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Abstract: Minimal residual disease (MRD) detection represents a sensitive tool to appropriately
measure the response obtained with therapies for multiple myeloma (MM). The achievement of MRD
negativity has superseded the conventional complete response (CR) and has been proposed as a
surrogate endpoint for progression-free survival and overall survival. Several techniques are available
for the detection of MRD inside (next-generation sequencing, flow cytometry) and outside (PET/CT,
magnetic resonance) the bone marrow, and their complementary use allows a precise definition of the
efficacy of anti-myeloma treatments. This review summarizes MRD data and results from previous
clinical trials, highlights open issues related to the role of MRD in MM and discusses how MRD could
be implemented in clinical practice to inform on patient prognosis and drive therapeutic decisions.
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1. Introduction

In the last two decades, the treatment approach to multiple myeloma (MM) has been redefined by
the development of a number of active compounds of several drug-classes. While only few patients were
able to achieve a complete remission (CR) with conventional chemotherapy, approximately half of treated
patients achieved a CR with multi-drug regimens based on non-cross resistant anti-MM agents such as
immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs) and monoclonal antibodies (mAbs),
with or without high-dose melphalan (HDM) and autologous stem-cell transplantation (ASCT) [1–6].

As compared to non-CR patients, the achievement of a CR has been associated to significantly
longer progression-free survival (PFS) and overall survival (OS) [7,8]. Even in CR patients, however,
treatment intensification with HDM-ASCT and maintenance therapy were associated to better survival
outcomes [9–11].

It is now clear that the real prognostic value of CR relies on the absence of minimal residual
disease (MRD). Since in 2016 the International Myeloma Working Group (IMWG) updated the response
criteria by including new response categories based on the assessment of MRD both inside and outside
the bone marrow [12], interest has emerged in MRD as a surrogate endpoint for survival outcomes and
in its incorporation in clinical trials.

In this review, we discuss how MRD assessment is currently being performed, what previous
studies have taught us about the role of MRD in the treatment of MM, and how MRD could change the
management of MM patients in the next future.
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2. How Can Minimal Residual Disease Be Assessed?

2.1. MRD in the Bone Marrow

As per IMWG new response criteria [12], MRD should first be assessed in the bone marrow. Two
different techniques, next-generation sequencing (NGS) and multiparameter flow cytometry (MFC),
have been largely studied in the last 20 years, and their different characteristics are showed in Table 1.

Table 1. MRD techniques for myeloma recommended by the IMWG [12]: pros and cons.

Next-Generation Sequencing (NGS) Next-Generation Flow (NGF) Imaging (PET/CT)

Availability
Adaptive Biotechnologies (Seattle,
US-WA); commercial service; FDA
approved; academic platforms ongoing

Worldwide Almost all hematological centers

Applicability 90–92% Roughly 100% 85–90%

Baseline assessment Required for identification of
dominant clonotype Not required Required for identification of focal

lesions or extramedullary disease

Processing
requirements

Fresh sample is not required; both
fresh and stored samples

Fresh samples are required;
assessment within 24–36 h NA

Standardization Yes; Adaptive Biotechnologies (Seattle,
US-WA) Yes; EuroFlow Consortium Ongoing [13]

Sample quality control Evaluable by global bone marrow cell
analysis Not possible NA

Quantitative Yes Yes Yes

Sensitivity 1 in 10−5–10−6 1 in 10−5–10−6 Spatial resolution limit of 5 mm
for focal lesions

Turnaround and
complexity

1–2 weeks; bioinformatic support
required

3–4 h; flow cytometry skills
required; automated software
available

80–90 min for the procedure; 30
min for analysis. Requires nuclear
medicine support

Clonal evolution Evaluable by tracking minor
clonotypes Not evaluable Evaluable by focal lesion biopsies

Patchy disease evaluation No No Yes

Costs Roughly 1500 USD/sample Roughly 300 USD/sample Roughly 1350 USD/patient

Abbreviations. IMWG, International Myeloma Working Group; NGS, next-generation sequencing; NGF,
next-generation flow; PET/CT, positron emission tomography/computed tomography; FDA, Food and Drug
Administration; NA, not available; h, hours; min, minutes.

Molecular biology has been a matter of debate for a long time, until the implementation of NGS
allowed to consider MRD as a novel primary endpoint in several ongoing clinical trials. Currently,
NGS surpassed allele-specific oligonucleotides quantitative polymerase chain reaction (ASO-qPCR),
since NGS does not need patient-specific primers and probes and showed higher applicability due to a
better marker identification rate at diagnosis (90–92% with NGS vs. 50–60% with ASO-qPCR), thus
overcoming the failure to detect clonality by ASO-qPCR after IGH somatic hypermutation [14].

The most commonly adopted NGS approach (Clonoseq®, Adaptive Biotechnologies, Seattle,
US-WA) allowed the achievement of high sensitivity levels (up to 1E-06) in several clinical trials [15].

In 2014, Martinez-Lopez et al. have first showed the prognostic value of deep sequencing and its
good concordance with MFC and ASO-PCR (83% and 85%, respectively). Specifically, patients who
were MRD negative by NGS had a significantly longer time to progression (TTP) and overall survival
(OS), as compared with MRD-positive patients. In patients in CR, the TTP was significantly longer
in MRD-negative than in MRD-positive patients (131 vs. 35 months; P = 0.0009) [16]. Perrot et al.
have confirmed these important findings in a larger series of MM patients enrolled in the Intergroupe
Francophone du Myélome (IFM) 2009 trial, in which progression-free survival (PFS) was significantly
prolonged in MRD-negative vs. MRD-positive patients both at pre- and post-maintenance timepoints [17].
Other non-commercial NGS technologies are under investigation: the LymphoTrack® assay (Invitrogen,
US-MA) has been recently validated in a phase II study [18], and the EuroClonality-NGS Consortium
(an international group of 21 academic laboratories experienced in NGS) has recently validated IG/TR
NGS assays and a bioinformatic tool for an academic study on MRD [19].
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Flow cytometry is able to distinguish normal monoclonal plasma cells from aberrant ones by
detecting high or low expression of cell-surface markers and monoclonal expression of intra-cytoplasmic
markers (immunoglobulin light chain) [20]. Historically, 4- to 7-color flow cytometry assays were used
for MRD detection and showed a strong correlation with both PFS and OS [21].

Advanced 8-color 2-tube or 10-color 1-tube assays (next-generation flow, NGF) have now
superseded older techniques. The 10-color 2-tube NGF EuroFlow™ showed a higher sensitivity
vs. conventional 8-color flow-MRD: 25% of patients who were classified as MRD negative by
conventional 8-color flow-MRD were classified as MRD positive by NGF [22]. In a large cohort of MM
patients, Paiva et al. showed that MRD by NGF has a high applicability (99%) and a high prediction
accuracy of both PFS and OS: only 7% of MRD-negative patients (sensitivity 10−6) relapsed, most
of them with extramedullary disease. Paiva et al. also nicely discussed the reasons for such a high
sensitivity: (1) the evaluation of B-cell precursors, mast cells and nucleated red blood cells by using
a standardized approach could detect hemodiluted samples that were considered inadequate for
MRD assessment; (2) a high number of nucleated cells was acquired (~10 millions); (3) the use of the
automatic population separator eliminated the operator-dependent variability [22,23].

Ongoing clinical trials are evaluating NGS vs. MFC/NGF and their correlation. The CASSIOPEIA
trial reported a good concordance between NGS and NGF in ≥CR patients (83.5% in paired samples,
sensitivity of 10−5) [24]. In the FORTE study, NGS was compared to second-generation MFC (both at a
sensitivity of 10−5) in ≥CR patients and revealed an observed agreement rate of 86%. In all but one of
these discordances, MRD positivity was not detected using MFC [25].

2.2. MRD Outside the Bone Marrow

While imaging plays a vital role in the diagnosis of MM, its role in the response assessment to
anti-MM treatments is emerging, also in consideration of the spatial heterogeneity of myeloma conferred
by the patchy infiltration of bone marrow plasma cells and the potential presence of extramedullary
disease [26,27]. In this regard, whole body imaging with positron emission tomography and computed
tomography (PET/CT) or magnetic resonance imaging (MRI) provide important complementary
information about residual disease after therapy.

18Fluorine-fluoro-deoxyglucose (18F-FDG) PET/CT is currently considered the gold standard
for evaluating and monitoring the metabolic response to therapy [28,29]. In an ongoing effort to
standardize standardized uptake value (SUV) cut-offs in MM patients, the Deauville scores [30] proved
to be applicable and representative of patients’ outcomes, identifying the liver background (Deauville
score 4) as the best reference for the definition of a PET-complete metabolic response [13].

However, approximately 10–15% of patients with active MM may have a false-negative PET/CT
result, since the lack of hexokinase enzyme reduces the 18F-FDG avidity of plasma cells. This limits
the applicability of FDG-PET/CT in MM [31] and new PET/CT tracers targeting different metabolic
pathways or receptors expressed by MM cells and acting as molecular imaging biomarkers are currently
being investigated in clinical trials [32,33].

PET/CT has a prognostic value in MM: in patients achieving a CR, FDG-PET/CT negativity after ASCT
predicted a lower risk of progression or death, as compared to patients with metabolically active lesions.
Different studies also confirmed the complementarity of PET/CT and bone marrow techniques [34,35].
Rasche et al. showed that patients who were both Flow-MRD negative and PET/CT negative had the best
PFS outcome, as compared to patients who were Flow-MRD negative but PET/CT positive or vice-versa.
Paiva et al. demonstrated that, despite a long median PFS, a proportion of NGF-negative patients
relapsed with extramedullary disease [23]. In the CASSIOPEIA study [36], a low agreement between
bone marrow MRD techniques and PET/CT were reported. These observations confirmed the importance
of combining bone marrow and imaging techniques to fully evaluate MRD in MM.

MRI is a non-invasive radiological technique that can detect both MM bone involvement, with the
ability to describe the infiltration pattern by plasma cells (normal, focal, diffuse, heterogeneous), and
the presence of extramedullary disease. In older studies, traditional MRI has been shown to be more
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sensitive and specific than FDG-PET/CT for the detection of focal lesions and diffuse infiltration [37,38].
However, focal lesions may take time to disappear even in responding patients, thus making traditional
MRI a less desirable tool for MRD assessment as compared to FDG-PET/CT. The predictive value of the
disappearance of MM lesions detected by MRI and FDG-PET/CT in terms of PFS and OS was assessed
in a prospective study [34]. While the disappearance of positive lesions detected by FDG-PET/CT
predicted better PFS/OS as compared to those of patients with persistent positive lesions, this was
not true for patients assessed by traditional MRI. Diffusion-weighted MRI (DW-MRI) is a functional
technique that provides a quantitative assessment of whole-body tumor burden through the use
of the apparent diffusion coefficient (ADC) [39]. In two retrospective studies comparing DW-MRI
and FDG-PET/CT for the assessment of bone infiltration in MM patients, DW-MRI showed higher
sensitivity in detecting both diffuse infiltration and focal lesions as compared to FDG-PET/CT [40,41].
This new functional technique may challenge the role of FDG-PET/CT in evaluating MRD outside the
bone marrow, particularly in light of the percentage of false-negative patients due to a low-expression
of hexokinase-2 [31].

The use of whole-body imaging techniques to evaluate the presence of MM cells is of uttermost
importance, since MM is characterized by a potential patchy infiltration of the bone marrow by plasma
cells as well as by the presence of extramedullary disease [42]. Furthermore, clonal heterogeneity may
characterize MM, with the coexistence, in the same patient, of multiple clones with different molecular
and biological features [27,43]. In this light, the use of both “inside” (NGF, NGS) and “outside” (MRI,
PET/CT) bone marrow techniques allows the monitoring of MRD in a complementary, rather than
alternative, fashion.

The use of peripheral blood could be an attractive method for MRD detection that overcomes
the site-dependence and invasiveness of repetitive bone marrow aspirations, also tackling the spatial
heterogeneity of MM. In this view, liquid biopsy, which can detect circulating tumor DNA and
circulating tumor cells, would be a promising option.

However, some controversial results have been reported about the concordance between peripheral
blood and bone marrow assessments in terms of MRD results. Available data showed a high concordance
in clonal mutations between circulating tumor cells and bone marrow paired samples, with some
subclonal mutations being found exclusively in circulating tumor cells [44–46]. The NGF assay for
MRD evaluation is also feasible and highly sensitive for the detection and enumeration of circulating
tumor cells in MM, even though a significant proportion of MM cases that are positive in the bone
marrow or at serum immunofixation still had undetectable circulating tumor cells in paired blood
samples (40 and 30%, respectively) [47]. Hence, based on current data, both circulating tumor DNA
and circulating tumor cells may be used for mirroring the genetic landscape of bone marrow-based
disease and recapitulate efficiently the spatial intra-subclonal heterogeneity (particularly for those
patients with extramedullary disease), but efforts are needed to improve standardization and increase
their sensitivity in order to replace bone marrow MRD assessment.

An alternative serological method, the quantitative immunoprecipitation mass spectrometry
(QIP-MS), was developed. This polyclonal antibody-based technology identifies intact immunoglobulins
at a higher sensitivity when compared to standard SPEP, with a moderate concordance with bone
marrow NGF evaluation, thus offering a new way to detect MRD in peripheral blood for MM
patients [48]. The MALDI TOF technique has recently showed higher sensitivity than standard SPEP
and good concordance with bone marrow flow-MRD results (62%) [49].

3. Current Evidence on the Role of MRD Assessment in MM

Several studies support the use of MRD for response monitoring in MM (Table 2). The positive
correlation between MRD negativity and prolonged PFS and OS was shown by two meta-analyses
including several clinical trials in which MRD was assessed with a sensitivity level of 10−4–10−5 by
both immunophenotypic and molecular techniques [21,50].
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Table 2. NDMM patients treated with novel agents: latest selected studies with MRD analysis.

Reference MRD Technique
(Sensitivity) Study Population and Treatment Time Point Assessment MRD Rate Survival Outcomes

Paiva B. et al.
2016 [51]

MFC (10−5) NTE NDMM pts (N = 162)
Sequential or alternating VMP/Rd
cycles

With response ≥VGPR after
9 or 18 sequential or
alternating VMP/Rd cycles

Sequential arm:
9-cycles: 20%;
18-cycles: 46%
Alternating arm:
9-cycles: 19%;
18-cycles: 33%

Median TTP:
NR vs. 15 mo

Oliva S. et al. 2017 [52] MFC (10−5) TE NDMM pts (N = 316)
VCd induction, VMP vs. ASCT
intensification, VRd vs. no
consolidation followed by
lenalidomide maintenance

With response ≥VGPR; pre
and during maintenance

Post consolidation:
76%

3-year PFS:
77% vs. 50%

Ocio E.M. et al.
2018 [53]

NGF (10−5) and
NGS (10−5)

NTE NDMM pts (N = 16)
Isa-VRd induction followed by Isa-Rd
maintenance

Longitudinal NGF 44% (18% at 10−6)
NGS 50% (33% at 10−6)

NA

Zimmerman T. et al.
2018 [54]

MFC (10−4
−10−5) and

NGS (10−6)
TE NDMM pts (N = 76)
4 cycles of KRd induction-ASCT-4
cycles of KRd consolidation and 10
cycles of KRd extended consolidation

Longitudinal MFC:
post consolidation (cycle 8): 82%;
post extended consolidation (cycle 18): 90%
NGS:
post consolidation (cycle 8): 66%;
post extended consolidation (cycle 18): 71%

According to cycle 8,
MRD status by MFC
and/or NGS:
2-year PFS 100% vs. 93%

Perrot A. et al.
2018 [17]

NGS (10−6) TE NDMM pts (N = 509)
8 VRd cycles or 3 VRd + ASCT + 2 VRd
cycles followed by lenalidomide
maintenance

Pre or post maintenance VRd alone arm: 20%
ASCT arm: 30%

Median PFS: NR vs. 29
months

Mateos M.V. et al.
2019 [2,3,55]

NGS (10−5) NTE NDMM pts (N = 706)
- Dara-VMp vs.- VMp arm

Longitudinal Dara-VMp arm: 28%
VMp arm: 7%

NA

Facon T. et al. 2019 [1]. NGS (10−5) NTE NDMM pts (N = 737)
- Dara-Rd arm
- Rd arm

Longitudinal Dara-Rd arm: 24.2%
Rd arm: 7.3%

NA

Gay F. et al. 2019 [56] MFC (10−5) TE NDMM pts (N = 474)
- KCd-ASCT-KCd (arm A, 159);
- KRd-ASCT-KRd (arm B, 158);
- 12 cycles of KRd (arm C, 157).

Longitudinal Arm A: 42%
Arm B: 58%
Arm C: 54%

NA
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Table 2. Cont.

Reference MRD Technique
(Sensitivity) Study Population and Treatment Time Point Assessment MRD Rate Survival Outcomes

Avet-Loiseau H. et al.
2019 [57]

MFC (10−5) and NGS
(10−6)

TE NDMM pts (N = 1085)
- Dara-VTd-ASCT-Dara-VTd - or
VTd-ASCT-VTd

Post induction and post
consolidation

Post induction MFC:
Dara-VTd arm: 35%;
VTd arm: 23%
Post consolidation MFC:
Dara-VTd arm: 64%;
VTd arm: 44%
Post consolidation NGS in evaluable patients:
Dara-VTd arm: 39%;
VTd arm 23%

NA

Voorhees P.M. et al.
2019 [4,5,58]

NGS (10−5) TE NDMM pts (N = 104)
Dara-VRd induction, ASCT and
Dara-VRd consolidation

Longitudinal Post induction: 15%
Post consolidation: 44%

NA

Paiva B. et al.
2020 [23]

MFC (10−4, 10−6) TE NDMM pts (N = 458)
6 VRd induction cycles, ASCT and 2
VRd consolidation cycles

CR patients, after induction,
+ 100 after ASCT, after
consolidation

Post induction: 28%
Post ASCT: 42%
Post consolidation: 45%

PFS: 82% MRD neg vs.
50% MRD pos; 36 mo
OS: 96% MRD neg vs. 88%
MRD pos

Costa L.J. et al.
2019 [59]

NGS (<10−5) TE NDMM pts (N = 81)
Dara-KRd induction, ASCT, Dara-KRd
consolidation

Longitudinal Post induction: 40%
Post ASCT: 73%
Post consolidation: 82%

NA

Landgren O. et al.
2019 [60]

NGS (10−5) TE and NTE NDMM pts (N = 24)
8 Dara-KRd cycles

After 8 cycles 75% NA

Abbreviations. NDMM, newly diagnosed multiple myeloma; MRD, minimal residual disease; MFC, multiparameter flow cytometry; NGF, next-generation flow; NGS, next-generation
sequencing; NTE; non-transplant-eligible; TE, transplant-eligible; N, number; V, bortezomib; M, melphalan; P, p, prednisone; R, lenalidomide; d, dexamethasone; Isa, isatuximab; K,
carfilzomib; ASCT, autologous stem-cell transplantation; Dara, daratumumab; M, melphalan; C, cyclophosphamide; T, thalidomide; VGPR, very good partial response; CR; complete
remission; TTP, time to progression; PFS, progression-free survival; NR, not reached; NA, not available; OS, overall survival; Neg, negative; pos, positive; mo, months.
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The evidence that MRD status stratified patients in CR into 2 groups (CR-MRD negative and
CR-MRD positive, the former having significantly longer PFS and OS) led to the idea that “conventional”
CR was no more a clinically meaningful endpoint. Lahuerta and colleagues demonstrated that
MRD-negative patients by MFC at a sensitivity of 10−4–10−5 in a conventionally defined CR had
better PFS and OS as compared to MRD-positive CR patients. They also showed that the patients
in the latter group had similar outcomes to patients in PR [61]. In light of this observation, MRD
negativity superseded the former CR definition as an endpoint, and the latest clinical trials have
already incorporated the MRD negativity rate as a clinical endpoint.

As reported in other hematologic diseases, also in MM the higher the sensitivity for the definition
of MRD undetectability, the better is the outcome. Both NGS and NGF confirmed this result: patients
who achieved MRD negativity at a sensitivity of 10−6 showed a prolonged PFS, as compared to those
who were MRD negative at 10−5 or higher [17,23].

Whether MRD negativity could abrogate the high risk associated with unfavorable cytogenetic
abnormalities detected by fluorescence in situ hybridization (FISH) or biological characteristics such as
the International Staging System (ISS) is still a matter of debate. The achievement of MRD negativity,
as well as of sustained MRD negativity, is less frequent in high-risk patients than in standard-risk
patients. In the IFM 2009 and EMN02 trials, del(17p)-positive patients achieved MRD negativity in
11% and 7% of cases, respectively [17,52]. However, it was reported that high-risk patients (defined by
ISS, Revised ISS [R-ISS] and FISH) who reached MRD negativity had a survival rate comparable to
that of standard-risk patients. Paiva et al. showed that the TTP in MRD-negative patients was similar
irrespective of FISH status (not reached; P = 0.70), whereas FISH status still had a significant impact on
TTP in MRD-positive patients (standard risk, median TTP 15 months vs. 12 months for MRD-positive
high-risk patients; P = 0.02) [51]. The EMN02 study confirmed this evidence: patients with high-risk
MM at diagnosis (defined by ISS and FISH) and persistent residual disease after treatment had a dismal
outcome (median PFS of 7 months for patients with ISS stage III and 15 months for those with high
risk by FISH) [52]. Similarly, Paiva et al. showed that the initial R-ISS prognostic stratification was
meaningful only in patients with persistent MRD, but not in MRD-negative patients [23].

Many studies demonstrated that the favorable prognosis associated with MRD negativity is
treatment-naïve. Perrot et al. observed no differences in terms of PFS for MRD-negative patients
who received HDM/ASCT vs. those who did not receive ASCT [17]; however, a higher number of
patients in the ASCT group obtained MRD negativity, as compared to the non-ASCT group (79% vs.
65%, P < 0.001) [62]. In transplant-ineligible patients, the addition of daratumumab to the standard
combinations bortezomib-melphalan-prednisone and lenalidomide-dexamethasone increased the rates
of MRD negativity in comparison with standard therapy (27–24% vs. 7%, respectively; P < 0.001 for
both) and prolonged PFS and OS in the overall population. Again, the PFS was similar in MRD-negative
patients, irrespectively of previous treatment [1–3].

In the phase III CASSIOPEIA study, the addition of daratumumab to the standard induction
regimen bortezomib-thalidomide-dexamethasone (D-VTd) induced significantly higher rates of MRD
at 10−5 than VTd alone, with a PFS benefit in patients achieving MRD negativity [6]. Interestingly, the
addition of daratumumab not only prolonged the PFS of MRD-positive patients but also seemed to
benefit MRD-negative patients [6]. A longer follow-up is needed to confirm these data.

The achievement of MRD negativity is a treatment goal that could be pursued not only in
young, transplant-eligible patients, but also in older ones. This was confirmed by the Spanish
PETHEMA/GEM2010MAS65 study, in which age did not negatively affect the outcome of MRD-negative
patients (median TTP was not reached for patients aged 65–75 years vs. >75 years; P = 0.74) [51].

4. Incorporation of MRD Results into Clinical Practice

Despite its incorporation into the IMWG response criteria, there is no current evidence that MRD
can be used to drive therapeutic choices and tailor patient treatment in standard clinical practice.



J. Clin. Med. 2020, 9, 2142 8 of 15

Nonetheless, MRD has been recently adopted as a new primary endpoint in ongoing trials, which will
inform whether MRD status might be used to modulate treatment strategies.

High-dose melphalan plus ASCT is a standard intensification strategy for the treatment of newly
diagnosed (ND)MM patients younger than 70–75 years of age [63]. The role of ASCT has been
frequently challenged in the past, but all studies reported a PFS advantage for patients receiving ASCT,
as compared to no ASCT, although with an inconsistent OS benefit [62,64–66]. Whether MRD status
could be used to decide between a transplant-based or a non-transplant-based approach in an era of
highly effective induction regimens is still a matter of debate. In the IFM 2009 study, no difference in
terms of PFS was found in MRD-negative patients irrespective of treatment received (ASCT or VRD),
although a higher number of patients in the ASCT arm were MRD negative as compared to the VRD arm
(30% vs. 21%) [17]. In the FORTE study, the rate of MRD negativity (10−5, by MFC) was similar (58%
vs. 54%) in patients who received 4 induction cycles with carfilzomib-lenalidomide-dexamethasone
(KRd) followed by ASCT and further 4 KRd consolidation cycles vs. 12 KRd cycles without ASCT [56].

In a recently presented study, 4 daratumumab-KRd (D-KRd) induction cycles succeeded in
converting to MRD negativity (10−5, by NGS) 40% of treated patients. After HDM-ASCT, the MRD
negativity rate increased up to 73% [59], a proportion similar to that observed in another study presented
at the ASH 2019 meeting by Landgren et al. [60], in which 77% of patients who received 8 induction
cycles of D-KRd without transplant were MRD negative (10−5, by NGS). With the development of new
multi-drug regimens, the benefit in terms of response rates conferred by HDM plus ASCT over no
ASCT seemed to decrease, although a long-term follow-up is needed to determine potential differences
in terms of PFS and OS. Altogether, these data suggest the hypothesis that patients who are able to
achieve MRD negativity with the induction therapy may not need HDM-ASCT, thus supporting the
development of controlled trials randomizing patients to ASCT vs. non-transplant-based strategies.
In this light, results from the FORTE study will help determine the future of HDM-ASCT in the
management of young MM patients.

In the context of the therapeutic approach to MM, another open question concerns the need for
maintenance therapy after induction/HDM-ASCT in MRD-negative patients and its optimal duration.
Since MRD negativity at day + 100 after ASCT is associated with prolonged survival [67], it is legitimate
to speculate that MRD-negative patients may not need maintenance therapy after ASCT, thus benefiting
from a treatment-free interval. In the Myeloma XI study, the best outcome in terms of PFS was reported
in MRD-negative patients who still received lenalidomide maintenance. Previous studies also showed
that lenalidomide maintenance can convert a significant number of MRD-positive patients to MRD
negativity (44% in the EMN02 study, 32% In the Myeloma XI study) [52,68]. On the basis of the data
generated so far, it is not yet possible to advise against maintenance therapy for patients who are
MRD negative after ASCT or to encourage treatment discontinuation for those patients who become
MRD negative during maintenance. Results of ongoing clinical trials specifically designed to address
these points are eagerly awaited. In the EMN17 Perseus trial (NCT03710603), patients with sustained
MRD negativity (at least 2 negative samples 12 months apart) who receive maintenance treatment with
daratumumab-lenalidomide have the opportunity to withhold daratumumab maintenance after at least
2 years and continue with lenalidomide only. In the SWOG S1803 (NCT04071457) study comparing
daratumumab-lenalidomide to lenalidomide alone as maintenance after ASCT, patients who are MRD
negative after 2 years of maintenance are randomized to treatment discontinuation vs. continuation,
thus allowing the investigators to address this important issue.

So far, the exact frequency of MRD testing is unknown. MRD monitoring could provide clinically
useful information not only because, as previously reported, MRD-positive patients can be converted
to MRD-negativity during treatment but also because MRD-negative patients can become MRD
positive over time, this being an early sign of relapsing MM. An analysis of MRD kinetics with
serial MRD assessments (every 6 months) during lenalidomide maintenance showed that MRD
reappearance from a previous MRD-negative sample predicted 4 months in advance a biochemical
relapse (i.e., the reappearance of a monoclonal component in serum or urine) and 9 months in advance
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a clinical relapse [69]. In the same study, however, 30% of patients with persistent MRD positivity
did not experience any relapse. From a clinical perspective, these data could help clinicians restart
treatment before the occurrence of clinical relapse, thus preventing the morbidity associated to MM
proliferation [70]. Altogether, this evidence prompts the development of further studies to explore the
role of MRD assessment and kinetics and their correlation with survival outcomes.

Finally, given that MRD negativity is a strong prognostic factor for PFS and OS, another important
open question that needs to be clarified by randomized trials is whether patients who are MRD
positive at a specific time point—such as after HDM-ASCT or consolidation—would benefit from a
treatment switch to non-cross-resistant drugs or from treatment intensification, in order to maximize
the odds of achieving MRD negativity, particularly in light of the promising results obtained with
immunotherapeutic strategies tested in the relapse setting.

Aside from the upfront setting, where the odds of achieving CR and MRD negativity are higher,
MRD data also came from the relapse setting, in which the latest studies, in particular with antibodies
and cellular products, reported unprecedented rates of CR and even of MRD negativity among heavily
pretreated patients (Table 3). The rate of MRD-negative patients (10−5) treated at relapse with an
anti-CD38 mAb (either daratumumab or isatuximab) in combination with IMiDs or PIs ranged between
5% and 30% [71,72]. In a study on the CAR T-cell therapy bb2121, Raje et al. observed an impressive
94% of MRD negativity (NGS, 10−5) among evaluable, heavily pre-treated RRMM patients. Despite
this outstanding result, the median PFS of the study was only 12 months, with many MRD-negative
patients who relapsed despite the achievement of a deep response [73]. Although newer agents allow
relapsed patients to obtain deep responses that are ultimately associated with prolonged survival, these
data suggest that we still need to understand the value of MRD at relapse and how to comprehensively
assess disease response in this setting.

Table 3. RRMM patients treated with novel agents: latest selected studies with MRD analysis.

Reference
MRD

Technique
(Sensitivity)

Study Population and
Treatment

Time Point
Assessment MRD Rate Outcome (mo)

Bahlis N. et al.
2018 [72]

NGS (10−5) RRMM pts (N = 569)
Dara-Rd vs. Rd

Longitudinal 30% vs. 5% Median PFS, MRD neg:
NR vs. 42;
MRD pos: 30 vs. 16

Spencer A. et al.
2018 [74]

NGS (10−5) RRMM pts (N = 498)
Dara-Vd vs. Vd

Longitudinal 12% vs. 2% Median PFS, MRD neg:
NR vs. NR;
MRD pos: NR vs. 16

Richardson P.G.
et al. 2019 [71]

NGS (10−5) RRMM pts (N = 307)
Isa-Pd vs. Pd

Longitudinal 5% vs. 0% NA

Usmani S. et al.
2019 [75]

NGS (10−5) RRMM pts (N = 466)
Dara-Kd vs. Kd

At 12 mo in pts
in CR

13% vs. 1% NA

Topp M.S. et. al.
2020 [76]

MFC (10−4) RRMM pts (N = 42)
AMG420

In ≥CR 50% of pts who
received the MTD

NA

Raje N. et al.
2019 [73]

NGS (10−4)
NGS (10−5)
NGS (10−6)

RRMM pts (N = 33)
Anti-BCMA CAR T
bb2121

Post 1–3 mo
after CAR T cell
infusion

NGS (10−4): 100%;
NGS (10−5): 94%;
NGS (10−6): 19%

NA

Wang B.-Y. et al.
2019 [77]

MFC, 8 colors RRMM pts (N = 5) Longitudinal 68% NA

Madduri D. et al.
2019 [78]

NGS (10−4)
NGS (10−5)
NGS (10−6)

RRMM pts (N = 29)
Anti-BCMA CAR T
JNJ-4528

Day +28 NGS (10−4): 18%;
NGS (10−5): 29%;
NGS (10−6): 53%

NA

Abbreviations. RRMM, relapsed/refractory multiple myeloma; MRD, minimal residual disease; NGS,
next-generation sequencing; MFC, multiparameter flow cytometry; N, number; Dara, daratumumab; R, lenalidomide;
d, dexamethasone; V, bortezomib; Isa, isatuximab; P, pomalidomide; K, carfilzomib; CR, complete response; pts,
patients; MTD, maximum tolerated dose; PFS, progression-free survival; neg, negative; pos, positive; NR, not
reached; NA, not available; mo, months.
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5. Conclusions

Several studies demonstrated that MRD is a strong and reliable prognostic factor in terms of
relapse and survival of MM patients, and efforts are ongoing to validate MRD assessment as a surrogate
endpoint, in order to accelerate the interpretation of clinical trial results. However, a number of open
questions—concerning the optimal technique(s) for MRD assessment, its availability worldwide, the
timing and monitoring frequency and its ability to modify the treatment pathway—suggest that MRD
testing is not yet ready to enter the clinical practice and impact treatment strategies. MRD-based
clinical trials and their results are eagerly needed to fully understand the value of MRD testing in MM
and to demonstrate the validity of using MRD as the main driver of clinical decisions, both in the
upfront and relapsed settings.

Author Contributions: Conceptualization, S.O., R.M. and M.B.; methodology, S.O., R.M. and M.B.; writing—
original draft preparation, R.M and S.O.; writing—review and editing, R.M., S.O., and M.B.; supervision, S.O and
M.B. All authors have read and agreed to the published version of the manuscript, have approved the submitted
version and have agreed to be personally accountable for the author’s own contributions and for ensuring that
questions related to the accuracy or integrity of any part of the work, even ones in which the author was not
personally involved, are appropriately investigated, resolved and documented in the literature.

Funding: No funding was provided for this contribution.

Conflicts of Interest: R.M. has received honoraria from Amgen, Celgene, Takeda and Janssen; has served on the
advisory boards for Janssen. S.O. has received honoraria from Amgen, Celgene and Janssen and has served on the
advisory boards for Adaptive Biotechnologies, Janssen, Amgen and Takeda. M.B. has received honoraria from
Sanofi, Celgene, Amgen, Janssen, Novartis, AbbVie and Bristol-Myers Squibb and has received research funding
from Celgene, Janssen, Amgen, Bristol-Myers Squibb, Mundipharma, Novartis and Sanofi.

References

1. Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.;
Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J.
Med. 2019, 380, 2104–2115. [CrossRef]

2. Mateos, M.-V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.;
Nagy, Z.; Kaplan, P.; et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated
Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [CrossRef] [PubMed]

3. Mateos, M.V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.;
Lucio, P.; Nagy, Z.; et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in
newly diagnosed multiple myeloma (ALCYONE): A randomised, open-label, phase 3 trial. Lancet 2020, 395,
132–141. [CrossRef]

4. Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.;
Silbermann, R.W.; Costa, L.J.; Anderson, L.D.; et al. Depth of Response to Daratumumab (DARA),
Lenalidomide, Bortezomib, and Dexamethasone (RVd) Improves over Time in Patients (pts) with Transplant-
Eligible Newly Diagnosed Multiple Myeloma (NDMM): Griffin Study Update. Blood 2019, 134, 691, [ASH
2019 61st Meeting]. [CrossRef]

5. Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.;
Costa, L.J.; Anderson, L.D.; et al. Daratumumab, Lenalidomide, Bortezomib, & Dexamethasone for
Transplant-eligible Newly Diagnosed Multiple Myeloma: GRIFFIN. Blood 2020. [CrossRef]

6. Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.;
Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before
and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A
randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [CrossRef]

7. Gay, F.; Larocca, A.; Wijermans, P.; Cavallo, F.; Rossi, D.; Schaafsma, R.; Genuardi, M.; Romano, A.;
Liberati, A.M.; Siniscalchi, A.; et al. Complete response correlates with long-term progression-free and
overall survival in elderly myeloma treated with novel agents: Analysis of 1175 patients. Blood 2011, 117,
3025–3031. [CrossRef]

http://dx.doi.org/10.1056/NEJMoa1817249
http://dx.doi.org/10.1056/NEJMoa1714678
http://www.ncbi.nlm.nih.gov/pubmed/29231133
http://dx.doi.org/10.1016/S0140-6736(19)32956-3
http://dx.doi.org/10.1182/blood-2019-123465
http://dx.doi.org/10.1182/blood.2020005288
http://dx.doi.org/10.1016/S0140-6736(19)31240-1
http://dx.doi.org/10.1182/blood-2010-09-307645


J. Clin. Med. 2020, 9, 2142 11 of 15

8. Lahuerta, J.J.; Mateos, M.V.; Martínez-López, J.; Rosiñol, L.; Sureda, A.; de la Rubia, J.; García-Laraña, J.;
Martínez-Martínez, R.; Hernández-García, M.T.; Carrera, D.; et al. Influence of Pre- and Post-Transplantation
Responses on Outcome of Patients With Multiple Myeloma: Sequential Improvement of Response and
Achievement of Complete Response Are Associated With Longer Survival. J. Clin. Oncol. 2008, 26, 5775–5782.
[CrossRef]

9. Mina, R.; Petrucci, M.T.; Corradini, P.; Spada, S.; Patriarca, F.; Cerrato, C.; De Paoli, L.; Pescosta, N.; Ria, R.;
Malfitano, A.; et al. Treatment Intensification With Autologous Stem Cell Transplantation and Lenalidomide
Maintenance Improves Survival Outcomes of Patients With Newly Diagnosed Multiple Myeloma in Complete
Response. Clin. Lymphoma Myeloma Leuk. 2018, 18, 533–540. [CrossRef]

10. Cerrato, C.; Di Raimondo, F.; De Paoli, L.; Spada, S.; Patriarca, F.; Crippa, C.; Mina, R.; Guglielmelli, T.;
Ben-Yehuda, D.; Oddolo, D.; et al. Maintenance in myeloma patients achieving complete response after
upfront therapy: A pooled analysis. J. Cancer Res. Clin. Oncol. 2018, 144, 1357–1366. [CrossRef]

11. Dimopoulos, M.A.; Gay, F.; Schjesvold, F.; Beksac, M.; Hajek, R.; Weisel, K.C.; Goldschmidt, H.; Maisnar, V.;
Moreau, P.; Min, C.K.; et al. Oral ixazomib maintenance following autologous stem cell transplantation
(TOURMALINE-MM3): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet 2019, 393,
253–264. [CrossRef]

12. Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.;
Mateos, M.-V.; et al. International Myeloma Working Group consensus criteria for response and minimal
residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [CrossRef]

13. Zamagni, E.; Nanni, C.; Dozza, L.; Carlier, T.; Tacchetti, P.; Versari, A.; Chauvie, S.; Gallamini, A.; Attal, M.;
Gamberi, B.; et al. Standardization of 18F-FDG PET/CT According to Deauville Criteria for MRD Evaluation
in Newly Diagnosed Transplant Eligible Multiple Myeloma Patients: Joined Analysis of Two Prospective
Randomized Phase III Trials. Blood 2018, 132, 257, [ASH 2018 60th Meeting]. [CrossRef]

14. Avet-Loiseau, H. Minimal Residual Disease by Next-Generation Sequencing: Pros and Cons. Am. Soc. Clin.
Oncol. Educ. B 2016, 35, e425–e430. [CrossRef] [PubMed]

15. Avet-Loiseau, H.; Ludwig, H.; Landgren, O.; Paiva, B.; Morris, C.; Yang, H.; Zhou, K.; Ro, S.; Mateos, M.V.
Minimal Residual Disease Status as a Surrogate Endpoint for Progression-free Survival in Newly Diagnosed
Multiple Myeloma Studies: A Meta-analysis. Clin. Lymphoma Myeloma Leuk. 2020, 20, e30–e37. [CrossRef]

16. Martinez-Lopez, J.; Lahuerta, J.J.; Pepin, F.; Gonzalez, M.; Barrio, S.; Ayala, R.; Puig, N.; Montalban, M.A.;
Paiva, B.; Weng, L.; et al. Prognostic value of deep sequencing method for minimal residual disease detection
in multiple myeloma. Blood 2014, 123, 3073–3079. [CrossRef]

17. Perrot, A.; Lauwers-Cances, V.; Corre, J.; Robillard, N.; Hulin, C.; Chretien, M.L.; Dejoie, T.; Maheo, S.;
Stoppa, A.M.; Pegourie, B.; et al. Minimal residual disease negativity using deep sequencing is a major
prognostic factor in multiple myeloma. Blood 2018, 132, 2456–2464. [CrossRef]

18. Martinez-Lopez, J.; Sanchez-Vega, B.; Barrio, S.; Cuenca, I.; Ruiz-Heredia, Y.; Alonso, R.; Rapado, I.; Marin, C.;
Cedena, M.T.; Paiva, B.; et al. Analytical and clinical validation of a novel in-house deep-sequencing
method for minimal residual disease monitoring in a phase II trial for multiple myeloma. Leukemia 2017, 31,
1446–1449. [CrossRef]

19. Brüggemann, M.; Kotrová, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Fazio, G.; Froňková, E.;
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