estimated glomerular
filtration rate (eGFR) of 67.51 (60.01 as minimum and 122.03 as maximum) ml/min/1.73 m2.

All subjects provided a written informed consent and all procedures were performed in accordance
with the Declaration of Helsinki.

2.2. Study Endpoints

eGFR was estimated using the Cockroft–Gault formula. For the NefroPLIC cohort, the estimation
of the Modification of Diet in Renal Disease equation was derived as well, in accordance with
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validated guidelines for CKD classification [23]. For the basal characterization of the cohorts and to
study correlation with clinical parameters, both groups were divided by LCAT concentration tertiles.
To evaluate CKD progression, we considered dialysis entry (either peritoneal or hemodialysis) and/or
basal creatinine level doubling as outcomes over time in the NefroPLIC cohort (up to seven years as
maximum follow-up). In order to verify whether reduced LCAT concentration is a specific marker
of the progression of renal disease, independently of other major co-morbidities, we also assessed
the predictive value of reduced LCAT concentration for the following end-points occurring during
follow-up: (1) all-cause mortality (from medical registries); (2) cardiovascular fatal or non-fatal events
(either as atrial fibrillation, heart failure, stroke, transient ischemic attack, coronary-artery by-pass
grafting, peripheral revascularization, amputations for gangrenes or microvascular complications);
(3) composite outcome of dialysis entry and/or creatinine doubling + total mortality; (4) composite
outcome of dialysis entry and/or creatinine doubling + cardiovascular fatal or non-fatal events;
(5) composite outcome of dialysis entry and/or creatinine doubling + cardiovascular fatal or non-fatal
events + all-cause mortality.

In parallel, to study the relation between the LCAT concentration and CKD incidence in the PLIC
cohort, annual eGFR changes (annual variation of mL/min/1.73 m2) and eGFR decline below 60 mL/min
were considered as end-points.

2.3. Biochemistry

Blood and urine samples were collected after overnight fasting. Plasma, serum, and urine samples
were stored at –80 ◦C until analysis. Lipid/apolipoprotein profile, liver enzymes, and cardio-metabolic
markers were determined as previously described [6]. Plasma LCAT concentration was determined by
an immunoenzymatic assay developed in our laboratory [16]. Pre-beta HDL content was determined
by 2-D electrophoresis [24].

First morning urine samples from three different days were collected, and the urinary albumin was
measured using an immunoturbidimetric assay (Cobas Mira Plus Analyzer, Roche, France). The mean
value of the three samples was calculated and normalized relative to the urinary levels of creatinine
according to the guidelines of the American Diabetes Association. Urine samples were cultured at
baseline to exclude infection as a possible etiology of proteinuria.

2.4. In Vitro Studies

Experiments were performed using two different renal cell lines: immortalized human podocytes,
maintained in Dulbecco′s Modified Eagle Medium (DMEM) containing 1g/L of glucose supplemented
with 10% fetal bovine serum (FBS), 1% L-Glutamine, and 1% antibiotics; immortalized human tubular
cells (HK2), cultured in DMEM enriched of nutrient mixture F-12 with 10% FBS, 1% L-Glutamine and
1% antibiotics.

To evaluate reactive oxygen species (ROS) production, both podocytes and tubular cells were
starved in serum-free medium for 2 h and then incubated for 30 min with HEPES buffer containing
5 µM of carboxy-H2DCFDA (Molecular Probes, Invitrogen, Thermo Fisher, Rockford, IL, USA) before
1-h incubation with media containing 2% v/v of serum. Oxidation of the probe was detected by
monitoring fluorescence at 517–527 nm. Data were normalized on total protein content measured with
microBCA assay (Thermo Fisher Scientific, Rockford, IL, USA) on cell lysate.

Podocin gene expression was evaluated by quantitative real time polymerase chain reaction
(RT-PCR). Briefly, RNA was isolated and transcribed to cDNA with the iScriptTM cDNA synthesis
kit (BioRad, Hercules, CA, USA). Gene expression analysis was performed using Sso Advanced
Universal SYBR Green Supermix (BioRad, Hercules, CA, USA) and the expression was normalized to a
housekeeping gene (β-actin).

To test the effect of LCAT in determining the serum ability to promote ROS production, sera from
1st LCAT tertile subjects (n = 11) were incubated at 37 ◦C for 6 h with rhLCAT [24] in the amount
required to reach the final LCAT concentration of 6 µg/mL (identical to the average LCAT concentration
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in 3rd LCAT percentile subjects) or with the same volume of saline. Lipids and apolipoproteins were
evaluated before and after incubation, as described above. After incubation, ROS production induced
by sera was evaluated, as described above, in both cell lines. The effect of serum-free rhLCAT (6 µg/mL)
was also tested.

2.5. Statistical Analyses

Statistical analyses were performed using SPSS® v.23.0 for Windows® (IBM Corporation®,
Chicago IL, USA) software. A Shapiro–Wilk test was performed to verify the normal distribution
of continuous variables. For normally distributed variables, the mean ± standard deviation (SD) is
reported. The t-test was used for comparisons; for non-normally distributed variables, the median and
inter-quartile range (IQR, as the range between the 25th and the 75th percentile around each median
value) are reported, and the Mann-Whitney U nonparametric test was performed. For dichotomous
variables, the chi squared test and relative risk (95% C.I., confidence interval) assessment were
performed. Multiple stepwise Cox-regression models were used to verify in the nefroPLIC cohort
the predictive value of reduced HDL-c or LCAT concentration for the studied outcomes (the forward
selection of co-variates was applied with entry testing (set at 0.05) and removal testing (set at 0.1)
based on the probability of the Wald statistic). Kaplan–Meier survival curves and log-rank tests
compared CKD progression rates by LCAT concentration tertiles and they were compared by both
univariate log-rank test and Cox-regression models setting the 3rd tertile (high LCAT concentration) as
a reference vs. The 2nd and 1st tertile (lower LCAT concentration). A linear regression model was used
to analyze the predictive value of reduced HDL-c or LCAT concentration (as continuous variables)
for eGFR change over follow-up in the PLIC cohort. T-statistics were derived from linear regression
models to estimate the size of the difference relative to the variation in HDL-c or LCAT concentration.
eGFR changes across LCAT tertiles were compared, adjusting for co-variates, by the Analysis of
Co-Variances (ANCOVA) model. Non-normally distributed variables were log-transformed when
included in the multivariable models. The test of collinearity was implemented for each multivariable
regression model to derive the Variation Inflation Factor (VIF) and excluded redundant covariates.

Box plots for data distributions, reporting mean values with 10th to 90th upper and lower
bounds, were generated using GraphPad Prism 5® for Windows® (Graphpad Software Inc.®, La Jolla,
CA, USA).

Results of the in vitro studies were compared by the Kruskall–Wallis test.
For all analyses, p-values < 0.05 were considered statistically significant.

3. Results

3.1. Lower Plasma LCAT Concentration Predicts Disease Progression in Patients with Chronic Kidney Disease

Among the 164 patients of the NefroPLIC cohort, 32 were identified as “fast CKD progression”
patients (13 doubled basal creatinine and 19 entered dialysis during 84 months of follow-up). At the
basal evaluation, these patients showed a metabolic profile similar to CKD patients who did not
double basal creatinine and/or entered dialysis during follow-up (“Slow CKD progression”) (Table 1).
Low HDL-c was confirmed as the unique lipid parameter reduced in patients experiencing faster
CKD progression vs. those with slower progression (43.0 (14.72) vs 52.3 (14.8), p < 0.001, Table 1).
Interestingly, also the plasma LCAT concentration was significantly reduced in patients experiencing
faster CKD progression than in the slower progression group (Figure 1a) and, more importantly,
was not correlated with HDL-c. Since we observed a poor statistical collinearity between the HDL-c
and the LCAT concentration (Variation Inflation Factor (VIF) = 1.772 in a regression model setting
LCAT as the independent variable and HDL-c as the dependent variable; VIF = 1.179 when setting
HDL-c as the independent variable and LCAT as the dependent variable), we were thus prompted to
investigate which was the most predictive parameter for faster CKD progression.
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Table 1. Clinical and biochemical characteristics of the CKD cohort.

Entire CKD Cohort Slow CKD Progression Fast CKD Progression p

N 164 132 32
Age (years) 68 (61–75) 68 (59–74) 73 (66–79) <0.001

Gender (men, n (%)) 107 (65.2) 86 (65.1) 21 (65.6) 0.957
BMI (kg/m2) 29.44 (5.46) 29.64 (5.55) 28.67 (5.24) 0.589

Waist/hip 0.970 (0.071) 0.969 (0.069) 0.974 (0.083) 0.568
Systolic Blood Pressure (mmHg) 144 (18) 144 (18) 144 (21) 0.418
Diastolic Blood Pressure (mmHg) 83 (12) 83 (10) 84 (18) 0.283

ACE Inhibitors (n (%), yes) 77 (46.9) 63 (47.7) 14 (43.7) 0.976
ARBs (n (%), yes) 54 (32.9) 43 (32.6) 11 (34.4) 0.609

ACE Inhibitors + ARBs Association (n (%), yes) 31 (18.9) 23 (17.4) 8 (25.0) 0.326
Diuretics (n (%), yes) 59 (35.9) 46 (34.8) 13 (40.6) 0.383

Diuretics + ARBs Association (n (%), yes) 28 (17.1) 21 (15.9) 7 (21.8) 0.421
Beta-Blockers (n (%), yes) 30 (18.3) 28 (21.2) 2 (6.2) 0.064
C-Reactive Protein (mg/L) 0.23 (0.12–0.45) 0.37 (0.12–0.41) 0.43 (0.18–0.51) 0.149

Fasting Glucose Levels (mg/dL) 126.5 (100.0–157.5) 132.0 (103.0–165.0) 112.5 (94.0–147.0) 0.044
Glycated Hemoglobin (%) 6.6 (6.1–7.4) 6.8 (6.2–7.4) 6.2 (6.0–6.9) 0.104

OGLT (n (%), yes) 70 (42.7) 60 (45.4) 10 (31.2) 0.145
OGLT Vintage Before Basal Evaluation (months) 84 (36–180) 84 (36–180) 120 (31–168) 0.952

Insulin Analogues (n (%), yes) 27 (16.4) 23 (17.4) 4 (12.5) 0.500
Insulin Analogues Vintage Before Basal Evaluation (months) 24 (12–120) 24 (12–120) 48 (7–108) 0.846

Creatinine (mg/dL) 1.52 (1.00–2.02) 1.30 (0.90–1.80) 2.77 (1.8–4.1) <0.001
eGFR (mL/min/1.73 m2) 44.65 (30.00–68.46) 49.42 (35.06–71.23) 19.55 (16.01–35.63) <0.01

Urinary Creatinine/Albumin (mg/g) 6.68 (1.74–36.14) 5.55 (1.56–26.61) 39.93 (2.74–276.73) 0.004
Urinary Albumin (mg/L) 33.66 (10.30–228.33) 28.06 (9.85–174.85) 434.53 (47.80–1049.55) 0.001

Blood Urea Nitrogen (mg/dL) 52.00 (40.00–82.00) 49.85 (38.02–69.52) 98.50 (61.67–127.77) <0.001
Calcium (mmol/L) 2.36 (2.30–2.44) 2.36 (2.30–2.44) 2.35 (2.24–2.43) 0.543

Phosphorous (mmol/L) 1.09 (0.94–1.20) 1.05 (0.94–1.18) 1.21 (1.05–1.33) 0.005
Total Cholesterol (mg/dL) 201.5 (46.2) 197.2 (43.4) 217.8 (54.8) 0.133

Triglycerides (mg/dL) 136.0 (88.0–187.0) 128.0 (87.2–182.0) 143.5 (101.7–223.0) 0.061
LDL-Cholesterol (mg/dL) 120.9 (42.0) 116.6 (38.7) 136.3 (51.2) 0.086
HDL-Cholesterol (mg/dL) 50.40 (15.22) 51.94 (14.60) 44.40 (15.07) 0.010

Non-HDL-Cholesterol (mg/dL) 151.1 (46.8) 145.2 (43.5) 173.4 (53.9) 0.013
Apolipoprotein A-I (mg/dL) 147.0 (131.0–164.0) 148.0 (132.0–166.0) 143.5 (121.5–152.7) 0.043
Apolipoprotein B (mg/dL) 127.0 (111.0–146.0) 126.0 (111.0–142.0) 130.5 (114.2–169.5) 0.385

Hypolipidemic Treatments, Statins (n, yes) 57 (34.5) 50 (37.8) 7 (21.8) 0.152
Hypolipidemic Treatments, Fibrates (n, yes) 7 (4.2) 5 (3.7) 2 (6.2) 0.484

Anti-Platelets (ASA) (n, yes) 64 (39.0) 54 (40.9) 10 (31.2) 0.444

Data are reported as mean (SD) or median (Interquartile Range, as the range between the 25th and the 75th percentile around each median value). p-values indicate differences between the
two chronic kidney disease (CKD) groups. “ARBs”: angiotensin receptor blockers; ‘’ASA”: acetilsalycilic acid or other anti-platelets; “OLGT”: Oral glucose lowering treatments; ‘’BMI”:
body mass index; ‘’ACE”: angiotensin-converting enzyme; ‘’eGFR”: estimated glomerular filtration rate; ‘’LDL”: low density lipoprotein; ‘’HDL”: high-density lipoprotein.
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To investigate if the LCAT concentration could predict the impairment of kidney function in the 

general population, we selected a subset of subjects with basal eGFR over 60 mL/min/1.73 m2 among the 

Figure 1. Low plasma lecithin:cholesterol acyltransferase (LCAT) concentration predicts fast chronic
kidney disease (CKD) progression over time. (a) Differences in plasma LCAT concentration in CKD
patients divided according to fast or slow CKD progression. CKD progression was defined as entry in
dialysis and/or doubling of creatinine levels. p = 0.002 is derived from the non-parametric comparison
test; data are presented as box-plots reporting median and 10th–90th percentile around the median.
(b–g) Kaplan–Meier survival analyses showing an cumulative event rate in the CKD cohort divided
by LCAT tertiles (1st low; 3rd high) for (b) dialysis entry and/or creatinine plasma levels doubling,
(c) all-cause mortality, (d) cardiovascular fatal or non-fatal events, (e) composite outcome of dialysis
entry and/or creatinine doubling and all-cause mortality, (f) composite outcome of dialysis entry and/or
creatinine doubling and cardiovascular fatal or non-fatal events, (g) composite outcome of dialysis
entry and/or creatinine doubling, cardiovascular fatal or non-fatal events, all-cause mortality. p-values
are derived from log-rank test.

Cox regression model adjusted by age, gender, body mass index (BMI), systolic/diastolic
blood pressure, anti-hypertensive treatments, glucose, glucose lowering treatments, albuminuria,
total cholesterol, triglycerides, and lipid lowering treatments showed that reduced HDL-c is predictive
of faster CKD progression (HR = 1.078 (1.016–1.143), p = 0.013). However, when also the LCAT
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concentration was included in the model, the reduction of HDL-c was of borderline statistical
significance in predicting faster CKD progression (HR = 1.062 (0.999–1.129), p = 0.055) (Table S1).
Vice versa, 1 µg/mL reduction in LCAT concentration predicted by 0.78 with up to a 3.39 times higher
risk of dialysis entry and/or creatinine doubling, even when HDL-c was included in the model among
other co-variates (HR = 2.370 (1.278–4.396), p = 0.006) (Table S2), suggesting that a reduced LCAT
concentration independently predicts faster CKD progression beyond the contribution of low HDL-c.

It is worth noting that reduced LCAT concentration specifically predicted faster CKD progression
and worse disease-related prognosis, as a 1 µg/mL reduction in LCAT concentration was predictive
of an increased risk of a composite outcome of all-cause mortality and faster CKD progression
(HR = 1.742 (1.060–2.864), p = 0.029), while it was not predictive for all-cause mortality alone (HR = 1.058
(0.487–2.297), p = 0.887) or for the occurrence of cardiovascular fatal or non-fatal events alone (HR = 0.622
(0.366–1.057), p = 0.079) (Table S2).

In addition, to verify whether the predictive value of the reduced LCAT concentration was also
independent of other metabolic and disease-related risk factors, we divided the cohort into tertiles of
LCAT concentration, and no statistical differences in all the tested parameters was observed (Table 2).
Of note, patients with the lowest LCAT concentration (1st tertile) at the basal evaluation showed
the highest event rate of dialysis entry and/or creatinine doubling during follow-up (Figure 1b),
composite outcome of dialysis entry and/or creatinine doubling, and all-cause mortality (Figure 1e).

Table 2. Clinical and biochemical characteristics of the CKD cohort per LCAT tertiles.

LCAT Tertiles

LCAT (µg/mL) (Mean (Range))
1st

(n = 54)
3.65 (3.16–3.95)

2nd
(n = 55)

4.91 (4.60–5.18)

3rd
(n = 55)

6.13 (5.80–647)
pTREND

Age (years) 68 (62–71) 70 (64–75) 66 (58–75) 0.232
Gender (men, n (%)) 39 (72.2) 34 (61.3) 34 (61.3) 0.421

BMI (kg/m2) 29.22 (25.68–33.36) 27.91 (24.87–32.23) 27.88 (25.71–32.38) 0.480
Waist/hip 0.97 (0.07) 0.95 (0.07) 0.98 (0.07) 0.275

Systolic Blood Pressure (mmHg) 145 (131–160) 140 (130–155) 140 (130–160) 0.620
Diastolic Blood Pressure (mmHg) 80 (80–90) 80 (80–90) 85 (80–90) 0.266

ACE Inhibitors (n (%), yes) 24 (44.4) 26 (47.3) 27 (49.1) 0.973
ARBs (n (%), yes) 14 (25.9) 19 (34.5) 21 (38.2) 0.495

ACE Inhibitors + ARBs Association (n (%), yes) 8 (14.8) 10 (18.1) 13 (23.6) 0.518
Diuretics (n (%), yes) 18 (33.3) 22 (40) 19 (34.5) 0.815

Diuretics + ARBs Association (n (%), yes) 7 (13.0) 10 (18.1) 11 (20.0) 0.627
Beta-Blockers (n (%), yes) 6 (11.1) 12 (21.8) 12 (21.8) 0.313
C-Reactive Protein (mg/L) 0.26 (0.15–0.50) 0.28 (0.10–0.49) 0.19 (0.11–0.40) 0.341

Fasting Glucose Levels (mg/dL) 135.5 (101.0–174.5) 123.0 (102.0–159.0) 123.0 (99.0–154.0) 0.777
Glycated Hemoglobin (%) 6.55 (6.10–7.47) 6.60 (6.00–7.40) 7.00 (6.30–7.55) 0.324

OGLT (n (%), yes) 20 (37.1) 26 (47.2) 24 (43.6) 0.549
OGLT Vintage (Months Before Basal Evaluation) 72 (36–174) 78 (36–210) 90 (27–180) 0.666

Insulin Analogues (n (%), yes) 6 (11.1) 14 (25.4) 7 (12.7) 0.086
Insulin Analogues Vintage (Months Before Basal Evaluation) 60 (9–120) 24 (12–120) 48 (11–156) 0.849

Creatinine (mg/dL) 1.63 (1.09–2.13) 1.16 (0.90–1.90) 1.61 (1.10–1.85) 0.238
eGFR (mL/min/1.73 m2) 47.56 (25.43–48.91) 44.49 (32.82–73.67) 42.24 (29.73–59.36) 0.738

Urinary Creatinine/Albumin (mg/g) 6.14 (2.24–73.90) 8.57 (1.62–28.91) 5.45 (1.21–37.11) 0.663
Urinary Albumin (mg/L) 30.80 (12.50–316.20) 39.43 (10.27–203.00) 32.90 (9.44–225.63) 0.890

Blood Urea Nitrogen (mg/dL) 52.0 (40.5–85.7) 50.9 (37.1–70.8) 56.5 (44.9–86.3) 0.477
Calcium (mmol/L) 2.37 (2.33–2.44) 2.34 (2.27–2.44) 2.37 (2.30–2.43) 0.401

Phosphorous (mmol/L) 1.12 (0.18) 1.05 (0.18) 1.06 (0.18) 0.178
Total Cholesterol (mg/dL) 204.6 (50.3) 200.6 (41.2) 198.4 (47.4) 0.512

Triglycerides (mg/dL) 140.0 (93.2–189.2) 122.0 (88.0–183.0) 143.0 (88.0–176.0) 0.723
LDL-Cholesterol (mg/dL) 123.1 (45.7) 120.7 (36.1) 117.4 (44.3) 0.487
HDL-Cholesterol (mg/dL) 46.0 (37.0–61.0) 49.0 (42.0–60.0) 48.0 (42.0–57.0) 0.469

Non-HDL-cholesterol (mg/dL) 161.0 (120.7–185.5) 147.0 (119.0–175.0) 142.0 (119.0–167.0) 0.436
Apolipoprotein A-I (mg/dL) 146.8 (32.1) 148.8 (27.4) 151.9 (29.7) 0.893
Apolipoprotein B (mg/dL) 130.6 (33.1) 129.8 (28.6) 132.02 (32.5) 0.999

Hypolipidemic Treatments, Statins (n, yes) 19 (35.2) 14 (25.4) 24 (43.6) 0.132
Hypolipidemic Treatments, Fibrates (n, yes) 1 (1.8) 5 (9.1) 1 (1.8) 0.104

Anti-Platelets (ASA) (n, yes) 23 (42.6) 22 (40.0) 19 (34.5) 0.547

Data are reported as mean (SD) or median (interquartile range, as the range between the 25th and the 75th percentile
around each median value). “ARBs”: angiotensin receptor blockers; ‘’ASA“: acetilsalycilic acid or other anti-platelets;
“OLGT”: oral glucose lowering treatments; ”BMI”: body mass index; ‘’ACE”: angiotensin-converting enzyme;
‘’eGFR”: estimated glomerular filtration rate; ‘’LDL”: low-density lipoprotein; ‘’HDL”: high-density lipoprotein;
‘’CKD”: chronic kidney disease; ‘’LCAT”: lecithin:cholesterol acyltransferase.
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3.2. Lower Plasma LCAT Concentration Predicts Impairment of Kidney Function in General Population

To investigate if the LCAT concentration could predict the impairment of kidney function in
the general population, we selected a subset of subjects with basal eGFR over 60 mL/min/1.73 m2

among the PLIC study cohort which were matched by age and gender with the NefroPLIC cohort.
Baseline median filtration rate of the PLIC cohort was 67.51 (63.15–73.27) mL/min/1.73 m2, the cohort
was followed for up to 84 months.

In this subset of the PLIC cohort, 1 µg/mL reduced LCAT concentration was predictive for
0.765 (0.325–1.205) mL/min reduction from basal eGFR (p = 0.001), when the linear regression
model included age, gender, BMI, systolic and diastolic blood pressure, anti-hypertensive treatments,
total cholesterol, triglycerides, HDL-c, lipid lowering drugs, glucose, oral glucose lowering drugs
as co-variates (Table S3a). Vice versa, per 1 mg/dL reduction of HDL-c a mean 0.005 (−0.043–0.033)
reduction in eGFR was predicted (p = 0.787) (Table S3b).

Of note, also in this subset of the PLIC cohort, HDL-c did not correlate with the LCAT concentration;
when we divided this group into tertiles according to plasma LCAT concentration, HDL-c were
54.5 (48.0–67.2) in the 1st (low LCAT) vs. 55.0 (48.2–61.7) in 2nd vs. 59.0 (51.0–68.0) mg/dL in the third
(high LCAT), p = 0.209). Vice versa, subjects in the lowest (1st) LCAT tertile showed higher plasma
triglycerides vs. The others (96.5 (73.2–131.0 mg/dL vs. 98.0 (76.0–133.2) mg/dL of the second and
vs. 84.0 (61.0–106.0) mg/dL of the third tertile, p = 0.039), they were taking more anti-hypertensive
(35.2% vs. 32.14% the 2nd vs. 14.5% the third, p = 0.025) and oral glucose lowering treatments
(16.7% vs. 3.6% vs. 1.8%, p = 0.004) (Table 3). Thus, to verify whether reduced LCAT concentration is
predictive for faster eGFR reduction beyond these patterns of metabolic alterations, we also divided
the subset of the PLIC cohort in LCAT tertiles (Table 3). When the annual eGFR reduction was plotted
according to LCAT tertiles at baseline, subjects in the 1st tertile (mean plasma LCAT concentration of
3.89 µg/mL) showed a significantly faster progression of kidney impairment compared to subjects in
the 3rd tertile (mean plasma LCAT concentration of 6.01 µg/mL) with a mean annual decline of eGFR
of 2.096 (1.283–0.693) mL/min/year vs.0.693 (0.074–1.459) mL/min/year, even after adjusting for age,
gender, systolic/diastolic blood pressure, anti-hypertensive treatments, glucose, oral glucose lowering
therapies, total cholesterol, triglycerides, HDL-c and lipid lowering treatments (Table 4).

Table 3. Clinical and biochemical characteristics of the PLIC cohort at basal visit per LCAT tertiles.

LCAT (µg/mL) (Mean (Range))

Entire Cohort LCAT Tertiles

(n = 165)
4.85 (4.22–5.58)

1st
(n = 54)

3.89 (3.34–4.21)

2nd
(n = 56)

4.82 (4.67–5.09)

3rd
(n = 55)

6.01 (5.00–6.34)
pTREND

Age (years) 68 (66–72) 69 (66–73) 67 (65–72) 69 (66–72) 0.742
Gender (men, n (%)) 26 (48.1) 27 (48.2) 27 (49.1) 0.994

BMI (kg/m2) 26.31 (24.53–28.70) 26.49 (24.37–29.15) 25.85 (24.16–29.25) 26.33 (24.86–28.07) 0.949
Waist/hip 0.89 (0.07) 0.89 (0.07) 0.90 (0.08) 0.89 (0.07) 0.826

Systolic Blood Pressure (mmHg) 135 (120–150) 135 (120–149) 132 (120–150) 140 (120–150) 0.860
Diastolic Blood Pressure (mmHg) 80 (75–80) 80 (76–80) 80 (75–80) 80 (70–80) 0.431

Anti-Hypertensive Treatments (n (%), yes) 45 (27.3) 19 (35.2) 18 (32.14) 8 (14.5) 0.025
C-Reactive Protein (mg/L) 0.19 (0.08–0.39) 0.16 (0.04–0.32) 0.19 (0.09–0.38) 0.20 (0.07–0.41) 0.592

Fasting Glucose Levels (mg/dL) 98.0 (90.0–107.0) 99.0 (90.0–110.2) 96.0 (91.0–104.0) 97.0 (90.0–109.0) 0.614
OGLT (n (%), yes) 12 (7.3) 9 (16.7) 2 (3.6) 1 (1.8) 0.004

OGLT Vintage (Months Before Basal Evaluation) 32(24–80) 24 (22–56) 80; 80 ∗ 80 0.051
Creatinine (mg/dL) 0.91 (0.80–1.03) 0.92 (0.79–1.00) 0.89 (0.79–1.02) 0.96 (0.80–1.08) 0.418

eGFR (mL/min/1.73 m2) 67.51 (63.15–73.27) 68.71 (63.78–74.67) 68.14 (63.74–74.36) 66.52 (62.02–72.05) 0.178
Total Cholesterol (mg/dL) 232.8 (44.94) 223.4 (48.7) 237.2 (45.9) 237.8 (38.8) 0.112

Triglycerides (mg/dL) 95.5 (69.2–123.7) 96.5 (73.2–131.0) 98.0 (76.0–133.2) 84.0 (61.0–106.0) *,† 0.039
LDL-Cholesterol (mg/dL) 153.0 (41.4) 142.0 (42.9) 157.5 (43.0) 158.9 (36.1) 0.080
HDL-Cholesterol (mg/dL) 56.0 (49.0–65.7) 54.5 (48.0–67.2) 55.0 (48.2–61.7) 59.0 (51.0–68.0) 0.209

Non-HDL-Cholesterol (mg/dL) 173.0 (142.2–206.0) 166.0 (134.5–189.2) 180.0 (144.0–213.0) 176.0 (146.0–204.0) 0.133
Apolipoprotein A-I (mg/dL) 153.3 (22.7) 152.3 (21.9) 151.0 (23.9) 157.7 (21.1) 0.160
Apolipoprotein B (mg/dL) 123.1 (35.36) 115.4 (37.3) 126.6 (36.9) 127.4 (31.0) 0.111

Hypolipidemic Treatments, Statins (n, yes) 53 (32.2) 15 (27.8) 19 (33.9) 19 (34.5) 0.717
Anti-Platelets (ASA) (n, yes) 34 (20.6) 12 (22.2) 12 (21.4) 10 (18.2) 0.937

Data are reported as mean (SD) or median (Interquartile Range, as the range between the 25th and the 75th percentile
around each median value). * p < 0.05 vs. 1st LCAT tertile; † p < 0.05 vs. 2nd LCAT tertile; ∗ raw data for n = 2
subjects are reported. ‘’ASA “: Acetilsalycilic Acid or other anti-platelets; ‘’OLGT”: oral glucose lowering treatments;
”BMI”: body mass index; ‘’ACE”: angiotensin-converting enzyme; ‘’eGFR”: estimated glomerular filtration rate;
‘’LDL”: low-density lipoprotein; ‘’HDL”: high-density lipoprotein; ‘’LCAT”: lecithin:cholesterol acyltransferase.
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Table 4. Annual eGFR reduction per LCAT tertiles.

Model 1st Tertile 2nd Tertile 3rd Tertile

1 −2.249 (−1.524– −2.974) −1.273 (−0.562– −1.985) −0.533 (−0.186– −1.251)
(p = 0.018 vs. 1st tertile)

2 −2.260 (−1.550– −2.969) −1.279 (−0.582– −1.976) −0.516 (−0.187– −1.220)
(p = 0.014 vs. 1st tertile)

3 −2.015 (−1.278– −2.752) −1.344 (−0.645– −2.042) −0.684 (−0.043– −1.411)
(p = 0.001 vs. 1st tertile)

4 −2.096 (−1.283– −2.908) −1.260 (−0.522– −1.998) −0.693 (−0.074– −1.459)
p = 0.001 vs. 1st tertile

Data are reported as mean (lower and upper bound around the mean value) of annual estimated glomerular filtration
rate (eGFR) reduction. p-values are derived from ANCOVA (Bonferroni post-hoc) with Model 1: unadjusted;
Model 2: adjusting for age and gender; Model 3: adjusting for age, gender, body mass index (BMI), systolic and
diastolic blood pressure, glucose, total cholesterol, triglycerides, high-density lipoprotein-cholesterol (HDL-c);
Model 4: adjusting for age, gender, BMI, systolic and diastolic blood pressure, anti-hypertensive treatments, glucose,
oral glucose lowering treatments, total cholesterol, triglycerides, HDL-c, hypolipideamic treatments. ‘’LCAT”:
lecithin:cholesterol acyltransferase.

3.3. Serum from Subjects with Low Plasma LCAT Concentration Mediates ROS Production in Renal Cells and
rhLCAT Limits Serum Pro-Oxidative Effect

To test the hypothesis whether low plasma LCAT concentration can contribute to podocyte damage
before the occurrence of changes of renal function, serum-mediated ROS production was tested in
cultured podocytes and tubular cells. Serum was collected from a representative group of subjects
from the subset of the PLIC cohort belonging to the 1st LCAT tertile (n = 11) and compared with serum
obtained from subjects belonging to the 3rd LCAT tertile (n = 11) (Table S4). Serum of subjects in
1st LCAT tertile promoted a significant increase in ROS production in podocytes compared to that
observed with serum from subjects in the 3rd LCAT tertile (Figure 2a); this effect was independent of
HDL-c levels (Spearman correlation r = −0.125, p = 0.615). A similar effect was observed when tubular
cells were incubated with serum from subjects in 1st LCAT tertile or in 3rd LCAT tertile (Figure 2b).
In addition, podocytes incubated with serum from subjects in 1st LCAT tertile had markedly reduced
podocin expression compared to podocytes incubated with serum from subjects in the 3rd LCAT tertile
(1st LCAT tertile 0.78 ± 0.19 vs. 3rd LCAT tertile 1.74 ± 0.56, p = 0.036), suggesting a reduction in
podocyte functionality under low LCAT concentration conditions.
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Figure 2. ROS production in renal cells. Box-plots showing the difference of reactive oxygen species
(ROS) production after incubation with serum from subjects from the 1st and 3rd lecithin:cholesterol
acyltransferase (LCAT) tertiles and with serum from subjects in 1st LCAT tertile incubated with
recombinant human LCAT (rhLCAT) in (a) podocytes and in (b) tubular cells. Data are presented as
box-plots reporting median and 10th–90th percentile around the median. p-values are derived from the
Kruskall–Wallis test for comparison between each group. ROS are represented as fold versus untreated
cells; the detected fluorescence was corrected for total protein and expressed as fold versus fluorescence
corrected for protein content in cells not incubated with serum.
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To prove that low LCAT concentration was responsible for the increased damaging effect of serum
in renal cells, serum from subjects in the 1st LCAT tertile was incubated with rhLCAT [24] to restore a
concentration comparable to that of subjects in the 3rd tertile, thus allowing a proper HDL remodeling.
Then, podocytes and tubular cells were incubated under these conditions (Figure 2). Interestingly,
the addition of rhLCAT to sera from subjects in the 1st tertile reduced serum-mediated ROS production
to a level similar to that observed with sera from 3rd LCAT tertile subjects in podocytes (Figure 2a) and,
even more strikingly, in tubular cells (Figure 2b). The addition of serum-free rhLCAT to podocytes had
a neutral effect on ROS production, thus suggesting that LCAT-induced modifications in lipoproteins,
and specifically in HDL, may be responsible for the observed effect. Indeed, incubation of plasma with
rhLCAT resulted, as expected, in a significant decrease in unesterified cholesterol and in a significant
50% reduction in the preβ-HDL particle content (Table S5).

4. Discussion

The main finding of our study is that the reduced plasma LCAT concentration predicts CKD
progression over time in patients with renal dysfunction, and, even more striking, it predicts the
impairment of kidney function in the general population. This observation extends previous
cross-sectional reports by us and others showing that low HDL-c levels are typically observed
in CKD patients [6,8], and that reduced LCAT concentration is a major determinant of the low HDL
phenotype in CKD [7].

LCAT is a key player in lipoprotein metabolism, being the only enzyme able to esterify cholesterol
in plasma and other biological fluids. LCAT is predominantly synthesized by the liver and it circulates
in plasma bound to HDL, and, to a lesser extent, to apoB-containing lipoproteins. LCAT plays a major
role in HDL maturation and remodeling by esterifying the free cholesterol present in nascent discoidal
HDL particles [25]. Subjects with genetic LCAT deficiency present with largely immature and discoidal
HDL [26] and subjects with genetic LCAT deficiency accumulate in plasma largely immature and
discoidal HDL [26], large discoidal LDL particles, and the abnormal lipoprotein X [18]. The major
clinical complication observed in LCAT deficient subjects is kidney dysfunction; carriers often present
with proteinuria very early in life [27], and they usually develop renal failure with symptomatic edema
and hypertension during the third-fourth decade of life [18]. Plasma lipoprotein alterations have
been related to renal disease [17]; and, indeed, renal disease can reoccur in LCAT deficient cases who
underwent kidney transplantation [28], thus supporting the systemic cause of the renal damage.

We have previously shown that CKD patients have a partial secondary LCAT deficiency [7],
likely due to a down-regulation of hepatic LCAT gene expression [29], which associates with abnormalities
of the HDL phenotype similar to that observed in genetic LCAT deficiency. These abnormalities include
low plasma HDL-c and apoA-I levels, a low level of particles containing apoA-I and apoA-II, and a
high content of discoidal preβ-HDL [7]. This peculiar profile is clearly related to the residual amount
of circulating LCAT, as shown by the gene-dose dependent effect observed for these biomarkers in
carriers of genetic LCAT deficiency [30].

Of note, in our CKD patients, low HDL-c levels and reduced LCAT concentration independently
predicted faster CKD progression. HDL-c and LCAT do not correlate in the present study, differently
from what was observed in end stage renal disease patients [7] but in agreement with the absence
of correlation observed in the general population [31]. The predictive value of the reduced LCAT
concentration was unaffected by the presence of albuminuria, and when apoA-I was included in the
model (Table S6), a finding coupled with lack of correlation between LCAT and basal eGFR, blood urea
nitrogen, albuminuria, or urinary-to-creatinine ratio. Besides, both low HDL-c and LCAT concentration
predicted disease progression in diabetic CKD patients (97 out of 164 from the nefroPLIC cohort) and
renal function worsening in non-diabetic subjects (153 out of 165 from the PLIC cohort) (Table S7).

Taken together, the present findings highlight that the compromised plasma cholesterol
esterification is relevant for CKD progression and renal function impairment even at initial stages of
renal dysfunction. At the same time, these data call for the involvement of LCAT in the development



J. Clin. Med. 2020, 9, 2289 11 of 13

of renal damage. We have shown that sera from subjects with low LCAT concentration, characterized
by an increased unesterified/total cholesterol ratio and accumulation of discoidal preβ-HDL (Table S4),
present with pro-oxidative effects on podocytes and tubular cells and impair podocin expression that
may contribute to the onset and progression of renal dysfunction observed later in these subjects [32].
The causal relation between low LCAT concentration and increased serum-mediated ROS production
was confirmed by the demonstration that in vitro addition to sera in the low LCAT group of a
physiological amount of rhLCAT can correct HDL abnormalities associated with low LCAT levels,
and it reduces serum-mediated ROS production in renal cells. Most importantly, LCAT protective
and anti-oxidant functions are not exerted directly by the enzyme, but result from the modifications
induced by the enzyme in plasma lipoproteins, and specifically on HDL particles. Transient LCAT
overexpression was already shown to be associated with a reduction of oxidative stress in a mouse
model characterized by impaired HDL antioxidant capacity [33].

In conclusion, this is the first study that prospectively addresses the impact of plasma LCAT levels
in predicting renal disease onset and progression. Our data demonstrate that reduced circulating
LCAT levels predict CKD progression at early stages of renal dysfunction independent of changes in
HDL-c levels, supporting the hypothesis that changes in HDL subclass distribution, besides HDL-c
levels [6] contribute to the progression of renal damage. Our in vitro data support the hypothesis that
the pharmacological modulation of LCAT, either with the recombinant protein or with small molecule
activators, can improve the abnormal HDL phenotype in CKD, thus reducing serum pro-oxidative effects
associated with low LCAT. Whether LCAT modulation could also restore the defective functionality
of CKD HDL [12,34,35], thus contributing to an amelioration of the cardiovascular profile of CKD
patients, remains to be determined and should be tested in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/7/2289/s1.
Table S1: Reduced HDL-c predicts faster CKD progression, but dependently from reduced LCAT concentration,
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Lipid levels after incubation of plasma with or without rhLCAT, Table S6: Reduced LCAT concentration predicts
faster CKD progression independently from ApoA-I circulating levels, Table S7: Predictive value of reduced
HDL-c and reduced LCAT concentration for CKD progression and renal function impairment in patients with and
without diabetes.
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