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Abstract: In recent years, much progress has been made in the field of antithrombotic drugs in acute 
coronary syndrome (ACS) treatment, as reflected by the introduction of the more potent P2Y12-
inhibitors prasugrel and ticagrelor, and novel forms of concomitant anticoagulation, such as 
fondaparinux and bivalirudin. However, despite substantial improvements in contemporary ACS 
treatment, there remains residual ischemic risk in this group and hence the need for even more 
effective antithrombotic drugs, while balancing antithrombotic efficacy against bleeding risk. This 
review discusses recently introduced and currently developed antiplatelet and anticoagulant drugs 
in ACS treatment. 
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1. Introduction 

Aspirin is the cornerstone of the antithrombotic management of coronary artery disease and 
other atherothrombotic diseases. Whereas venous thromboembolism (VTE) has traditionally been 
treated with heparins and other forms of anticoagulation, it is recognized that arterial thrombi have 
a different composition, with more platelets and less fibrin, and therefore need a different treatment 
strategy [1]. In patients with acute coronary syndrome (ACS), a combination of aspirin, heparin, and 
fibrinolytic agents was previously used. Despite developments in the treatment of ACS, such as 
improvements in percutaneous coronary interventions (PCI), recurrent ischemic events were 
frequent. This prompted the development of more potent platelet inhibitors. The use of glycoprotein 
(GP) IIb/IIIa inhibitors (GPI)—parenteral agents (e.g., abciximab, tirofiban) that reduce platelet 
aggregation by blocking the GPIIb/IIIa receptor on the platelet surface—was found to reduce early 
adverse cardiac events, including angioplasty failure and restenosis [2,3]. However, GPI treatment 
was complicated by high bleeding rates. Another frequent complication of PCI was vessel closure 
due to stent thrombosis. Ticlopidine was an orally-administered antiplatelet agent that proved to be 
effective in improving the patency of intracoronary stents and was subsequently shown to act by 
blocking the platelet P2Y12 receptor, a receptor for adenosine diphosphate (ADP) that plays a central 
role in amplifying platelet activation [4–6]. Ticlopidine was succeeded by clopidogrel, another P2Y12-
inhibitor with fewer side-effects that was shown to reduce myocardial infarction, cardiovascular 
death, and stroke in aspirin-treated ACS patients, including those treated with PCI [7,8]. Nowadays, 
dual antiplatelet therapy (DAPT) consisting of aspirin with a P2Y12-inhibitor is the gold standard for 
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the treatment of ACS and after PCI, whereas GPI use is mostly limited to bail-out indications in cases 
of no-reflow or thrombotic complications (class IIa) [9–11]. 

In recent years, much further progress has been made in the field of antithrombotic drugs in 
ACS, as reflected by the introduction of the more potent P2Y12-inhibitors prasugrel and ticagrelor 
[12,13]. Novel forms of concomitant anticoagulation, which is now routinely added in ACS [9,10], 
have been developed, such as fondaparinux, a pentasaccharide with indirect anti-factor (F)Xa 
activity, and bivalirudin, a direct thrombin inhibitor. However, despite substantial improvements in 
contemporary ACS treatment, there remains residual ischemic risk in this group and hence the need 
for even more effective antithrombotic drugs. On the other hand, patients treated with potent 
antithrombotic drugs are exposed to a substantial bleeding risk. Therefore, the ultimate goal is to 
develop effective antithrombotic drugs with minimal hemorrhagic complications. This review 
discusses recently introduced and currently developed antiplatelet and anticoagulant drugs in ACS. 
The drugs discussed in this review and their mechanisms of action are summarized in Table 1 and 
Figures 1 and 2. 

 
Figure 1. Mechanisms of action of established antithrombotic drugs in the context of the 
atherothrombotic response. Modified from Parker & Storey (Thrombotic Response, ESC Textbook of 
Cardiovascular Medicine 3rd edition, 2018, Oxford University Press). 5HT, 5-hydroxytryptamine 
(serotonin); AA, arachidonic acid; ADP, adenosine diphosphate; ATIII, antithrombin III; ATP, 
adenosine triphosphate; Ca2+, calcium; COX1, cyclo-oxygenase 1; GP, glycoprotein; IXa, activated 
factor IX; P2 × 1, platelet ATP receptor; LMWH, low- molecular weight heparin; P2Y1/P2Y12, platelet 
ADP receptors; PAR, protease activated receptor; PLA2, phospholipase A2; PSGL1, P-selectin 
glycoprotein ligand 1; TF, tissue factor; TPα, thromboxane receptor α; TXA2, thromboxane A2; 
TXA2s, thromboxane A2 synthase; Va, activated factor V; VIIa, activated factor VII; VIIIa, activated 
factor VIII; VASP, vasodilator-stimulated phosphoprotein; vWF, von Willebrand factor; Xa, activated 
factor X; XIa, activated factor XI; XIIa, activated factor XII; XIIIa, activated factor XII. 
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Figure 2. Examples of novel antiplatelet agents and their mechanisms of action. ADP, adenosine 

diphosphate; AMP, adenosine monophosphate; CD, cluster of differentiation; GP, glycoprotein; 
P2Y12, platelet ADP receptor; PAR, protease activated receptor; PDI, protein disulphide isomerase; 
PI3Kbeta, phosphoinositide 3-kinase; TPa, thromboxane receptor a; TxA2, thromboxane A2; vWF, 
von Willebrand factor. 

2. Cangrelor 

As described, DAPT is now the cornerstone of ACS treatment. However, currently used oral 
P2Y12-inhibitors have their limitations. Clopidogrel is a prodrug that needs to be metabolized by 
hepatic cytochrome P450 (CYP) enzymes into its active form and therefore has a delayed onset of 
action. The more potent P2Y12-inhibitors prasugrel and ticagrelor, which are used in contemporary 
ACS treatment, have a faster onset of action as compared to clopidogrel and achieve high levels of 
platelet inhibition within 1–2 h in stable patients [14,15]. However, none of the currently available 
oral P2Y12-inhibitors achieve instant antiplatelet inhibition, which is desirable especially when 
patients undergo PCI. When opioids are administered, which is common in the ST-elevation 
myocardial infarction (STEMI) setting, absorption of prasugrel or ticagrelor is known to be even more 
delayed, which exposes these patients to an increased risk of stent thrombosis, a dangerous 
complication of coronary stenting [16–19]. Parenteral administration of GPI may be considered as an 
alternative strategy to mitigate the risk of acute stent thrombosis in these patients [20], but the use of 
GPI bears a considerable bleeding risk and thus might not be an attractive strategy in all patients [21]. 
Another limitation of all oral P2Y12-inhibitors is the delayed recovery of platelet reactivity after 
discontinuation, which is relevant when anticipating urgent surgery. Recovery of platelet function 
following cessation varies from 3–7 days depending on the type of P2Y12-inhibitor and, in the case of 
clopidogrel, the level of platelet inhibition achieved during treatment [22,23]. 

Cangrelor, an intravenous, reversibly-binding platelet P2Y12 receptor antagonist, has the 
potential to overcome the above-mentioned limitations of the oral P2Y12-inhibitors. It has an ultra-
quick onset and offset of action and therefore appears very suitable for PCI in the acute STEMI setting. 
Due to the intravenous method of administration, cangrelor has high bioavailability and is highly 
potent, with near-complete inhibition of ADP-induced platelet aggregation within 2 min after bolus 
injection, following which its therapeutic effects are maintained throughout infusion [24,25]. After 
discontinuation of cangrelor, platelet reactivity recovers back to normal within 1–2 h, due to a mean 
plasma half-life of 5–10 min. 

Efficacy of cangrelor in clinical practice was assessed in the Cangrelor versus standard therapy 
to achieve optimal management of platelet inhibition (CHAMPION) trials. The CHAMPION-PCI, 
CHAMPION-PLATFORM, and CHAMPION-PHOENIX were phase III trials that compared 
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cangrelor to either clopidogrel or placebo [26–28]. In an individual patient-level meta-analysis of 
these three trials containing 24,910 patients, cangrelor was found to be effective in reducing the 
primary outcome of death, myocardial infarction and ischemia-driven revascularization as well as 
stent thrombosis [29]. In this same meta-analysis, an increase in GUSTO mild bleeding was observed, 
but not GUSTO moderate bleeding or transfusion rates. 

Current European Society of Cardiology (ESC) guidelines indicate that cangrelor may be used 
in P2Y12-inhibitor naïve patients undergoing PCI with stable coronary artery disease, non-ST-
elevation-ACS (NSTE-ACS), or STEMI [9–11]. Of note, the benefit of adding cangrelor to the faster 
acting P2Y12-inhibitors ticagrelor and prasugrel remains unclear, as no phase III trials compared 
cangrelor to these agents [30]. A further caveat is that cangrelor blocks the binding of thienopyridine 
active metabolites to the P2Y12 receptor and so the administration of loading doses of prasugrel or 
clopidogrel should be deferred until the end of the cangrelor infusion [31]. 

In conclusion, cangrelor provides fast-onset and rapidly reversible platelet inhibition and is 
effective and safe to use in PCI compared to clopidogrel or placebo. It is approved in patients 
undergoing PCI who have not been pre-loaded with a P2Y12-inhibitor and are not being treated with 
GPI [32]. In clinical practice, indications might include high-risk patients who undergo PCI without 
proper pre-loading with an oral P2Y12-inhibitor (e.g., patients undergoing ad hoc high-risk PCI or 
STEMI patients presenting with resuscitated cardiac arrest) or opiate-treated STEMI patients in 
whom absorption of oral P2Y12 inhibitors is known to be delayed [33]. Furthermore, cangrelor might 
be used as a ‘bridging’ option in patients with recent PCI who need to undergo surgery after 
discontinuation of oral platelet therapy [22]. Further clinical studies and registries are needed to 
investigate the use of cangrelor in conjunction with ticagrelor or prasugrel. 

3. Novel Antiplatelet Drugs 

Several novel antiplatelet drugs have recently been developed. Some exploit novel targets whilst 
others seek to refine existing drugs in a class. None have yet reached phase III studies in patients with 
ACS, but clearly there are signs of potential for future use should they be subject to rigorous clinical 
testing, including in this population to establish safety and efficacy. 

3.1. Selatogrel 

Selatogrel is a novel, parenterally-active, reversibly-binding P2Y12 inhibitor formulated for 
subcutaneous (SC) administration [34,35]. Its molecular structure is derived from incorporating the 
pyrimidine group of ticagrelor into a family of compounds previously investigated as P2Y12 receptor 
antagonists [36]. Preclinical studies suggested that selatogrel was potent and selective, but also that 
it might have a wider therapeutic index when compared to clopidogrel or ticagrelor with regards to 
increase in bleeding risk whilst maintaining antithrombotic effect [37]. Phase I studies of oral 
selatogrel or prodrug were hindered by poor absorption and palatability [38]. Subsequently, the SC 
preparation of selatogrel was tested and its safety and tolerability demonstrated [39]. The drug has 
rapid onset and a radiolabeled drug study suggested no significant plasma metabolites and that 
elimination was largely faecal, predicting no significant drug–drug interaction [40]. Phase II studies 
in both acute and chronic settings of ischemic heart disease have now been reported with promising 
results. In the largest, 345 patients receiving maintenance antiplatelet therapy for chronic coronary 
syndromes were randomized to receive SC selatogrel, at one of two doses, or placebo [41]. Selatogrel 
reliably and potently inhibited platelet reactivity by 30 min for around 8 h, the effect wearing off by 
24 h. Importantly, selatogrel’s effect appeared additive even in those already receiving oral P2Y12 
inhibitors, and there were no incidences of major bleeding. The drug’s profile of effect was broadly 
similar when tested in 47 patients with acute MI [42]. The clinical setting(s) in which selatogrel may 
find a niche remains to be determined but, given it provides potent, rapid, and reversible P2Y12 

inhibition without the need for intravenous access nor an infusion, it provides a promising option for 
early pre-hospital administration by caregivers or even self-administration by patients during a 
suspected ACS event, circumventing the issue of delayed absorption of oral P2Y12 inhibitors by 
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opioids [16]. Consequently, selatogrel might provide benefits over existing standard care and 
warrants further study in phase III trials. 

3.2. Phosphoinositide 3-Kinase β 

The enzyme phosphoinositide 3-kinase (PI3K) plays a central role in many cellular signaling 
systems through the activation of Akt (also known as protein kinase B), and this includes within 
platelets [43]. The PI3K-1A subtype, including p110α, p110β or p110δ catalytic subunits, is crucial to 
cell signaling during platelet activation by collagen. Moreover, the p110β subunit, the presence of 
which designates the enzyme PI3Kβ, has particularly important roles in, for example, the generation 
of thromboxane A2 upon ADP stimulation and in sustaining function of glycoprotein (GP) IIb/IIIa 
(also known as integrin αIIbβ3), responsible for the common final pathway of platelet aggregation [44]. 
PI3Kβ therefore represents a rational target for antiplatelet therapy, made more attractive by the fact 
that in animal studies its inhibition appears to insignificantly affect primary hemostatic mechanisms 
[45]. 

Several PI3Kβ inhibitors have been developed, but human studies have been limited to date. 
AZD6482 is a selective, potent, and ATP-competitive inhibitor of PI3Kβ that is the active enantiomer 
of a previously developed racemic mixture [46]. In a study of 40 male healthy volunteers randomized 
to receive escalating intravenous doses of AZD6482 or placebo, the drug mildly inhibited platelet 
aggregation responses assessed using a number of methods and agonists. Whilst bleeding time 
correlated positively with plasma drug levels, the strength of the effect was judged to be small. PI3Kβ 
also appears to play an important role in tumor progression and another PI3Kβ inhibitor, orally-
active GSK2636771, has been tested in a first-in-man study of 65 patients with advanced solid organ 
malignancy [47]. However, effects on platelet function were not evaluated. 

3.3. GP IIb/IIIa Outside-In Signaling 

GP IIb/IIIa is of importance in the final common pathway of platelet aggregation. Once activated 
by intracellular processes such as vasodilator-stimulated phosphoprotein dephosphorylation and 
calcium mobilization, surface GP IIb/IIIa forms crosslinks with GP IIb/IIIa on other platelets via 
fibrinogen or von Willebrand factor (vWF) bridges [48]. This can be prevented by the currently-used 
GP IIb/IIIa inhibitors such as tirofiban, abciximab, and eptifibatide [49]. However, GP IIb/IIIa not only 
acts as an effector of platelet aggregation through inside-out signaling but also has a role as a receptor 
in outside-in signaling via numerous pathways leading to amplification of platelet activation, thus 
propagating thrombosis [50]. Inhibition of outside-in signaling, whilst maintaining inside-out 
signaling, has been hypothesized to offer the attractive combination of preserving the integrity of the 
primary hemostatic response whilst preventing the propagation of platelet aggregation that leads to 
vessel occlusion during thrombosis [51]. Targeting the interaction of Gα13 and the IIIa subunit may 
achieve this. A peptide, mP6, incorporating the amino acid ExE motif, has been developed as a 
putative drug, and in animal studies it inhibited the second wave of platelet activation and the 
propagation of thrombosis in an arterial injury model, without prolonging bleeding time [51]. No 
human studies have yet been reported. 

3.4. Conformation-Specific Targeting of GP IIb/IIIa 

Another strategy that has been explored for more targeted inhibition of GP IIb/IIIa only on 
activated platelets is based on exploiting the conformational change that occurs upon activation of 
GP IIb/IIIa, exposing the ligand-binding pocket of the receptor. A single chain antibody that binds to 
GP IIb/IIIa in its active conformation only has been developed and tested in animal models, in which 
it inhibited thrombus propagation without significant effect on the bleeding time [52]. 

3.5. Activated Platelet-Targeted CD39 Therapy 

Building on the idea of targeting activated platelets via conformation-dependent binding of a 
single chain antibody to GP IIb/IIIa, a further strategy has been developed and tested in preclinical 
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studies. This involves linking the single chain antibody to the naturally-occuring ecto-nucleoside 
triphosphate diphosphohydrolase CD39, which therefore degrades adenosine diphosphate (ADP) in 
the locality of the cell membrane of the activated platelet, thus preventing ADP from stimulating 
platelets via P2Y1 and, most importantly, P2Y12 receptors [53]. In human platelet-rich plasma, the 
antibody–CD39 complex was more effective at inhibiting platelet aggregation in response to ADP 
stimulation than adding non-targeted CD39 and, in animal models, it prevented occlusive thrombus 
without prolongation of bleeding time [53]. 

3.6. Inhibitors of Platelet GP VI 

Platelets are exposed to large amounts of collagen during atherothrombotic events, and collagen 
is a key agonist in the initiation and propagation of thrombosis, including through stimulation of 
platelet GP VI receptors [54]. Presently, no clinically approved drugs directly target platelet collagen 
receptors. Recently, however, attention has turned to targeting GP VI. Revacept (soluble dimeric 
glycoprotein VI-Fc fusion protein) has been developed as an inhibitor. In a phase I study of 30 healthy 
volunteers who received a single administration of intravenous revacept, the drug dose-dependently 
inhibited collagen-induced platelet aggregation for up to seven days and appeared safe and well-
tolerated [55]. A phase II double-blind randomized controlled trial (dbRCT) of revacept vs. placebo 
in 158 patients with symptomatic carotid artery stenosis, transient ischemic attacks, amaurosis fugax, 
or stroke was completed in 2018 (NCT01645306) but the full results have not yet been made available. 
A second placebo-controlled dbRCT phase II study of 334 patients undergoing elective PCI, 
Intracoronary Stenting and Antithrombotic Regimen: Lesion Platelet Adhesion as Selective Target of 
Endovenous Revacept (ISAR-PLASTER), has also recently finished and results are awaited [56]. 

Similarly, a humanized antigen-binding fragment (Fab) against GP VI, ACT017, has been 
formulated [57]. This too has now been tested in a phase I study of healthy volunteers, who were 
randomized to receive varying doses of intravenous ACT017 or placebo. Again, the drug was well-
tolerated, appeared safe, and dose-dependently inhibited collagen-induced platelet aggregation [58]. 

3.7. Inhibition of Protein Disulfide Isomerase 

The enzyme protein disulfide isomerase (PDI) has a role in the conformational changes 
associated with the activation of GP IIb/IIIa [59]. Extracellular PDI also promotes thrombin generation 
by activation of factor V, thrombin being a potent activator of both cellular and acellular thrombosis. 
Inhibition of PDI attenuates these processes without significantly affecting bleeding time [60]. 

Isoquercetin is a flavonoid that inhibits PDI and a phase II study has now been reported in the 
setting of prevention of cancer-associated thrombosis, with pharmacodynamic effects seen, such as 
reduction in circulating levels of D-dimer and platelet-dependent thrombin generation [61]. A further 
small phase II/III study is ongoing in this population (NCT02195232), but the effects of isoquercetin 
have not been studied in those with atherothrombotic cardiovascular disease. 

Another PDI inhibitor, HPW-RX40, a derivative of β-nitrostyrene, has also been shown to reduce 
thrombus formation in vitro and in animal studies [62]. 

3.8. Inhibition of Protease-Activated Receptors 

Thrombin, generated both by activation of the coagulation cascade and by platelets via surface 
cell membrane scramblase activity, stimulates platelets via protease-activated receptor (PAR) 1 and, 
at high levels, PAR4 [63]. Previously, PAR1 inhibitors such as vorapaxar showed great promise as an 
antiplatelet agent that in preclinical studies provided potent effect without prolonging bleeding time, 
and the drug was tested in two large double blind randomized controlled trials of patients with 
atherothrombotic cardiovascular disease [64,65]. Although vorapaxar reduced ischemic events and 
became licensed for clinical use, there was a disappointing excess of bleeding risk that has limited its 
widespread adoption. It has been suggested that counterproductive inhibition of PAR1-related 
endothelial cytoprotective signaling pathways resulting in endothelial injury and potentially loss of 
vessel wall integrity that might contribute to the increased bleeding risk [66]. A new class of PAR1 
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inhibitor, the parmodulins, have been developed with the intention of inhibiting selectively PAR1-
dependent pathways relevant to thrombosis but avoiding any anti-cytoprotective effects (34). 
Preclinical studies have been encouraging, but clinical studies would clearly be needed to determine 
if parmodulins have a less detrimental effect on bleeding risk than vorapaxar. 

PAR4 has recently been considered as an alternative target to reduce thrombin-induced platelet 
activation. A novel PAR4 inhibitor, BMS-986120, demonstrated reduced thrombus formation without 
prolongation of the bleeding time in monkeys [67]. In a subsequent phase I study of 40 healthy 
volunteers, a single oral dose of BMS-986120 selectively and reversibly inhibited ex vivo platelet-rich 
thrombus formation upon stimulation with PAR4 agonist peptide in high-shear-stress conditions 
[68]. In contrast to aspirin or clopidogrel, BMS-986120 had no effect in ex vivo low-shear-stress 
conditions, which may be promising for bleeding risk although of course requires in vivo evaluation. 

3.9. Caplacizumab 

A novel antiplatelet agent has recently been licensed for the treatment of adults with acquired 
thrombotic thrombocytopenic purpura (aTTP), when used in combination with plasma exchange and 
immunosuppressive drugs. Caplacizumab is a humanized, bivalent, variable domain 
immunoglobulin fragment, which targets the A1 domain of von Willebrand factor, inhibiting 
interaction with the platelet glycoprotein Ib-IX-V receptor, which has an important role in platelet 
adhesion to damaged sub-endothelium and thus is also a potential target for antiplatelet therapy in 
atherothrombosis. A single intravenous dose of caplacizumab significantly inhibits platelet adhesion, 
as measured with ristocetin assays, for at least 24 h, and subsequent maintenance subcutaneous 
administration continues to exert this effect [69]. Whilst efficacy has been proven for treatment of 
aTTP in a modestly sized phase III study [70], the drug has not yet been investigated in other 
thrombotic conditions. Capcizumab led to significantly greater risk of gingival bleeding and epistaxis 
when compared to placebo. 

4. Anticoagulation in ACS 

In both STEMI and NSTE-ACS, parenteral anticoagulation is recommended [10,11] in addition 
to antiplatelet therapy, and should be administered at the time of diagnosis. It reduces the generation 
and/or action of thrombin and thereby targets another pathway in thrombus generation [71]. Several 
parenteral options are available, which are usually only used as a short course. In NSTE-ACS, the 
selective FXa inhibitor fondaparinux is the anticoagulant of choice in patients who do not proceed 
directly to coronary angiography, based on its favorable efficacy–safety profile [10,72]. In STEMI 
patients and in NSTE-ACS patients who have not been pretreated with anticoagulation, 
unfractionated heparin (UFH) is the most common anticoagulant used during PCI. 

4.1. Enoxaparin in STEMI 

Current ESC guidelines advise that enoxaparin should be considered as an alternative anti-
coagulant agent to UFH [11,9]. Enoxaparin is a low-molecular-weight heparin (LMWH) that inhibits 
FXa and, to a lesser extent, factor IIa (thrombin) [73]. From a mechanistic point of view, enoxaparin 
might be more effective than UFH by targeting a more proximal part of the coagulation cascade. It 
provides a more predictable antithrombotic effect compared with UFH and therefore does not require 
monitoring [74]. Furthermore, it has the ability to provide inhibition of thrombin-induced platelet 
activation [75]. Evidence of a beneficial effect in STEMI stems primarily from the ATOLL trial [76] in 
which STEMI patients undergoing primary PCI were randomized to either enoxaparin or UFH. A 
reduction of the main secondary end point, comprising a composite of death, recurrent ACS, or 
urgent revascularization, was observed with enoxaparin. However, the results of this study might no 
longer be applicable to current practice, as this study was performed before the introduction of 
ticagrelor (almost all patients in the study were treated with clopidogrel) and a high proportion of 
patients received concomitant GPI therapy. Recently, the PENNY PCI study was published [75], 
investigating the pharmacodynamic effects of enoxaparin regimen in primary PCI in contemporary 
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practice. Enoxaparin was administered in a dose of 0.75 mg/kg (bolus) followed by infusion of 
enoxaparin 0.75 mg/kg/6 h. Anti-FXa levels were measured at four time points before, during and 
after PCI. Enoxaparin was found to result in sustained anti-Xa levels during infusion and no bleeding 
complications were observed. Therefore, enoxaparin might be an attractive alternative to UFH in 
primary PCI. In particular, it might be an alternative to cangrelor or GPI for addressing the delayed 
absorption of oral P2Y12-inhibitors, especially in morphine-treated STEMI patients undergoing PCI 
[17]. 

4.2. Non-Vitamin-K-Antagonist Oral Anticoagulants (NOACs) 

The combination of DAPT with oral anticoagulation is known to bear a two- to three-fold higher 
bleeding risk without an apparent benefit in terms of ischemic risk in patients with atrial fibrillation 
undergoing PCI or with ACS [77,78]. However, the introduction of the safer NOACs raised the 
question of whether there might yet be a window of benefit of adding NOAC to DAPT in ACS 
patients without a formal indication for oral anticoagulation. To date, several studies have 
investigated such a strategy. 

Dabigatran on top of DAPT was evaluated in the RE-DEEM study, which was a phase II study 
that included 1861 NSTE-ACS and STEMI patients. Various doses, from 50 mg b.d. to 150 mg b.d., 
were evaluated against placebo and a dose-dependent increase in major or clinically-relevant minor 
bleeding was found in the NOAC groups without significant differences in ischemic outcomes [79]. 
The APPRAISE-2 trial compared apixaban with placebo in 7392 ACS patients with two additional 
high-risk features. Patients were treated with either aspirin monotherapy (16.3%) or aspirin and 
clopidogrel (79%) and were randomized to receive concomitant apixaban in a dose of 5 mg b.d. (or 
2.5 mg b.d. in case of a creatinine clearance < 40 mL/min) or placebo [80]. The addition of apixaban 
did not significantly reduce the composite ischemic end point but led to an excess of Thrombolysis 
in Myocardial Infarction (TIMI) major bleeding (HR 2.59), including intracranial and fatal bleeding. 
Consequently, the study was stopped prematurely. Recently, the AUGUSTUS trial, which had a 2 × 
2 factorial design comparing NOAC vs. VKA and aspirin vs. placebo in patients with atrial fibrillation 
and either ACS or undergoing PCI (or both), confirmed that dual therapy with full-dose apixaban 
and an oral P2Y12 inhibitor (i.e., with the omittance of aspirin) is safer than triple therapy, again 
showing no significant differences in ischemic outcomes although the study was underpowered for 
this endpoint [81]. 

Rivaroxaban, another direct FXa inhibitor, has been studied in this setting in the ATLAS ACS– 
TIMI phase II trial and subsequently in the ATLAS ACS 2–TIMI 51 phase III trial [82,83]. This large-
scale study included 15,526 patients with recent ACS (within seven days after admission). All patients 
received standard medical treatment and were randomized in a 1:1:1 fashion to a regimen of either 
2.5 mg b.d. or 5 mg b.d. of rivaroxaban or placebo. Importantly, in this study, a reduced-dose NOAC 
was used as compared to the “full dose” rivaroxaban 20 mg o.d. The addition of rivaroxaban reduced 
the composite endpoint of death from cardiovascular causes, myocardial infarction, or stroke (8.9% 
vs. 10.7%, p = 0.008), although this benefit was counterbalanced by higher rates of both major bleeding 
unrelated to coronary-artery bypass grafting (2.1% vs. 0.6%, p < 0.001) and intracranial hemorrhage 
(0.6% vs. 0.2%, p = 0.009). However, a reduction in rates of death from both cardiovascular causes 
(2.7% vs. 4.1%, p = 0.002) and from any cause (2.9% vs. 4.5%, p = 0.002) was observed in the 
rivaroxaban 2.5 mg b.d. group. 

Finally, several other emerging NOACs have been investigated in the ACS setting but no 
positive results were observed in these phase II trials [84,85]. 

In conclusion, so far only rivaroxaban has been shown to reduce ischemic events and mortality 
in patients with ACS when a reduced dose of 2.5 mg b.d. was used in conjunction with standard ACS 
treatment. However, rivaroxaban was not studied in the setting of the more potent P2Y12-inhibitors 
prasugrel and ticagrelor. Current ESC guidelines indicate that low-dose rivaroxaban 2.5 mg b.d. 
“may be considered” (IIb) if ischemic risk exceeds bleeding risk in patients treated with aspirin and 
clopidogrel. 
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4.3. Development of Factor IX, XI, and XII Inhibitors 

Looking to the horizon of anticoagulant therapy, the development of FIX, FXI, and FXII 
inhibitors seems promising. In the last decade, much research has focused on these specific 
coagulation factors. FXI is the first protein in the hemostatic pathway of intrinsic blood coagulation. 
FXI activates FIX, whereas factor XI itself is activated by Factor XII (FXII), a component of the contact 
system together with the proteins prekalikrein and H-kininogen [86]. Attempts to target these 
upstream factors arose from the observation that patients deficient in FXI or FXII suffer no increase 
or only mild increase in bleeding events, respectively [87]. On the other hand, in vivo research 
showed that FXI- or FXII-deficient animals seem to be protected from thrombotic complications [88–
90]. Similarly, molecular genetic studies in FIX-deficient mice showed a correlation between in vivo 
FIXa activity and susceptibility to occlusive venous thrombus formation [91]. In humans, elevated 
levels of FIX, FXI, or FXII are all associated with prothrombotic phenotypes [92]. 

Following these observations, the old paradigm that thrombosis and bleeding are two sides of 
the same coin was challenged [93]. Is it possible to develop an antithrombotic drug without any 
bleeding complications? Several phase I and phase II trials are currently being conducted [94]. 
Whereas the first results of FIX inhibitors were not as promising as hoped [90,95], several other trials 
focus on FXI and FXII. FXI might be the most promising target of the two, as there is more 
epidemiological evidence for its role in thrombosis. Targets for the newly-developed FXI inhibitors 
include synthesis of FXI in the liver whereas other drugs bind FXI or FXIa, or block its active site 
[90,96]. Also, monoclonal antibodies are being developed. Although promising, these drugs are only 
currently in phase II development. Most studies focus on venous thromboembolism and whether 
these drugs would be effective in ACS is a further step in the future. In conclusion, FIX, FXII, and FXI 
have emerged as promising targets for novel anticoagulant drugs, with the potential of reducing 
thrombus formation with minimal effect on hemostatic pathways (i.e., bleeding). Their application in 
clinical practice, and in ACS in particular, is yet to be determined and further results of clinical studies 
are awaited. 

5. Conclusions 

Much progress has been made in the field of antithrombotic drugs in ACS in recent years. Newly 
introduced drugs in clinical practice are cangrelor, an intravenous P2Y12-antagonist, and the use of 
enoxaparin in STEMI and rivaroxaban as an adjunctive in ACS. Other potentially interesting drugs 
are currently being developed, which include several novel potent antiplatelet drugs targeting 
alternative pathways. Furthermore, the development of FIX, FXI, and FXII inhibitors seems 
promising, with the potential of reducing thrombus formation with only minimal effect on bleeding. 
Hence, there is a glance of several promising new antithrombotic drugs on the horizon. Their efficacy 
and applicability in the ACS setting needs to be further proven in clinical trials. 
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Table 1. Of novel antithrombotic drugs tested in clinical trials. 

Type of 
Drugs 

Class of Drugs Drugs Name(s) 
Route of 

Administration 
Mechanism of Action Main Study Findings 

Stage of 
Development 

Anticoagulant 
drugs 

Low-molecular-weight 
heparin 

Enoxaparin 
Subcutaneous 

and intravenous 
inhibiting factor FXa and FIIa 

Sustained anti-Xa levels during infusion in 
STEMI patients undergoing PCI 

Launched 

 
Non-vitamin-K-
antagonist oral 
anticoagulants 

Rivaroxaban Oral direct FXa inhibitor 

Addition of low-dose rivaroxaban (2.5 mg 
b.d.) reduced ischemic events and all-cause 

mortality with an increase in bleeding. 
No positive study results of other NOACs 

tested. 

Launched 

 
Inhibitors of intrinsic 

pathway of coagulation 
n/a 

Intravenous, 
subcutaneous, 

and oral 

Inhibitors of “upstream” anticoagulation 
factors FIX-, FXI-, and FXII. Various 

targets of action (e.g., hepatic synthesis, 
monoclonal antibodies) 

Various phase I and phase II trials currently 
ongoing. First study results of FXI- and 

FXII-inhibitors more promising than FIX-
inhibitors. 

Phase I/II 

Antiplatelet 
drugs 

P2Y12-receptor 
antagonist 

Cangrelor Intravenous 
Adenosine triphosphate analogue 

blocking P2Y12-receptor 
Phase III trials show reduced MACE and 
stent thrombosis versus oral clopidogrel. 

Launched 

 
P2Y12-receptor 

antagonist 
Selatogrel Subcutaneous P2Y12 receptor antagonist 

Potent platelet P2Y12 inhibition within 30 
min, reversible by 24 h. No major bleeding 

events in the largest clinical study. 
Phase II 

 PI3Kβ-inhibitors 
AZD6482; 

GSK2636771 
Intravenous and 

oral 

Inhibiting the effect of PI3Kβ which acts 
through platelet cellular signaling 

systems 

Mild effect on platelet activity, minimal 
effect on bleeding times in healthy 

volunteers. GSK2636771 has been evaluated 
in a phase I trial for its effect on tumor 

progression. 

Phase I 

 Platelet GP VI-inhibitors 
Revacept; 
ACT017 

Intravenous 
Inhibition of collagen-induced platelet 

aggregation 

In phase I studies, drugs appeared to be 
effective and safe. Two phase II studies 

completed but results have not been fully 
disclosed yet. 

Phase II 

 
Protein disulfide 
isomerase (PDI) 

inhibitors 

Isoquercetin 
HPW-RX40 

Oral 

Inhibition of PDI attenuates 
conformational changes in the activation 
of GP IIb/IIIa and inhibits the generation 

of thrombin generation 

In the setting of prevention of cancer-
associated thrombosis, isoquercetin caused 
a reduction in circulating levels of D-dimer 

and platelet-dependent thrombin 
generation was demonstrated.  HPW-RX40 
has only been tested in preclinical studies. 

Phase II 

 
PAR1 signaling 

modulators  
Parmodulins n/a 

Inhibition of PAR1 signaling pathways 
involved in platelet activation, but not 

those relevant to endothelial 
cytoprotective effects 

Preclinical studies have demonstrated 
inhibition of thrombin-induced platelet 

activation. 
Preclinical 

 PAR4-inhibitors BMS-986120 Oral 
Inhibition of PAR4 activation by 

thrombin 
In a phase I study of healthy volunteers, 

BMS-986120 inhibited ex vivo platelet-rich 
Phase I 
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thrombus formation upon stimulation with 
PAR4 agonist peptide in high-shear-stress 

conditions. 

 
Platelet glycoprotein Ib-
IX-V receptor inhibitor 

Caplacizumab Intravenous 

Caplacizumab is a immunoglobulin 
fragment, which targets the A1 domain 

of von Willebrand factor, inhibiting 
interaction with the platelet glycoprotein 

Ib-IX-V receptor, which has an 
important role in platelet adhesion to 

damaged sub-endothelium. 

Efficacy has been proven in a modestly 
sized phase III study for treatment of aTTP 
with an increase in gingival bleeding and 

epistaxis. No studies have yet been 
performed in other thrombotic conditions. 

Launched (for 
aTTP) 

 
Confirmation-specific 
GPIIb/IIIa inhibitors 

Anti-activated 
GPIIb/IIIa 

n/a 
Activated, but not unactivated 

GPIIb/IIIa is inhibited 

Inhibited propagation of thrombosis in an 
animal model without prolonging bleeding 

time.   
Preclinical 

 
Inhibitors of GPIIb/IIIa 

outside-in signaling 
mP6 n/a 

Disrupts interaction between Gα13 and 
IIIa, inhibiting downstream signaling 

Inhibited propagation of thrombosis in an 
animal model without prolonging bleeding 

time.   
Preclinical 

 Platelet-targeted CD39 
CD39-anti 
GPIIb/IIIa 

n/a 
CD39 breaks down ADP. Linking CD39 
to anti-GPIIb/IIIa targets the enzyme to 

platelets. 

Preclinical studies have shown greater 
antiplatelet efficacy of platelet-targeted 
CD39 compared to untargeted CD39. 

Preclinical 
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