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Abstract: Background: Multiple sclerosis (MS) is a neurodegenerative disease that affects the central
nervous system. The cause of MS is still unknown, and the role of innate immunity is still poorly
understood. Objective: The goal of this study was to understand whether, compared to healthy
controls, the elements of innate immunity are altered in the blood of MS patients in the remitting
phase. Methods: A total of 77 naïve MS patients and 50 healthy controls were included in this
cohort study. Peripheral blood samples were collected and analyzed. All the calculations were
performed with the statistical system R (r-project.org). Results: The results showed that MS patients
had significantly lower relative representations of granulocytes than healthy controls, while the
relative representations of monocytes remained unchanged. CD64- and PD-L1-positive granulocytes
exhibited a nonsignificant decreasing trend, while granulocytes with other membrane markers
remained noticeably unchanged. Conclusion: The results of this study suggest that studies of the
causes of MS and its treatment should also be focused on the elements of the innate immune response.
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1. Introduction

Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system
(CNS). MS is characterized by anomalous immune responses that attack some components of the CNS,
mistaking them for foreign agents [1]. The inflammatory process triggered by the immune system
can damage the myelin sheath that surrounds and isolates nerve fibers and the cells specialized in its
production (oligodendrocytes) [2]. This process, called demyelination, can cause areas of myelin loss
or injury, which are called plaques, particularly in the optic nerves, cerebellum and spinal cord [3].

J. Clin. Med. 2020, 9, 1468; doi:10.3390/jcm9051468 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-1772-8781
https://orcid.org/0000-0003-3137-4200
https://orcid.org/0000-0001-8071-2005
https://orcid.org/0000-0001-8000-9766
https://orcid.org/0000-0001-9664-1109
http://www.mdpi.com/2077-0383/9/5/1468?type=check_update&version=1
http://dx.doi.org/10.3390/jcm9051468
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2020, 9, 1468 2 of 9

The demyelination process causes several different neurological symptoms, depending on the brain
area affected [1]. The most common symptoms are autonomic, visual, motor, and sensory problems [1].
According to the symptomology, MS is classified into three main types: relapsing-remitting,
primary progressive and secondary progressive [4]. Relapsing-remitting MS is characterized by
two phases. In the relapse phase, there are distinct attacks of neurological symptoms which can last
from few days to some months [4]. During the remission phase, the symptoms fade away either partially
or completely. Around 85% of people with MS are diagnosed with this type. Relapsing-remitting MS
is usually followed by secondary progressive MS, which is characterized by a steady state of disability,
independent of any relapses [5]. Primary progressive MS affects about 10–15% of people diagnosed
with MS. People with primary progressive MS can experience many symptoms of relapsing-remitting
MS, but symptoms gradually get worse over time, rather than appearing as sudden relapses [2].

MS is considered a multifactorial disease, as different factors can be involved in its onset [6].
Some studies suggest that factors related to the environment, ethnicity, genetic predisposition and
infectious agents might be involved in MS onset [7,8]. The pathological mechanism causing MS
symptoms is still under investigation. It is known that when myelin is engulfed by macrophages,
the axons of the nerves remain bare, and they are no longer able to efficiently transmit electrical
impulses. Many alterations affecting different types of cells of the immune system, such as T cells
and B cells, have been reported [9]. However, the relationship between neuroinflammation and
neurodegeneration and their contribution to the different stages of the disease are still unclear [10].

Acquired immunity (mediated by lymphocytes) plays a clearly recognized role in the pathology
of MS [6]. However, in recent years, the role of innate immunity in MS pathology has been increasingly
recognized [11]. In addition, recent studies have identified over two hundred regions of the human
genome that influence a large number of different immune cells, highlighting the fact that this disease
is not caused by a single immune cell type but rather by extensive immune system dysfunction [12,13].

Innate immunity starts inflammatory processes and is composed of a multitude of biochemical
and cellular defense mechanisms ready to react after an initial stimulus (for example, infectious or
traumatic stimuli) [14]. Important cells of the innate immune system are mononuclear phagocytes
(monocytes, macrophages and dendritic cells), granulocytes (neutrophil, basophil and eosinophil),
mast cells and natural killer (NK) cells [15]. These cells may have a relevant role in the initiation and
progression of MS [16,17]. Mononuclear phagocytes, such as microglia and macrophages, are the
dominant immune cells located in MS lesions in both relapsing-remitting and progressive phases of
the disease [16,17]. These cells interact with cells of the adaptive immune system (such as T cells and
B cells), but can also directly cause neuroinflammatory tissue damage through several mechanisms,
including secretion of proinflammatory cytokines, chemokines, free radicals, and increased release of
glutamate [18]. In addition, activated microglia and macrophages in active MS lesions induce oxidative
stress [19] and axonal degeneration [20] that contribute to both grey and white matter pathology [21].
According to these findings, it has been proposed that many of these innate cell types may represent a
therapeutic target for MS [22]. However, although phagocytes can drive tissue destruction during
lesion formation, studies using animal models of CNS injury suggested that these cells might also
be a necessary part of the tissue repair mechanism during lesion resolution [18]. In murine MS
models, it has been evidenced that monocyte-derived phagocytes seem to initiate demyelination,
whereas microglia-derived phagocytes clear cellular debris and thus promote tissue recovery [23].

Mononuclear phagocytes are not the only type of innate immune cells investigated in MS.
The involvement of granulocytes in MS has also emerged in the last few years. Granulocytes are white
blood cells that help the immune system fight off infection [24]. Typically, granulocytes play a role
both in innate and adaptive immune responses in the fight against viral and parasitic infections [25].
As part of the immune response, granulocytes migrate to the site of infection and release a number of
different effector molecules, including histamine, cytokines, chemokines, enzymes and growth factors.
As a result, granulocytes are an integral part of inflammation and play a significant role in the etiology
of allergies [26]. However, the specific role of neutrophils in MS is still not well defined. In addition,
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despite the massive amount of data on the inflammatory phase of MS, little is known about the levels
of innate cells in non-active MS phases, such as the remission phase.

Thus, in this study, we investigated by flow cytometry whether the number of granulocytes and
monocytes in MS patients in the remitting phase is different from that of healthy controls. Different flow
cytometric biomarkers were used to better characterize these immune cell populations.

2. Material and Methods

2.1. Study Population

The participating subjects were all patients of the Department of Neurology of the University
Hospital in Hradec Králové, Czech Republic. The study was conducted from January 2018–December
2019. Seventy-seven Caucasian patients with relapsing-remitting MS (or after the first demyelinating
event) and 50 healthy controls (HC) without any comorbidities were included in this cohort study.
All the included MS patients met the McDonald criteria or the revised McDonald criteria for MS and
were in the remission phase (baseline was at least 30 days after relapse) [27]. MS patients had not yet
been treated with disease-modifying drugs (DMDs) such as interferons, teriflunomide or glatiramer
acetate. Although DMDs are not a cure for MS, they can reduce the number of relapses and slow down
the damage caused by relapsing MS that builds up over time [28].

All the participants provided written informed consent. The study protocol was approved by the
Ethical Committee of the University Hospital Hradec Králové, reference number 201801S08P.

2.2. Data Collection and Analysis

The authors collected blood samples from the antecubital fossa vein. For the surface staining of
leukocytes, 50 µL of anticoagulated blood was added to tubes containing 5 µL of fluorochrome-labeled
monoclonal antibodies, including anti-CD11b allophycocyanin (APC), clone Bear1; anti-CD14-APC,
clone M5E2; anti-CD15 fluorescein isothiocyanate (FITC), clone 80H5; anti-CD16 R-phycoerythrin (RPE),
clone 3G8; anti-CD62L-RPE, clone DREG56; anti-CD64-RPE, clone 22; anti-CD163-FITC, clone GHI/61;
and anti-CD274-APC, clone PD-L1. The anti-CD163-FITC and anti-CD14-APC were manufactured by
BD Biosciences (Franklin Lakes, NJ, USA), and all the other antibodies were manufactured by Beckman
Coulter (Miami, FL, USA). The blood samples were incubated with the antibodies for 15 min at room
temperature in the dark. Then, a lysing solution (OptiLyse C, Beckman Coulter, Miami, FL, USA)
was added, and the mixture was incubated for another 10 min. The flow cytometric evaluation was
conducted with a Navios 10 flow cytometer (Beckman Coulter, Miami, FL, USA). The gating strategy
for the granulocytes and monocytes is presented in Figure 1.

2.3. Statistical Analysis

All the data were then assessed using the Kaluza C 1.1 analysis software (Beckman Coulter).
Data on a minimum of 50,000 events were obtained for each staining sample and were supplied
as a list mode. The gating strategies for the different leukocyte subsets that were assessed were as
follows: lymphocytes (low SSC/CD45++), granulocytes (CD45+ and CD15+ or CD16+), and monocytes
(CD45+ and CD14+ or CD64+). The intensity of the expression of CD11b, CD14, CD15, CD16, CD64,
CD163, CD62L and PD-L1 was evaluated as the mean fluorescence intensity (MFI).
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CD11b 84.28 15.33 83.33 87.98 21.99 86.22 * 0.3346 0.1 
CD64 4.92 3.07 5.58 4.14 1.85 4.16 * 0.1302 0.15 

Figure 1. Gating strategy for granulocytes and monocytes Legend. Gating strategy: Obtained events
were gated in an FSC intensity and SSC intensity dot plot to eliminate debris. Cells were gated on
an FSC intensity and FSC peak dot plot to eliminate doublets. Granulocytes were gated on an SSC
vs. CD15 dot plot. Monocytes were gated on an SSC vs. CD64 dot plot. The expression level of
selected markers is evaluated as fluorescence intensity on the histograms. FSC: Forward scatter, SSC:
Side scatter.

The observed characteristics (parameters) were detected/measured spatially (cross-sectional,
i.e., at one time point) for 77 patients with MS (RS) and 50 healthy controls (HC). The empirical
distribution of two (potential) covariates differed between these groups: sex (HC: 74.0% women;
MS: 63.6% women) and age (HC average: 43.7 years; MS average: 35.7 years). To reduce the risk of
impact of these covariates on the endpoints, the RS patients were paired with HC according to these
two covariates by the propensity score matching method, which was implemented in the MatchIt
package [29]. Then, the parameters were compared between a paired group of 50 RS patients and
a group of 50 HC using statistical tests. A parametric t-test was used to compare the group means
for the normally distributed characteristics. The effect size (standardized difference) was quantified
using Cohen’s D. The bilateral alternative hypothesis and the 5% significance level were chosen for the
statistical tests. All the calculations were performed in the R statistical system version 3.5.2 [30].

3. Results

3.1. Demographic Characteristics

There were no significance differences in sex ratio (males/females) between MS patients and
healthy controls. The MS group was significantly younger (mean age 38.4) than the HC group (mean age
38.4) (Table 1).
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Table 1. Descriptive statistics for matched multiple sclerosis (MS) patients and healthy controls (HC).

Parameter

Experimental Groups
Statistics

HC MS

mean SD median mean SD median test p Value Size Effect

Age 43.74 11.89 46.5 38.36 9.78 38 * 0.01528 0.25

Granulocytes
Relative

representation 57.2 10.44 58.41 52.82 10.66 53.16 * 0.0412 0.21

CD11b 84.28 15.33 83.33 87.98 21.99 86.22 * 0.3346 0.1
CD64 4.92 3.07 5.58 4.14 1.85 4.16 * 0.1302 0.15

CD62L 34.52 9.9 35.63 36.26 10.37 35.78 * 0.3946 0.09
PD-L1 1.02 0.71 0.85 0.84 0.23 0.82 ** 0.1733 0.17
CD14 1.78 0.4 1.71 1.88 0.71 1.71 ** 0.8501 0.08
CD16 626.75 120.41 620.35 666.74 163.15 675.92 * 0.168 0.14

Monocytes
Relative

representation 5.83 1.73 5.76 5.28 2.28 4.49 * 0.1798 0.14

CD11b 79.65 20.71 73.74 81.88 20.86 78.85 ** 0.4393 0.05
CD15 4.83 2.88 4.03 5.99 4.59 3.99 ** 0.4089 0.15

CD62L 25.43 7.35 25.28 27.06 8.54 25.31 * 0.3131 0.1
PD-L1 0.99 0.82 0.73 0.87 0.4 0.74 ** 0.7688 0.09
CD163 3.44 0.77 3.45 3.7 1.16 3.49 ** 0.427 0.14
CD16 5.74 6.12 3 8.32 12.2 2.41 ** 0.9581 0.13

Lymphocytes
Relative

representation 32.67 9.63 32.95 36.32 10.34 35.28 * 0.07218 0.18

Legend: The following statistical tests were conducted to compare differences between groups: (*) parametric t-test;
(**) nonparametric t-test. Effect size was assessed by Cohen’s D.

3.2. Flow Cytometric Evaluation of Immune Cell Biomarkers

There was a significant difference for the parameter granulocytes—relative representation because
MS group had lower values as compared to HC group [MS: mean (SD) 52.8 (10.7); HC: 57.2 (10.4);
p value = 0.041; size effect = 0.21].

In the MS group, there was a non-significant trend to decrease for the following three biomarkers:
CD64 granulocytes [MS: mean (SD) 4.1 (1.9); HC: 4.9 (3.1); p value = 0.130; size effect = 0.15],
PD-L1 granulocytes [MS: mean (SD) 0.84 (0 (23); HC: 1.02 (0.71); p value = 0.173; size effect = 0.17],
and lymphocytes—relative representation (MS: mean (SD) 36.3 (10.3); HC: 32.7 (9.6); p value = 0.072;
size effect = 0.18). The results relative to these and the other biomarkers utilized are reported in Table 1.

4. Discussion

This study was performed to investigate whether cells of the innate immune response are altered
in MS patients in remission phase as compared to healthy subjects. We used flow cytometry to
analyze granulocytes and monocytes in MS patients and controls in order in to determine their relative
representation and to distinguish their subtypes with various markers. The results showed that
MS patients had significantly lower relative representations of granulocytes than healthy controls.
By using the markers, it was observed that the CD64- and PD1L-positive granulocytes exhibited a
nonsignificant decreasing trend. The relative representation of monocytes did not differ from controls,
while lymphocytes were increased in MS patients, but not significantly.

Our data demonstrate that the number of granulocytes is reduced during remission. There are four
types of granulocytes: basophils, eosinophils, neutrophils and mast cells [31]. The use of biomarkers
suggests that, probably, the type of granulocyte reduced in our MS patients is the neutrophils. This idea
is supported by the fact that CD64 is expressed in neutrophil granulocytes and is upregulated during
inflammatory processes and septic complications [32]. CD64, also called FcγRI (Fc γ receptor I), is a
class of plasma membrane receptors expressed on human myeloid cells [33]. CD64 contains three
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extracellular immunoglobulin-like domains that represent binding sites for the Fc portion of IgG.
The FcγRI receptor is essential for at least the start of the phagocytosis. Phagocytosis is a multistep
process, several orders more effective in the presence of so-called opsonins. Opsonins are specific IgG
antibodies bound to the surface of engulfed particles, making the bridge via interaction with FcγRI
receptors expressed on the surface of granulocytes. It has been recently observed that the presence of
IgM antibodies against CD64 in the blood of MS patients seems to be associated with a significantly
lower annualized relapse rate and with the improved maintenance of clinical stability compared to
patients without these antibodies [34]. Natural antibodies reacting with CD64 are presumably blocking
these high-affinity receptors for IgG with numerous consequent impacts on inflammatory response.

Recent evidence indicates that programmed death ligand 1 (PD-L1) [35] is also expressed on
neutrophils and is associated with the development of numerous diseases, including autoimmune
diseases such as systemic lupus erythematosus [36]. In EAE models, it has been shown that amelioration
induced by epigenetic drugs is associated with a reduction in PD-L1-positive neutrophils during the
preclinical phase [37].

Thus, the data on these biomarkers confirm that the subpopulation of granulocytes undergoing
a nonsignificant reduction are presumably immune-activated neutrophils. Neutrophils have been
extensively studied in the general context of neuroinflammation. For example, in amyotrophic lateral
sclerosis, their numbers are elevated and correlate with disease progression [38]. It is known that,
during disorders such as MS and Alzheimer’s disease, neutrophils can migrate to the CNS, acquire a
toxic phenotype, home in on neurons, and release harmful molecules that compromise neuronal
functions [39,40]. However, the specific role of neutrophils in MS is still not well defined. In rodent
models of MS, it has been shown that neutrophils can favor the onset and increase the severity of
experimental autoimmune encephalomyelitis (EAE) [41,42]. In this model, when neutrophils are
depleted, or the actions of their mediators are blocked, the severity of EAE is reduced, indicating that
these cells may play an important role in the pathogenesis of MS. It has been also demonstrated that
one of the potential methods by which neutrophils contribute to EAE pathology is by facilitating the
breakdown of the blood–brain barrier (BBB), as depletion of neutrophils restores BBB integrity [43].

In MS patients, the levels of neutrophils have been measured in the blood and cerebrospinal fluid
(CSF). In the CSF, increased neutrophil levels have been found in MS patients during relapse [44].
Interestingly, neutrophil levels are higher in pediatric patients, while in adults, neutrophil levels decrease
with disease duration, suggesting activation of the innate immune system in early disease [44,45]. The levels
of neutrophils in the blood are also altered in MS. It has been shown that the neutrophil-to-lymphocyte
ratio increases during the relapse phase of MS, and this ratio has been proposed as a marker of MS disease
activity [46,47]. Upregulated expression of PD-L1 was observed in the lesions of brain specimens from
MS patients, demonstrating the critical importance of B7-H1 as an immune-inhibitory molecule that is
capable of downregulating T cell responses [48].

These data suggest that neutrophils are increased during the inflammatory phase of MS and contribute
to sustaining the inflammatory process by releasing inflammatory mediators [42]. In remission phase,
we observe a significant reduction of neutrophils in the blood of our MS cohort. These findings are in
line with data showing that peripheral blood mononuclear cells from relapsing-remitting MS patients
in remission phase exhibit decreased PD-L1 expression [49]. Our interpretation of (non-significantly)
decreased expression of PD-L1 on granulocytes of our MS patients in remission reflects the current
paradigm of MS as Th1 and Th17 pathology. A subset of Th1 T cells is the principal source of interferon γ,
which is a potent stimulator of PD-L1 expression on immune cells. As clinical remission is achieved in our
MS patients by immunomodulatory therapy, it seems likely that interferon γ production is diminished,
with a subsequent decrease in the PD-L1 presence on granulocytes.

There are some limitations to the interpretation of our data. First, these data represent the totality
of granulocytes (not only neutrophils). Although CD64- and PD1L are markers of neutrophils, they can
also bind to the membranes of other cell types of granulocytes. Another limitation is that we did not
include the patients in relapse phase. The third limitation is the low number of patients included.
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Thus, our data should be regarded as preliminary findings and need to be confirmed in a larger cohort,
possibly including the same patients in relapse phase, and using other specific biomarkers.

5. Conclusions

This study shows that neutrophils are decreased in MS patients in the remission phase. Despite the
mounting evidence for a role of neutrophils in MS, it is not clear whether they contribute to disease
initiation, pathogenesis, and/or relapse. Nonetheless, these findings suggest that decreasing neutrophil
activity during the early onset of MS could represent a potential therapeutic strategy.
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