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Abstract: Background: SPECT (single-photon emission-computed tomography) is used for the
detection of hypoperfusion in cognitive impairment and dementia but is not widely available and
related to radiation dose exposure. We compared the performance of DSC (dynamic susceptibility
contrast) perfusion using semi- and fully adaptive deconvolution models to HMPAO-SPECT
(99mTc-hexamethylpropyleneamine oxime-SPECT). Material and Methods: Twenty-seven patients
with dementia of different subtypes including frontotemporal dementia (FTD) and mild cognitive
impairment (MCI) received a multimodal diagnostic work-up including DSC perfusion at a clinical 3T
high-field scanner and HMPAO-SPECT. Nineteen healthy control individuals received DSC perfusion.
For calculation of the hemodynamic parameter maps, oscillation-index standard truncated singular
value decomposition (oSVD, semi-adaptive) as well as Bayesian parameter estimation (BAY, fully
adaptive) were performed. Results: Patients showed decreased cortical perfusion in the left frontal
lobe compared to controls (relative cerebral blood volume corrected, rBVc: 0.37 vs. 0.27, p = 0.048,
adjusted for age and sex). Performance of rBVc (corrected for T1 effects) was highest compared to
SPECT for detection of frontal hypoperfusion (sensitivity 83%, specificity 80% for oSVD and BAY,
area under curve (AUC) = 0.833 respectively, p < 0.05) in FTD and MCI. For nonleakage-corrected
rBV and for rBF (relative cerebral blood flow), sensitivity of frontal hypoperfusion was above 80%
for oSVD and for BAY (rBV: sensitivity 83%, specificity 75%, AUC = 0.908 for oSVD and 0.917 for
BAY, p < 0.05 respectively; rBF: sensitivity 83%, specificity 65%, AUC = 0.825, p < 0.05 for oSVD).
Conclusion: Advanced deconvolution DSC can reliably detect pathological perfusion alterations in
FTD and MCI. Hence, this widely accessible technique has the potential to improve the diagnosis
of dementia and MCI as part of an interdisciplinary multimodal imaging work-up. Advances in
knowledge: Advanced DSC perfusion has a high potential in the work-up of suspected dementia and
correlates with SPECT brain perfusion results in dementia and MCI.
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1. Introduction

Prevalence of dementia is rather high in the elderly population (>60 years) with about 5–7%
worldwide [1]. Alzheimer’s disease is the most common cause; other etiologies include frontotemporal
dementia (FTD), dementia with Lewy bodies (DLB), vascular dementia (VD) and cortico-basal
degeneration (CBD) [2]. Early and reliable diagnosis is important to prevent unnecessary procedures,
uncertainty for patients and relatives as well as delay in the initiation of symptomatic treatments [3–5].
Structural MRI already plays an important role in the diagnosis of early dementia [6], but perfusion
imaging helps identifying subtypes, which is important for therapy decisions and further care of
patients [3,7]. 99mTc-hexamethylpropyleneamine oxime single-photon emission-computed tomography
(HMPAO-SPECT) is used in the diagnostic work-up as specific regional patterns of hypoperfusion have
been described for different subtypes of dementia [8]. However, the radiation dose exposure for head
SPECT/CT is reported to be as high as 4.1 mSv on average [9]. This is 41-fold the dose of a single chest
X-ray examination. Thus, an alternative imaging modality without radiation exposure is desirable.

Earlier evaluation of the potential of DSC-(dynamic susceptibility contrast)-perfusion as an imaging
biomarker of the cerebral microcirculation in AD has been promising [10]. However, correlation
analysis of DSC-perfusion with SPECT has produced mixed results in the past. Studies investigating
rBV (relative cerebral blood volume) and rBF (relative cerebral blood flow) measures in Alzheimer’s
disease have partly shown promising results and good correlation with SPECT [11,12]. Several studies
demonstrated that DSC perfusion cannot replace SPECT in AD and that SPECT remains superior over
DSC perfusion regarding diagnostic accuracy [13,14].

Advanced perfusion deconvolution models like oSVD (oscillation-index standard truncated
singular value decomposition) are far less sensitive for differences in tracer arriving time [15] leading
to a more robust estimation of rBF and possibly to a superior detection of hypoperfusion in dementia.
Another model, Bayesian parameter estimation, a probabilistic method that is considered to deliver
even more accurate and robust hemodynamic parameters [16,17], is also a promising technical approach
to perfusion imaging in dementia.

These technical improvements as well as higher field strength, higher spatial resolution and
advanced deconvolution models for calculation of hemodynamic parameter maps led us to reevaluate
DSC perfusion compared to SPECT in early dementia.

2. Material and Methods

2.1. Patients

Our retrospective study comprised a total of 27 patients with clinically suspected dementia
(mean age 66 years ± 9.4 years). Suspected diagnosis included MCI (n = 9), FTD (n = 7), AD (n = 6),
DLB (n = 2), VD (n = 2) CBD (n = 1). Patients’ clinical characteristics are summarized in Table 1.
Informed consent was obtained from all subjects. The Clinical Investigation Ethics Committee of the
University of Erlangen-Nuremberg approved the study protocol on 27 January 2016 (ethical code
number 231_12Az) and the research was conducted in accordance with the Declaration of Helsinki.
All patients underwent a standardized clinical assessment including a mini mental status test (MMST)
and received HMPAO-SPECT as well as DSC perfusion. Additionally, we included a group of
19 healthy control individuals (mean age 57 years ± 8.5 years) with no signs of cognitive impairment.
Controls received DSC perfusion only.
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Table 1. Patients’ clinical characteristics.

Patient No Age Gender Suspected Diagnosis MMST

1 69 f FTD 27
2 57 m FTD 27
3 50 m AD 27
4 79 f FTD 23
5 55 m MCI 30
6 83 m FTD 19
7 70 f FTD 29
8 78 f DLB 20
9 53 m CBD 24

10 63 m MCI 29
11 54 f AD 10
12 73 f DLB 28
13 78 f MCI 25
14 58 f MCI 28
15 62 f FTD 14
16 69 m FTD 30
17 68 m AD 26
18 77 m AD 27
19 56 m MCI 28
20 58 m MCI 29
21 73 f VD 27
22 74 f MCI 27
23 60 m AD 30
24 69 m VD 28
25 54 m MCI 26
26 63 m MCI 26
27 69 f AD 22

f = female, m = male, FTD = frontotemporal dementia, AD = Alzheimer’s disease, MCI = mild cognitive impairment,
DLB = dementia with Lewy bodies, CBD = cortico-basal degeneration, VD = vascular dementia; MMST = mini-mental
status test score.

2.2. Imaging Protocol

DSC perfusion was performed with a clinical high-field scanner at a magnetic field strength of 3T
(Magnetom Trio, Siemens, Erlangen, Germany) with a single-shot EPI-(echo planar imaging) -gradient
echo sequence (TE (echo time) = 32 ms, TR (repitition time) = 1840 ms, field of view = 230 × 230 mm,
slice thickness = 6 mm, slice gap = 1.8 mm, number of slices = 19, matrix = 128 × 128). We used
1 mmol/mL gadubotrol (Gadovist, Bayer Healthcare, Leverkusen, Germany) as a contrast agent.
Dose was weight-dependent, 1 mmol/kg, injected as intravenous bolus in the right (preferably) or
left cubital vein using an MR-compatible injector (Medtron, Saarbrücken, Germany) at a flow-rate of
5 mL/sec followed by a saline flush of 30 mL (0.9% NaCl). Additionally, anatomical datasets were
acquired (3D T2 SPACE dark fluid: TE = 388 ms, TR= 5000 ms, TI (inversion time) = 1800 ms, field
of view = 256 × 256 mm, slice thickness = 1 mm isotropic, matrix = 256 × 258 and 3D T1 MPRAGE:
TE = 2.52 ms, TR = 1900 ms, TI = 900 ms, field of view = 256 × 256 mm, slice thickness = 1 mm isotropic,
matrix = 256 × 256).

A multichannel head coil (32 channels, Siemens, Erlangen, Germany) was used for signal reception.
SPECT/CT acquisitions were carried out as follows: After ten minutes of resting in a quiet

surrounding and dimmed light, patients were injected with Tc-99m-HMPAO (Stabilised Ceretec™,
GE Healthcare, Munich, Germany). Injected activity was determined by measuring the initially
prepared as well as the residual activity in the syringe with proper decay correction. An average
of 546 ± 48 MBq (95% CI = 428–637) were injected. The SPECT/CT images were acquired 30 min
p.i., using a dual-headed gamma camera (Symbia T2/T6, Siemens Healthcare, Hoffman Estates, IL,
USA). The following acquisition parameters were used: low-energy high-resolution collimators,
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zoom factor 1.23, head-contouring orbit with 60 stops (120 projections) over 360◦, acquisition time
of 30 s per stop, and 140 keV photopeak window with 15% width. After SPECT, a low-dose CT was
acquired for anatomical co-registration and attenuation correction. The images were reconstructed in
a 128 × 128 matrix (3.9 mm pixel size) using the OSEM (ordered subset expectation maximization)
algorithm (Flash3D). Post-reconstruction smoothing of images was carried out using a Gaussian filter
with 6.0 mm FWHM (full width at half maximum). All images were corrected for scattered and
attenuated photons using the dual energy window method and the low-dose CT images, respectively.

2.3. Image Processing and Analysis

DSC data were transferred to an external workstation for processing with an FDA-(food and drug
administration)-approved software package (Olea Sphere, La Ciotat, France). Background segmentation
of data sets was adjusted to remove extracranial tissue. The automatic arterial pixel selection tool
implemented in the software and based on cluster analysis was chosen for computing an arterial input
function (AIF) [18]. Hemodynamic parameter maps of rBV, rBF and MTT (mean transit time) were
calculated. rBV parametric maps were calculated with and without correction for contrast agent leakage
(rBV and rBVc). We used two different deconvolution models: semi-adaptive, delay insensitive oSVD [15],
a further developed model based on nonadaptive sSVD [19], and with the same presets, Bayesian
hemodynamic parameter estimation (BAY), which is considered to lead to a more reliable and accurate
estimation of perfusion indices [16,17,20]. Bayesian parameter estimation is a probabilistic method that
is considered to deliver even more accurate and robust hemodynamic parameters. Compared with
previously reported singular value decomposition algorithms, Bayesian analysis of DSC perfusion has
been reported to provide better qualitative and quantitative assessments of rBF [21]. Circular ROIs (regions
of interest) were placed in the cortex and in deep white matter of the frontal lobe, the parieto-occipital
lobe as well as the temporal lobe. Coordinates in MNI space are given in Table 2.

Table 2. Coordinates of the chosen frontal, parietal and temporal ROIs (regions of interest) in MNI
(Montreal Neurological Institute) space.

MNI
Cortex

MNI
White Matter

X Y Z X Y Z

left frontal −36 2 53 −12 7 51
left parietal −28 −68 41 −19 −53 41

left temporal −53 −7 −22 −42 −1 −22
right frontal 24 11 53 17 6 53
right parietal 28 −68 41 19 −53 41

right temporal 53 −7 −22 42 −1 −22

ROI area was defined as 3 for cortex and 5 for deep white matter in a software inherent arbitrary
unit (mean surface for cortex ROI = 25.9 mm2, for deep white matter ROI = 80.7 mm2). For the exact
anatomical placement of ROIs, parametric perfusion maps were co-registered and fused with a 3D T2
SPACE dataset (Figure 1). ROI placement was performed by two neuroradiologists well trained in
perfusion MRI who were blinded to the patients’ diagnosis. The ratio of deep white matter/cortical
perfusion was calculated for every anatomical localization and for both deconvolution models, thus
using white matter as a reference region. The same cortical areas were selected for all subjects.

Regarding evaluation of SPECT images, calculated rBF parametric maps were read by a physician
with extensive experience in nuclear medicine and SPECT imaging and visually classified according to
frontal, parieto-occipital and temporal hypoperfusion.

2.4. Statistical Analysis

Differences in white matter/cortical perfusion ratios between patients and controls were assessed by
unpaired Student’s t-tests after verification of normal distribution of the data. Additionally, we corrected
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for age and sex after principal component analysis and adding them as a combined covariate in a general
linear model (ANCOVA).

Classification of actual hypoperfusion in SPECT imaging was considered as standard and the
performance of the perfusion ratio deep white matter/cortex of every single DSC parameter, i.e.,
the potential to predict hypoperfusion in SPECT, was tested using receiver-operating characteristics
(ROC) with estimation of the AUC (area under the curve). p < 0.05 was considered statistically
significant. The p value is given under the null hypothesis that the area under the curve equals 0.5.
Statistical analysis was performed using SPSS version 19 (IBM, Ehningen, Germany).

Figure 1. ROIs in rBV (relative cerebral blood volume) map (oSVD - oscillation-index standard
truncated singular value decomposition). Circular ROIs were placed in cortex and white matter in
frontal lobe (A–C), as well as in parietal and temporal lobe and in hippocampus in the respective
hemodynamic parameter maps rBV (A), rBVc (relative cerebral blood volume corrected), rBF (relative
cerebral blood flow) and MTT (mean transit time) both for oSVD and Bayesian deconvolution. Data sets
were coregistered with an anatomical dataset (B, T2 SPACE) and fused (C) for correct placement of ROIs.

3. Results

We found a significantly increased ratio of white matter/cortical perfusion, i.e., relative cortical
hypoperfusion, measured with DSC in dementia compared to controls for frontal ROIs (Figure 2).

After correction of the covariates age and sex, the difference in means regarding the rBVc parameter
of the left frontal ROI remained significant (0.37 vs. 0.27, p = 0.048) whereas it failed to reach statistical
significance regarding rBV and rBF for both, the oSVD and the Bayesian approach.

We also looked at the uncorrected values. The ratios of the bilateral frontal lobe for rBV (left: 0.43
vs. 0.32, p = 0.037; right: 0.42 vs. 0.31, p = 0.043) and of the left frontal lobe for rBF (0.34 vs. 0.25,
p = 0.025) were significantly higher compared to controls, showing at least a tendency. Regarding
Bayesian estimation of parametric perfusion maps, we found similar results for rBV of the bilateral
frontal lobe (left: 0.43 vs. 0.33, p = 0.045; right 0.42 vs. 0.31; p = 0.034), for rBVc of the left frontal lobe
(0.36 vs. 0.27, p = 0.018) and for rBF of the left frontal lobe (0.29 vs. 0.20, p = 0.029).

Concerning the parietal ROIs, cortical hypoperfusion failed to reach statistical significance. MTT was
not significantly different regarding the frontal and parietal ROIs. No significant hypoperfusion was
found for temporal ROIs with ether the oSVD or the BAY approach. Results are summarized in Table 3.
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Table 3. Ratios of white matter/cortex perfusion values of relative cerebral blood volume (rBV), relative cerebral blood volume corrected for leakage (rBVc), relative
cerebral blood flow (rBF) and the value of the cortical ROI of mean transit time (MTT) [ms].

oSVD Patients Controls

rBV rBVc rBF MTT [ms] rBV rBVc rBF MTT [ms]
left frontal 0.43 * ± 0.24 0.37 ** ± 0.17 0.34 * ± 0.2 4720 ± 1430 0.32 ± 0.08 0.27 ± 0.06 0.25 ± 0.06 4930 ± 870

right frontal 0.42 * ± 0.24 0.40 ± 0.21 0.37 ± 0.18 4860 ±1520 0.31 ± 0.1 0.29 ± 0.08 0.26 ± 0.08 4920 ± 850
left parietal 0.41 ± 0.18 0.41 ± 0.2 0.40 ± 0.2 5990 ± 3710 0.44 ± 0.14 0.37 ± 0.12 0.36 ± 0.13 4760 ± 750

right parietal 0.52 ± 0.25 0.44 ± 0.28 0.44 ± 0.25 5190 ± 2280 0.43 ± 0.13 0.35 ± 0.1 0.35 ± 0.1 5050 ± 770
left temporal 0.58 ± 0.26 0.49 ± 0.17 0.51 ± 0.15 4810 ± 1930 0.49 ± 0.14 0.46 ± 0.1 0.46 ± 0.12 4880 ± 940

right temporal 0.47 ± 0.21 0.43 ± 0.16 0.44 ± 0.14 5540 ± 2520 0.43 ± 0.17 0.42 ± 0.12 0.39 ± 0.12 5000 ± 1050

Bayesian patients controls

left frontal 0.43 * ± 0.24 0.36* ± 0.18 0.29 * ± 0.19 3300 ± 1320 0.33 ± 0.09 0.27 ± 0.06 0.20 ± 0.08 3290 ± 1680
right frontal 0.42 * ± 0.22 0.40 ± 0.31 0.30 ± 0.15 3940 ± 3150 0.31 ± 0.1 0.29 ± 0.08 0.21 ± 0.07 3370 ± 1240
left parietal 0.42 ± 0.17 0.40 ± 0.2 0.33 ± 0.18 4990 ± 4070 0.44 ± 0.15 0.37 ± 0.12 0.26 ± 0.08 3080 ± 920

right parietal 0.52 ± 0.24 0.44 ± 0.28 0.39 ± 0.31 3690 ± 1980 0.43 ± 0.13 0.35 ± 0.1 0.26 ± 0.06 3320 ± 910
left temporal 0.50 ± 0.21 0.48 ± 0.18 0.44 ± 0.2 3840 ± 1890 0.49 ± 0.15 0.46 ± 0.1 0.40 ± 0.15 3650 ± 1080

right temporal 0.52 ± 0.2 0.42 ± 0.16 0.39 ± 0.17 4440 ± 2450 0.43 ± 0.17 0.42 ± 0.1 0.36 ± 0.13 4250 ± 3060

Patients vs. controls, values given as mean ± standard deviation, significant results (p < 0.05) are marked with an *. Values that remained significant after correction for age and sex are
marked with **.
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Figure 2. Ratios of white matter/cortical perfusion of the frontal ROIs for both (A) oSVD and (B)
Bayesian deconvolution models in patients with suspected dementia compared to healthy controls.
Increased ratio in dementia indicates relative cortical hypoperfusion. Significant results (p < 0.05) are
marked with *, values that remained significant after correction for age and sex are marked with **.

By visual interpretation of DSC perfusion maps, there was a good correlation of reduced cortical rBVc
of temporal and parietal lobe with hypoperfusion seen on the respective SPECT dataset in Alzheimer’s
disease (pathological MMST score of 10, Figure 3). Frontal cortical hypoperfusion in DSC correlated
with hypoperfusion in SPECT in suspected early FTD in a 69-year-old male (Figure 4). Furthermore,
parieto-occipital hypoperfusion in DSC in a 60-year-old male with suspected DLB-matched SPECT
hypoperfusion (Figure 5) to a great extent. In this patient, absence of temporomesial atrophy in coronal
FLAIR imaging corroborated the suspected diagnosis over posterior cortical atrophy as a variant of AD.
Overall, regardless of the clinical diagnosis, there was a high correlation of cortical hypoperfusion in
frontal lobes when comparing DSC perfusion with SPECT.

Figure 3. Female with Alzheimer’s disease, 54 y, Mini-Mental-Status-Test score 10. DSC Perfusion (A,
axial orientation; D, coronal orientation rCBVc map) shows typical pattern of frontotemporal and parietal
cortical hypoperfusion. Correlation with HMPAO-SPECT. (B,E) and anatomical datasets with widening of
the temporal horns and apico-frontal cisterns as signs of atrophy (T1w in C, T2 SPACE in F).
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Figure 4. Male with FTD, 69 y, Mini-Mental-Status-Test score 30. DSC Perfusion (A, axial orientation; D,
sagittal orientation rCBVc map) shows typical pattern of frontal cortical hypoperfusion. Correlation with
HMPAO-SPECT (B,E) and the anatomical dataset with ventricular widening as sign of atrophy (T1w in
C and F).

Figure 5. Male with DLB, 60 y, Mini-Mental-Status-Test score 30. DSC Perfusion (A, axial orientation
rCBVc) shows typical pattern of parieto-occipital cortical hypoperfusion. Correlation with HMPAO-SPECT
(B) and the anatomical dataset with widening of the parieto-occipital subarachnoid spaces as sign of
atrophy (C, T2 SPACE).

Using ROC analysis, the sensitivity for predicting hypoperfusion in the left frontal lobe in SPECT
was 83% for rBV, rBVc, and rBF both for oSVD and Bayesian deconvolution (Figure 6) at a specificity of
75% for rBV (oSVD and BAY), 80% for rBVc (oSVD and BAY), 65% for rBF (oSVD) and 45% for rBF
(BAY) with an AUC above 0.8, respectively (p < 0.05). Regarding rBF, only oSVD reached statistical
significance (oSVD: AUC = 0.825, p < 0.05; BAY: AUC = 0.708, p > 0.05). AUC of MTT was not significant
for both oSVD and BAY. For the right frontal lobe, as well as for the parietal and the temporal lobe,
AUCs did also not reach statistical significance. Results are summarized in Table 4.
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Figure 6. Optimal cut-off points for the ratio of cortical/white matter perfusion in the left frontal lobe for
calculated hemodynamic parameter maps for oSVD and BAY deconvolution. rBVc ratio cut off = 0.36
marked red; greater values “predict” hypoperfusion in SPECT with a sensitivity of 83% and specificity
of 80%. Significant results (p < 0.05) are marked with *.

Table 4. Cut-off ratios of white matter/cortex perfusion values of relative cerebral blood volume (rBV),
relative cerebral blood volume corrected for leakage (rBVc), relative cerebral blood flow (rBF) and mean
transit time (MTT) calculated by ROC analysis.

oSVD Bayesian
rBV rBVc rBF MTT rBV rBVc rBF MTT

left frontal

Cut off ratio 0.4 0.36 0.29 1.18 0.41 0.36 0.21 1.39
Sensitivity 83% 83% 83% 83% 83% 83% 83% 67%
specificity 75% 80% 65% 55% 75% 80% 45% 60%

AUC 0.908 * 0.833 * 0.825 * 0.650 0.917 * 0.833 * 0.708 0.567

right frontal

Cut off ratio 0.33 0.3 0.27 1.18 0.33 0.30 0.21 0.92
Sensitivity 60% 60% 60% 80% 60% 60% 60% 60%
specificity 42.9% 43% 47.6% 47.6% 42.9% 42.9% 47.6% 14.4%

AUC 0.667 0.657 0.667 0.514 0.667 0.657 0.543 0.581

left parietal

Cut off 0.66 0.91 0.87 - 0.66 0.91 0.77 -
Sensitivity 50% 50% 50% - 50% 50% 50% -
specificity 95.8% 100% 100% - 58% 100% 100% -

AUC 0.479 0.521 0.542 0 0.479 0.521 0.688 0.021

right parietal

Cut off ratio 0.65 0.97 0.91 - 0.67 0.97 0.83 -
Sensitivity 66.7% 66.7% 66.7% - 66.7% 66.7% 66.7% -
specificity 82.6% 100% 100% - 87%% 100% 100% -

AUC 0.609 0.667 0.667 0.203 0.609 0.681 0.739 0.072

left temporal

Cut off ratio 0.73 0.55 0.85 1.03 0.77 0.55 0.42 1.47
Sensitivity 50% 50% 25% 75% 50% 50% 75% 75%
specificity 77.3% 72.7% 100% 50% 77.3% 72.7% 59.1% 54.5%

AUC 0.591 0.545 0.466 0.568 0.602 0.557 0.625 0.602

right temporal

Cut off ratio 0.47 0.43 0.45 1.03 0.47 0.43 0.35 1.4
Sensitivity 75% 75% 75% 75% 100% 75% 75% 50%
specificity 50% 59.1% 63.6% 36.4% 45.5% 59.1% 54.5% 63.6%

AUC 0.659 0.591 0.716 0.466 0.625 0.602 0.648 0.432

AUC = area under the curve, significant results (p < 0.05) are marked with *.
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4. Discussion

DSC perfusion showed cortical hypoperfusion in frontal lobes for both deconvolution models in
patients with suspected dementia compared to healthy individuals. The potential of MR-perfusion to
detect dementia-induced hypoperfusion in FTD has been shown regarding the arterial spin labeling
(ASL) technique, even in early stages of the disease [22,23]. Concerning the composition of our patient
group with a majority of patients suspected to develop FTD (7/27) and 2 patients showing signs of an
advanced stage of the disease (MMST < 20), our results are in line with these reports. Parieto-occipital
cortical hypoperfusion failed to reach statistical significance in our cohort, presumably because of the
relatively small sample size of patients with this pattern of hypoperfusion. We could not show cortical
hypoperfusion in temporal lobes, although this has been described [23]. This may be due to partial
volume effects and susceptibility artifacts near the skull base and air-containing structures.

An age-dependency of brain perfusion parameters has been described [24]. In an extensive and
thorough analysis of 175 consecutive scans, Shin et al. report a decrease of rBV of 3.7% per decade
in grey matter. Similar decrease rates of CBF and increase rates of MTT per decade are reported.
Our results indicate a much stronger effect with a 26% difference of rBV and rBF regarding patients vs.
controls. Given the age difference of 9 years between patients and controls, this strong effect cannot
be explained as age-effect alone, as one would expect roughly 5% difference of rBV that could be
addressed to aging. Additionally, it has been reported that brain perfusion is not homogeneously
decreased in the ageing brain but is characterized by decreased rBF in frontal and parietal areas and
cerebellum, and relatively preserved in temporal, occipital and orbital frontal areas. Moreover, it has
been suggested that observed differences in brain perfusion can also be ascribed to changes in brain
volume—at least to a certain extent [25]. Our finding of cortical hypoperfusion remained significant
for the left frontal ROI of the rBVc parameter after adjustment of age and sex.

Correlation analysis of DSC perfusion with SPECT has produced mixed results in the past.
Studies investigating rBV and rBF measures in Alzheimer’s disease have partly shown promising
results and good correlation with SPECT [11,12]. However, several studies demonstrated that DSC
perfusion cannot replace SPECT in AD and that SPECT remains superior over DSC perfusion regarding
diagnostic accuracy [13,14].

Nevertheless, we show a good visual correlation of cerebral blood volume derived from DSC with
SPECT brain perfusion maps in AD (Figure 3). Temporal and parietal hypoperfusion could be clearly
delineated on both parametric maps on corresponding slices. In case of temporal hypoperfusion, a potential
advantage of DSC perfusion is the higher spatial resolution that can be achieved over SPECT [26,27].
Combination with additional evaluation of anatomical datasets, shows typical temporomesial and
frontoparietal atrophy.

Furthermore, we could demonstrate a high correlation of frontal cortical hypoperfusion in rBVc
with the respective SPECT rBF image in suspected frontotemporal dementia (Figure 4). As shown,
the possibility of multiplanar reconstruction of DSC hemodynamic parameter maps helps in identifying
a frontoparietal gradient of cortical perfusion in the color-coded rBVc map when comparing DCS and
SPECT datasets.

Moreover, there was good correlation of hypoperfusion in DSC and SPECT in a case of DLB
(Figure 5). Although the atrophy pattern of DLB may be very heterogeneous, relative preservation
of the medial temporal lobe has been reported [28,29]. Parieto-occipital cortical hypoperfusion can
be clearly delineated in the DSC rBVc map and in the SPECT rBF map correlating with focal atrophy.
Additional coronal imaging shows absence of temporomesial atrophy (Figure 5B).

Focal patterns of hypoperfusion in DSC rBVc maps for AD, FTD and DLB are in line with
previously reported patterns of hypoperfusion in SPECT in these etiologies [8].

Quantitative DSC analysis revealed a rBVc white matter/cortex-ratio greater 0.36 can predict
visually detectable frontal hypoperfusion in SPECT with a sensitivity of 83% and a specificity of 80%.
Absolute quantification of blood volume and blood flow is not possible because they depend on scanner,
applied contrast agent and acquisition parameters and can be influenced by partial volume effects.
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Thus, we have chosen a ratio of white matter/cortical perfusion, using white matter as a reference
region, to overcome these issues. These ratios can be easily calculated and transferred into clinical
routine. Performance of rBVc was independent of the chosen deconvolution model (Figure 6), as the
calculated blood volume is only dependent on the area under the R2* curve [17,30].

Our results are in line with previous reports of a promising correlation of rBV derived from
DSC perfusion compared to rBF by SPECT [11]; however, our settings with higher field strength
(3T vs. 1.5T), and thus higher signal-to-noise ratio (SNR), and improved spatial resolution (slice
thickness 6 mm/interslice gap 1.8 mm vs. 7 mm/3 mm) make data acquisition more robust in terms
of reproducibility and accuracy [31]. Interestingly, specificity was slightly higher for rBVc than for
uncorrected (i.e., not corrected for contrast agent leakage) rBV even though no disruption of the
blood-brain barrier (BBB) was suspected. One possible reason may be subtle BBB disruption as
dysfunction of the BBB. This phenomenon has been described in AD before [32] and might also apply
for FTD and DLB.

Despite a high performance of rBVc, we could show an exactly as high sensitivity of 83% for rBF
to predict hypoperfusion in SPECT. This seems to be in contrast to previous studies where correlation
of DSC derived rBF with SPECT was found to be poor [13,14]. However, in these studies, nonadaptive
singular value deconvolution was used for deconvolving the tissue signal from the arterial input
function. This technique has been described to be sensitive to delay and dispersion of the arriving
contrast agent bolus leading to over- or underestimation of cerebral blood flow in tissues where the
bolus arrives earlier than in the chosen AIF [15]. Consequently, formerly poor correlation of rBF with
SPECT might have been due to the fact that true rBF has been underestimated by the deconvolution
algorithm. oSVD, as used in our setting, in contrast is far less sensitive for differences in tracer arriving
time [15] leading to a more robust estimation of rBF and a superior detection of hypoperfusion.

When using Bayesian parameter estimation, a probabilistic method that is considered to deliver
even more accurate and robust hemodynamic parameters [16,17], AUC of rBF estimation failed to
reach statistical significance (Figure 6).

MTT estimations were generally lower when comparing the values calculated with the Bayesian
approach to the values calculated with oSVD. It has been described that SVD techniques have larger
errors in slow flow conditions and the parameter estimation performance is poorer compared to high
flow conditions [15]. Thus, in slow flow conditions such as suspected dementia, MTT estimation with
the Bayesian method may be more accurate, despite the values failed to reach statistical significance.
Additionally, Bayesian deconvolution has been reported to outperform oSVD, especially in cases of
high cerebral blood flow [20]. This seems to be of less relevance in detecting hypoperfusion in dementia
with low CBF.

A combination of delay-insensitive oSVD derived rBVc and rBF perfusion indices thus leads to a
high performance in predicting hypoperfusion in SPECT brain perfusion in dementia and MCI.

Our study has certain limitations. Firstly, the number of 27 patients included is rather small.
Certainly, larger series are needed to confirm the results and also test for diagnostic accuracy of DSC in
dementia. Regarding the known age-dependency of brain perfusion, it has to be taken into account that
patients and controls are not age-matched in our analysis. However, the results remain significant after
adjusting for age and sex effects and it can be assumed that the age-effect is relatively weak compared
to the significant differences of brain perfusion parameters that we observed. Another shortcoming is
the lack of quantitative data corroborating the visual correlation of DSC and SPECT hypoperfusion
patterns; this also necessitates further case series. The heterogeneity of our cohort probably limits
general conclusions about the correlation of DSC and SPECT data, despite providing a way to examine
various perfusion patterns regarding the suspected clinical diagnosis.
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5. Conclusions

Advanced oSVD deconvolution in DSC perfusion has a high potential and correlates with SPECT
brain perfusion results in dementia and MCI. Hence, DSC perfusion could be helpful in an interdisciplinary
diagnostic work-up of suspected dementia.
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