
1.1. Pontryagin Minimum Principle and Optimality Conditions 

Following the method of Lagrange [1], a control Hamiltonian function 𝐻 can be constructed by 

appending the state equation to the integrand 𝐿 using the Lagrange multipliers, 𝜆(𝑡), as follows:  

H(u(t), z(t), λ(t), t) = L(u(t), z(t), t)+ λT(t)f(u(t), z(t), t), (1) 

where z(t) is the optimal control, and u(t) is the corresponding optimal state. Then the Pontryagin 

Minimum Principle (PMP; [1]) states that there exists a continuous function 𝜆, known as an adjoint function, 

that is the solution of the adjoint equation 

λ̇(t)= -Hu(u(t), z(t), λ(t), t), (2) 

along with the appropriate initial (or final) condition of 𝜆. In Eq. (2), Hu denotes the differentiation of the 

Hamiltonian function with respect to the state. In particular, the adjoint function is a Lagrange multiplier 

that brings the information of the state equation constraint to the optimization problem. According to the 

PMP, the optimal control, z(t), and corresponding optimal state, u(t), and adjoint, λ (t), must minimize the 

Hamiltonian so that  

H(u(t), z(t), λ(t), t) ≤ H u(t), z*(t), λ(t), t , (3) 

for all time and for all admissible (i.e., feasible) trajectory control variables z*(t), while the adjoint equation 

Eq. (2) is satisfied. Admissible trajectories are defined as a set of variables that lay in the neighborhood of 

the minimal solution and satisfies all of the constraints.  

 With the above considerations, we can now define the necessary and sufficient conditions for 

optimality. For a feasible trajectory that satisfies the minimum principle, condition Eq. (3) implies that the 

Hamiltonian is minimum at the optimal control z(t), such that 

Hz(u(t), z(t), λ(t), t) = 0. (4) 

The condition (4) is the first order necessary condition for optimality and corresponds to a special case of the 

Euler-Lagrange equation of the calculus of variations. The Pontryagin Minimum Principle also leads to the 

positive semi-definiteness of the Hamiltonian’s Hessian matrix as 

Hzz(u(t), z(t), λ(t), t) ≥ 0, (5) 

that is termed the Legendre-Clebsch condition and it is a second-order necessary condition for optimality. In 

addition to the necessary conditions derived from the Pontryagin Minimum Principle, if the strengthened 

Legendre-Clebsch condition  

Hzz(u(t), z(t), λ(t), t) > 0, (6) 

holds, it guarantees that z(t) is the local minimizer of the Hessian. The condition in Eq. (6) is known as the 

second-order sufficient condition for local optimality. For a purely convex objective functional with respect to 

the control variables, the necessary conditions are sufficient to guarantee the optimal control variable.  We 

refer the interested readers to [1, 2] for the proof of these theorems. 



In summary, the Pontryagin Minimum Principle converts the optimal control problem into a multi-

point boundary value problem. That is, the optimality condition Hz = 0 results in control expressed as, 

z(t) = G(u(t), λ(t), t), (7) 

and the optimal control variable and corresponding state and adjoint can be computed by solving an ODE 

system,  

 u̇(t) = f u(t), G(u(t), λ(t), t) , (8) 

λ̇(t) = -Hu u(t), G(u(t), λ(t), t) , (9) 

with appropriate initial and end time conditions, while (6) ensures the optimal control is a minimizer. A 

specific example of the methods described in this section is presented in section 1.4. 

 

1.2 One example using the Pontryagin Minimum Principle 

Here we outline the steps for using the Pontryagin Minimum Principle (PMP) to optimize treatment 
delivery, given a tumor growth model (see, Chapter 10 from [11]), and we explore the effects of different 
weights in the objective function. The text below represents a specific case of the general formulation 
offered in section 1.1. 

Begin by considering the following ODE model that describes the temporal evolution of tumor 
density, T: 

dT
dt

= rT ln (1/T) - δz(t)T, (10)

where r is the growth rate, δ is the magnitude of the dose, and z(t) is the effect of an arbitrary therapy (i.e., 
systemic or radiation therapy). Eq. (10) represents a specific example of Eq. (1) from the main text. For this 
example, the objective function (see Eq. (2) in the main text) is defined as: 

, (11)

where the wi are the weights for each term. In Eq. (11), we minimize the 1) tumor density at the final time, 
tf (first term on the right-hand side of the equation), 2) tumor burden during the treatment (first term in the 
integral), and 3) total drug dose (second term in the integral). Following the method of Lagrange, the 
solution of the optimal control problem is obtained by first introducing the Hamiltonian, H, given by:  

H(u(t), z(t), λ(t), t) = L(u(t), z(t), t) + λT(t) f(u(t), z(t), t), (12)
where the Hamiltonian function, H, is constructed by appending the state equation (Eq. (10)) to the 
integrand L using Lagrange multipliers, λ(t). Therefore, according to the PMP, the Hamiltonian for this 
example becomes: 

H(t, T, z, λ) = w2

2
T2 + w3

2
z2 + λrT ln (1/T) - λδzT, (13)

then the PMP states that there exists a continuous function λ, known as the adjoint function, that is the 
solution of the adjoint equation: 

dλ
dt

=  -Hu(u(t),z(t),λ(t),t), (14)

along with the appropriate initial (or final) condition of λ. In Eq. (14), Hu denotes the differentiation of the 
Hamiltonian function with respect to the state variable. The adjoint function is a specific Lagrange 
multiplier that brings the information of the state equation constraint into the optimization problem. For 
our example, the adjoint is computed by a solution of the adjoint ODE: 

dλ
dt

 = -w2T - λ (ln (1/T) - 1) + λδz). (15)



According to the PMP, the optimal control, z(t), and corresponding optimal state, u(t), and adjoint, λ(t), 
must minimize the Hamiltonian such that 

H(u(t), z(t), λ(t), t) ≤ H(u(t), z*(t), λ(t), t), (16)
for all time and for all admissible control variables, z*(t), while satisfying the adjoint Eq. (14). Admissible 
(i.e., feasible) control variables are defined as the set of trajectories that lay in the neighborhood of the 
minima and satisfy all of the constraints.  

With these considerations, we can now define the necessary and sufficient conditions for optimality. 
Considering feasible trajectories for the optimal control problem that satisfy the PMP, the condition 
summarized by Eq. (16) indicates that the Hamiltonian is a minimum for the optimal control z(t) when 

Hz(u(t), z(t), λ(t), t) = 0. (17)
The condition from Eq. (17) is the first order necessary condition for optimality and corresponds to a special 
case of the Euler-Lagrange equation. The PMP also requires the positive semi-definiteness of the 
Hamiltonian’s Hessian matrix: 

Hzz(u(t), z(t), λ(t), t) ≥ 0. (18)
Eq. (18) is termed the Legendre-Clebsch condition, and it is the second-order necessary condition for 
optimality. In addition to the necessary conditions derived from the PMP, if the strengthened Legendre-
Clebsch condition 

Hzz(u(t), z(t), λ(t), t) > 0 (19)
holds, it guarantees that z(t) is a local minimizer of the Hessian. The condition of Eq. (19) is known as the 
second-order sufficient condition for local optimality. For a convex objective (i.e., there is one optimal solution) 
with respect to the control variables, the necessary conditions are sufficient to guarantee an optimal control 
solution. (We refer the interested readers to [36, 37] for the proof of these theorems.) Given the Hamiltonian 
in Eq. (13), the optimality conditions for our example are: 

⎩
⎨

⎧
Hz = 0

w3z - λδT = 0

z = 
1

w3
λδT

. (29)

Ultimately, the PMP converts the optimal control problem into a multi-point boundary value problem. 
That is, the optimality condition, Hz = 0, results in control solutions expressed as a function of the state and 
adjoint functions, and the optimal control variable and corresponding state and adjoint can be computed 
by solving: 

⎩
⎪
⎨

⎪
⎧

∂u
∂t

 = f(u(t), z(u(t), λ(t)), t)

dλ
dt

=  -Hu(u(t), z(t), λ(t), t)

z(t) = G(u(t), λ(t))

, (30)

where G is a function for which z is described. With appropriate initial and end time conditions, Eq. (28) 
ensures the optimal control is a minimizer. Thus, for our tumor density example, to find the optimal 
solution, we need to solve the following system 

⎩
⎪⎪
⎨

⎪⎪
⎧

dT
dt

= rT ln (1/T) - δzT

dλ
dt

= -w2T - λ (ln (1/T) - 1) + λδz

z = 
1

w3
λδT

. (31)

See the main text subsection 5.1 and Figure 2 for example optimal solutions for this system and the results 

of exploring different weights within the cost functional. 
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