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Abstract: Optimal control theory is branch of mathematics that aims to optimize a solution to a 
dynamical system. While the concept of using optimal control theory to improve treatment 
regimens in oncology is not novel, many of the early applications of this mathematical technique 
were not designed to work with routinely available data or produce results that can eventually be 
translated to the clinical setting. The purpose of this review is to discuss clinically relevant 
considerations for formulating and solving optimal control problems for treating cancer patients. 
Our review focuses on two of the most widely used cancer treatments, radiation therapy and 
systemic therapy, as they naturally lend themselves to optimal control theory as a means to 
personalize therapeutic plans in a rigorous fashion. To provide context for optimal control theory 
to address either of these two modalities, we first discuss the major limitations and difficulties 
oncologists face when considering alternate regimens for their patients. We then provide a brief 
introduction to optimal control theory before formulating the optimal control problem in the context 
of radiation and systemic therapy. We also summarize examples from the literature that illustrate 
these concepts. Finally, we present both challenges and opportunities for dramatically improving 
patient outcomes via the integration of clinically relevant, patient-specific, mathematical models and 
optimal control theory. 

Keywords: mathematical model; cancer treatment; predicting response; optimizing response 
 

1. Introduction 

Treatment of cancer has progressed considerably since the first radiation treatments in the late 
1800s [1] and the early chemotherapies derived from mustard gas in the 1920–40s [2]. Today, 
therapeutic regimens can include radiation therapy, cytotoxic approaches, targeted therapies, and/or 
immunotherapy in addition to surgical resection. While the number and types of therapies available 
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for cancer treatment have dramatically expanded over the past century, the dosing and timing of 
administration is still relatively imprecise. Standard-of-care treatment regimens are based on the 
results of expensive and time-consuming clinical trials that seek to first determine the maximum 
tolerated dose (Phase I), and then the expected efficacy for an “average” patient (Phases II and III). 
As it is impossible to systematically evaluate all possible dosing schemes within the clinical trial 
system, it is largely unknown what are the “best” ways to schedule radiation and systemic therapies. 
The problem is further compounded when multiple therapies are being prescribed, as is done in the 
majority of cancer cases. For combination therapies, medications can be administered simultaneously 
or sequentially, without complete knowledge of the potential synergistic or antagonistic relationship 
these treatments can exhibit based on their order and timing of administration. In fact, several 
preclinical studies have shown that the order and timing of certain targeted and cytotoxic therapies 
may not be optimal [3,4], and clinically there is evidence for certain combinations of drugs for which 
the sequence of their administration can significantly affect their efficacies and toxicities [5]. Thus, 
oncology is in desperate need of a practical, clinically relevant, logical framework that allows the 
investigator to a priori compute the optimal therapeutic regimen on a patient-specific basis. 

Biological process-based mathematical models, when initialized and calibrated with patient-
specific data, may dramatically enhance the efficacy of current therapies through the methods of 
optimal control theory (OCT). In OCT, models can be specialized for individual patients to make 
personalized predictions that are “actionable” in the clinical setting. Compared to the clinical trial 
system, the use of mathematical models permits the systematic, in silico study of numerous possible 
formulations of dosing, timing, and combinations of therapies. Furthermore, with formal application 
of OCT, the costs of therapy (including toxicity, efficiency, psychological, quality of life, as well as 
economic considerations) can be weighed against the effectiveness of the regimen, so that an optimal 
regimen can be defined for not only subgroups of cancer patients but also for individual patients. 

In this review, we first summarize the historical approaches for determining therapeutic 
regimens in medical and radiation oncology. Then, we introduce the mathematical underpinnings of 
OCT and illustrate cases of the technique being used with mathematical models of tumor growth and 
treatment response. Next, we discuss the current challenges preventing fundamental progress in 
using OCT and mathematical models to guide therapeutic decisions—including the lack of readily 
accessible data to adequately characterize patient-specific characteristics and the lack of practical 
theoretical formalisms to compute the optimal regimen for an individual patient. Lastly, we identify 
several exciting opportunities for future optimization of cancer treatment, such as quantitative 
imaging data to characterize the tumors of individual patients, multiscale modeling to incorporate 
additional layers of patient-specific data into the planning of therapy regimens, and the prospect of 
optimizing combination therapies. 

2. Current Approaches for Establishing Therapeutic Regimens 

Many standard-of-care approaches to treating cancer consist of both of chemo- and/or radiation 
therapy. Therefore, we focus on these two fundamental treatment modalities in cancer but note that 
immune and targeted therapies share similar opportunities and challenges for determining optimal 
therapeutic regimens.  

2.1. Systemic Therapy 

Chemotherapy is normally administered (individually or in combination with other drugs) over 
units of time termed “cycles”, which are regular intervals over the entire treatment period. These 
cycles normally span days to weeks depending on the treatment plan, where the amount of time 
between cycles is thought of as a “recovery period” for the patient and their normal, healthy cells. 
Figure 1 illustrates three common examples of regimens used for two types of neoadjuvant 
chemotherapy (i.e., therapy before surgery) in breast cancer. Note that these regimens can vary in 
their frequency, duration, and dosage across regimens and even for the same therapy. Additionally, 
in the standard-of-care setting, this treatment paradigm may be modified depending upon each 
patient’s individual response as well, with consideration of their overall health and quality of life. 
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Oncologists choose treatments using decision tree algorithms that have some specificity. The gold 
standard for these algorithms is the National Comprehensive Cancer Network guidelines 
(www.nccn.org) based on tumor size, degree of spread, and molecular characteristics. Dosing of 
therapies requires the careful balance of maximizing the anti-tumor effect while simultaneously 
limiting toxicity to acceptable levels, for which OCT may provide valuable insights. 

 
Figure 1. Comparison of three neoadjuvant regimens of chemotherapy for triple-negative breast 
cancer. Red arrows represent the first dose of every cycle, and yellow arrows represent doses during 
the course of a cycle. The dose-dense combination doxorubicin-cyclophosphamide therapy regimen 
consists of fewer cycles over a shorter period of time with the same dosage compared to the standard 
regimen—where both drugs are given for every dose. While patients are more likely to experience 
side effects during the dose-dense regimen (with shorter recovery periods between cycles), the 
treatment is completed in half the time. For the combination paclitaxel-carboplatin regimen, 
carboplatin is administered at the beginning of each cycle (4 doses), and paclitaxel is given weekly (12 
doses). Without a framework to evaluate these regimens against each other on a patient-specific basis, 
there is no way to know which regimen (or an alternative regimen) may be more beneficial for 
treatment. Given clinically relevant models of tumor response to therapy, optimal control theory 
(OCT) may be employed to systematically investigate numerous regimens in silico to identify optimal 
treatment approaches on an individual patient basis. 

Therapeutic efficacy refers to the potential beneficial change due to a drug. Treatment efficacy 
is very difficult to evaluate, as there can be a significant time lag between drug administration and 
objective tumor response. Further complicating the evaluation of therapeutic efficacy is that direct 
measurement of the concentration of drug reaching a tumor is difficult to assess. While there are some 
imaging-based measures (typically based on radiolabeled drugs; see, for example, Reference [6]), they 
are not widely available or utilized. The most common method of assessing drug delivery is via 
pharmacokinetic analyses of peripheral blood, which do not necessarily reflect the amount of drug 
in tumors that often have limited and heterogeneous perfusion. Toxicity (potentially damaging or 
poisonous effects) is commonly reduced by decreasing or skipping doses, but this comes at the 
expense of reduced efficacy [7,8]. Often during systemic therapies, patients will be given additional, 
supportive medications in an attempt to alleviate side-effects and help the patient recover more 
quickly from the therapy. This strategy is motivated by the fact that without alternative regimens to 
compare to, oncologists strive to have patients on the standard-of-care therapy schedules, receive 
their full doses, and complete a full course of the therapy. 

In an attempt to balance therapeutic efficacy and toxicity, the total dose of a particular 
chemotherapy is typically determined by the body surface area (BSA) of the patient, a practice 
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established over 60 years ago to extrapolate dosage between species [9]. However, BSA is not 
measured directly but rather estimated from height and weight using one of a series of accepted 
regression equations—the results of which can vary widely [10]. Furthermore, a number of factors 
besides BSA have been shown to influence drug distribution, including hepatic and renal function, 
body composition, enzyme activity, drug resistance, gender, age, and prior/concomitant medication 
[11]. Given these shortcomings, the fact that BSA-based dosing fails to reduce variability in drug 
efficacy [11] is unsurprising. Alternatives to BSA-based dosing strategies rely primarily on 
pharmacokinetic modeling due to the observed relationship between plasma dynamics and drug 
toxicity that exists for many anticancer drugs [12]. Population-based pharmacokinetic models can be 
combined with data from an individual patient using mathematical modeling to guide drug dosing 
[13]. These models can also incorporate patient-specific factors known to affect drug retention and 
clearance, such as renal function or enzyme variants [13]. Oncologists also use simple mathematical 
models to provide estimates of risk reduction conveyed by embarking upon a given regimen of 
treatment using various types of data, like genomic profiling [14,15] and actuarial data [16]. However, 
these modeling methods are quite limited and are used variably throughout the standard of care. 
Thus, the selection of optimized regimens, feasibly administered in the clinical setting, would be 
invaluable toward this effort. 

In summary, defining therapeutic regimens for chemotherapy using methods that are unable to 
precisely measure either therapeutic toxicity on healthy cells or therapeutic efficacy on cancer cells, 
is an extremely difficult problem. While each treatment plan is developed considering the balance 
between efficacy and toxicity, it is based on historical data and physician skill; in particular, there is 
currently no way to rigorously determine this balance for optimal patient outcome. Furthermore, 
these methods do not consider how drug-induced resistance may inhibit treatments. Beyond the need 
to develop more accurate methods for quantifying the toxicity and efficacy of therapeutics, the 
systematic generation of alternative dosage strategies for individual patients is also necessary. 
Integrating OCT with accurate mathematical models of tumor growth and treatment response may 
be able to identify alternative regimens. 

2.2. Radiation Therapy 

Similar challenges exist in the development of effective dosing regimens for radiation therapy 
as those just discussed for systemic therapy. Again, a fundamental challenge is to develop therapeutic 
regimens that maximize tumor cell death while simultaneously minimizing toxicity to normal tissues. 
Radiation therapy was initially given as large single doses in an attempt to eradicate tumors [17]. 
However, these large doses frequently resulted in serious complications, motivating investigation 
into alternative approaches.  

Currently, multiple fractions of a low dose (~2 Gy) is typically utilized as it maximizes the 
therapeutic efficacy while largely sparing healthy tissue. In some disease locations, increasing the 
dose much beyond 2 Gy results in a disproportionate increase in damage to healthy tissue relative to 
tumor tissue, thereby decreasing the therapeutic ratio (i.e., the ratio of the maximum tolerated dose 
to the minimal effective dose). However, 2 Gy alone is insufficient to result in tumor control, so it is 
typically given over many fractions to reach a cumulative dose ranging from 50 to 80 Gy [18–21]. 
Delivering radiation therapy over several fractions (not unlike chemotherapy cycles) allows healthy 
tissue to recover while causing damage to cancer cells that were previously not actively proliferating, 
grew between fractions, and/or have become less hypoxic (oxygen deprived/starved) [22]. With the 
advent of image-guided radiation therapy, alternative regimens are being considered that can deliver 
more localized doses of radiation. For example, hypofractionation (i.e., fractionated therapy that 
delivers greater than 2 Gy per fraction over fewer total fractions) may result in improved tumor 
control and shorter overall treatment plans [23–25]. Similarly, dose escalation (increasing of the total 
cumulative dose to the tumor while maintaining the same dose delivered to normal tissue) is also 
possible and may result in improved tolerance to the treatment and improved tumor control [26,27].  

Another consideration for optimizing radiation therapy regimens is how to address the 
heterogeneity in radiosensitivity between patients and even within an individual tumor. In 
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particular, differences in hypoxia across a tumor [28] can have a substantial influence on radiation 
sensitivity requiring a larger dose compared to normoxic tissue (i.e., tissue with normal oxygen 
levels). Briefly, during radiation therapy, highly reactive free radicals are produced that ultimately 
lead to tissue damage. In well-oxygenated tissue, these free radicals react quickly with oxygen and 
eventually form a stable chemical composition, resulting in permanent damage. In poorly 
oxygenated tissue, there is insufficient oxygen to react with the produced free radicals, and the 
chemical composition of the target tissue returns to its pre-irradiation form. It has been suggested 
that doses increased by a factor of up to three are needed to achieve a similar level of damage [29]. 
Ongoing developments in the noninvasive assessment of tumor hypoxia [30–33] are being explored 
to guide dose boosting to hypoxic regions to improve tumor control [33,34]. As with chemotherapy, 
more studies are needed to evaluate alternative dose and fractionation regimens to determine the 
overall clinical therapeutic benefit.  

3. Fundamentals of OCT 

OCT is a mathematical and computational method that is applicable to a wide variety of 
scientific and engineering applications ranging from economics [35,36] to aeronautics [37,38]. This 
theory was initially developed for dynamical systems where the evolution of the variables may be 
directed by external controls. Optimal control aims to determine the specific factors controlling a 
system (e.g., a dosing regimen for treating cancer) so that a specific criterion can be achieved (e.g., 
maximizing tumor control while minimizing side effects) [39,40]. While a detailed discussion of the 
mathematical theory behind optimal control methods is beyond the scope of this paper, we will 
provide a brief introduction to the theory with an emphasis on the concepts important for its 
application to cancer treatment. The reader interested in the mathematical details is encouraged to 
study the Supplemental Materials and the references provided throughout the following sections, as 
well as other cancer-relevant examples of optimal control that can be found in References [41–44].  

Consider a dynamical system describing tumor growth evolving in time, t, where the volume, 
cellularity, or some other tumor measure is changing with time, T(t), written as an ordinary 
differential equation (ODE): 

dT
dt = f(T(t), z(t), t), (1)

where f can be any type of tumor growth model (e.g., Gompertzian or logistic growth [45]) and is 
subject to (and therefore potentially controllable by) chemotherapy or radiation treatment, z(t). The 
basic objective for optimizing therapy is to identify a dosage plan, z(t), such that T(t) is minimized at 
the final time t = tf. Therefore, in the vocabulary of optimal control theory, T(t) denotes the state 
variable that describes the behavior of the dynamic system, and z(t) is the control variable that affects 
the dynamics of the state by acting upon it. To formulate the optimal control problem, we must define 
the objective functional that we wish to minimize that accounts for the dynamics between the tumor 
growth and therapy. 
 

3.1. What is an Objective Function? 

For the optimal control problem, an objective functional, J, is defined, where the aim is to adjust 
the control variable to minimize (or maximize) J. The objective functional consists of scalar terms Φ 
and L referred to as the endpoint cost and integrand, respectively. The endpoint cost refers to the 
result, considering the final result of the tumor and its treatment at the end of the therapy, where tf 
denotes the final time. The integrand accounts for the evolution of the tumor over the entire treatment 
period. The objective functional is generally written as: 

JJ = Φ u(t0),t0,z tf ,tf + L u(t0),z tf ,t dt,

tf

t0

 

 

(2)
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where t0 is the initial time for the therapy, and u(t) is a vector of state variables that may be considered 
for optimization. Similarly, the vector z(t) may represent multiple types of therapies (e.g., chemo-, 
targeted-, or immune-therapies). As there may be several state and/or control variables, minimizing 
(or maximizing) J will require balancing the desired goal (e.g., maximizing tumor reduction) with the 
cost caused by the control (e.g., minimizing therapeutic toxicity). For the example described by 
Equation (1), where we want to minimize T(tf) and if we are ignoring the side-effects (or cost) of 
treatment, the cost functional J in Equation (2) can be rewritten with Φ = 0 and L = u(t) = T(t). However, 
one could imagine reframing this problem to consider radiation damage to healthy tissue, where our 
model system would include a governing equation for the dynamics of normal cells affected by 
therapy. 

3.2. Why and How Should Constraints be Applied to the Cost Function? 

Depending on the physical system Equation (1) is modeling, the optimal control problem may 
need to include constraints imposed on the state and control variables, such as: 

C(u(t),z(t),t) = a, (3)
S(u(t),z(t),t) ≤ b, (4)

where C and S denote arbitrary, continuous, and possibly nonlinear functions. In the example 
outlined in the previous paragraph, C could describe the total dose that is administered, e.g., 
∫ z(t)dt ≤ zmax,tf

t0
 where zmax is a bound on the total drug exposure (see Equation (12) in Section 5.1 for 

a specific example limiting the total dose). Similarly, S could describe the dosing frequency. For 
example, if we define the total amount of time for the therapeutic regimen as ttot, then a limit on the 
frequency of doses can be defined by f ≤ ttot/N, where N is the maximum number of doses per 
treatment period. In this case, the control can be defined using the Heaviside function, H, as z(t) = 
z0∑ H(t)N

k=0 , where z0 is the concentration of the drug administered and 

H(t) = 0,         otherwise
1,     2tk+f ≥ t ≥ 2tk

  (5) 

for each timepoint tk = kf. In practice, the total dose that can be administered is fixed, but an optimal 
control problem can be allowed to vary individual doses over time. Additionally, the timing of doses 
has practical limitations, e.g., treatment is rarely given in the middle of the night, and the duration of 
each individual dose in a regimen may be constrained. Other forms of state and control constraints 
may need to be considered, including prescribed final conditions (i.e., restricting the total duration 
of the full course of treatment), see References [39,40] for a larger set of possible constraints. 

To reiterate, the principal goal of an optimal control problem is to identify a set of necessary and 
sufficient conditions that the optimal control, z(t), and the corresponding state, T(t), must satisfy. The 
optimal control of systems governed by ODEs are commonly used [46,47]; however, the challenge of 
generating personalized cancer treatment regimens may require accounting for spatial components 
as well [48–54] and, therefore, necessitate system dynamics that are governed by spatially resolved 
models, such as partial differential equations (PDEs). For systems described by PDEs, obtaining the 
solution of the optimal control problem requires variational formulations of PDEs and appropriate 
solution spaces with respect to the state and control variables [55–58]. 

3.3. How do We Solve Optimal Control Systems? 

In general, closed form solutions for optimal control problems do not exist, and therefore 
numerical methods are required to estimate their solution. The numerical solutions of optimal control 
problems can be categorized into indirect and direct methods. Indirect methods seek to find an 
alternate formulation of the problem before numerically solving. There are two different major 
approaches for achieving this goal: The Dynamic Programming Principle [59] and the Pontryagin 
Minimum (or Maximum) Principle (PMP) [60]. The Dynamic Programming principle transforms the 
optimization problem (i.e., Equations (1)–(4)) into a differential equation, known as the Hamilton–
Jacobi–Bellman equation [40]. We describe in detail the PMP indirect method along with an example 
in the Supplemental Materials. For additional details on indirect methods, the interested reader is 
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referred to Reference [61]. The primary practical drawback of indirect methods is the requirement of 
deriving analytic expressions for the optimality conditions. This requirement may be cumbersome 
for problems involving nonlinear objective functions or constraints. In contrast, direct methods are 
based on discretizing in time the state and control variables so that an analytical expression for the 
optimality condition expression is not required. The optimal control problem can then be solved 
using an iterative, nonlinear optimization algorithm [62] (such as steepest decent, Newton, or 
Levenberg–Marquardt methods) to identify an approximate control and state solution. However, the 
accuracy of the solution depends on the iterative method and discretization [63]. We note that the 
choice of the numerical solution method depends on the optimal control formulation, including the 
type of underlying model and the form of the cost functional along with the imposed constraints. 

4. Formulating the Optimal Control Problem for Cancer Therapy 

4.1. Overview of Mathematical Models of Tumor Growth for Optimization 

A common goal for applications of OCT to cancer treatment is to minimize the tumor size (the 
state variable being volume, total cellularity, etc.) at a final time point. To be clinically relevant, it is 
critical that the state equation is capable of accurately predicting tumor growth and the interaction of 
the treatment with malignant and healthy tissue. In this regard, employing mathematical models that 
are built on the underlying biological and physical mechanisms of tumor growth and treatment 
response is fundamental for determining a rigorous optimal treatment plan [64,65]. The development 
of tumor models that characterize the relevant biophysical phenomena determining tumor initiation, 
growth, invasion, and metastasis, as well as the effect of therapy, is the subject of active investigation. 
Current mathematical models of tumor growth and treatment are either discrete (cell-based), 
continuum, or hybrid discrete–continuum models [45]. In this review, we will focus on continuum 
models. 

The continuum approach takes into account the global tumor (or cell population) behavior and 
has been utilized to model angiogenesis [49,66], nutrient evolution and consumption by tumor cells 
[67,68], mechanical [50,69–71], and chemical [72–74] cues that affect tumor cells, as well as the effects 
of radiotherapy [75] and chemotherapy [48,76]. Of the continuum-based approaches, ODE models of 
tumor development are the most widely used for optimizing cancer treatment plans. However, ODEs 
are (of course) unable to capture the spatial heterogeneity of a growing tumor as they can only 
simulate the time evolution of one or more scalar quantities (e.g., tumor size, cell number, and 
temporally varying therapies) that describe an average over the spatial domain. In contrast, PDE 
models enable the simulation of both the temporal and spatial variations in these quantities. In 
particular, recent advances in in vivo imaging techniques [77] have provided quantitative data to 
initialize and calibrate model parameters, thereby enabling the use of PDE models of tumor growth 
to compute optimized treatment planning of greater clinical relevance [78,79]. 

While this review is focused primarily on continuous models, we note that there is much recent 
work in developing and applying agent-based models to the cancer treatment problem, which track 
and update individual cell dynamics using a set of rules. We refer the interested reader to Reference 
[80] for a recent review of agent-based modeling in cancer. 

4.2. Qualitative Discussion of the Cost Functional and Control Constraints 

The first control problems formulated to optimize chemotherapy were established almost 50 
years ago by Swan [81] and Bahrami and Kim [82]. Since those initial efforts, several investigators 
have attempted to solve the dose scheduling problem as a constrained optimization problem with 
objectives that minimize the number of cancer cells or tumor volume at a final time point [83–88]. 
While the main objective of the optimal control problem is to minimize the cancer at a final time, T(tf), 
other criteria should be carefully built into the cost functional—usually through a weighted sum of a 
number of functions based on their level of importance. As indicated above in Sections 2.1 and 2.2, 
both chemo- and radiation therapy may damage normal tissue, with potentially irreversible and life-
threatening consequences. Such competition between the efficacy and toxicity effects of drugs 
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demands careful design of therapeutic regimens to maximize the reduction of tumor burden while 
simultaneously minimizing toxicity and damage to healthy tissue [78,89]. Additionally, financial 
limitations and logistical restrictions of the treatment may need to be considered in formulating a 
clinically relevant optimal control problem. Therefore, optimal dose treatment is a multi-criteria 
optimization problem, in which advancing performance for one decision criterion may decrease the 
performance of another [78]. Having multiple criteria complicates the process in that neither 
condition should dominate or be considered superior to the other, and the optimal control solution 
represents the optimal tradeoffs among all decision criteria (known as the Pareto optimal) [90]. 
Additionally, a practical implementation of OCT to cancer must be derived according to the decision 
criteria and restrictions faced by clinicians. 

Figure 2 presents an overview of the process by which OCT is applied to cancer, along with a 
number of the considerations specific to each individual component of such a study. Notice that the 
formulation of the optimal control problem begins with three driving (or constraining) factors: 
clinical goals, disease-specific biology, and the available data. Each of these factors have direct 
consequences on the choices for the mathematical representation of the biological phenomena 
(Equation (1) above) and the implementation of the OCT problem (Equations (2)–(4)). The figure 
highlights several key questions to consider, such as “what factors are to be optimized?” and “how 
to verify and validate the model system?”, moving through each step of the process. After the 
formulation of the model system and objective function with constraints, the optimal control problem 
can be solved, and the optimal treatment regimen/plan/schedule/dose may be determined. 
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Figure 2. A schematic of the process for formulating OCT problems for cancer therapeutic regimens. 
The orange boxes represent key factors that influence the mathematical representation (teal boxes), 
optimal control implementation (yellow boxes), and eventually the optimally selected treatment 
(green box). Clinical goals, disease-specific biology, and available data influence both the 
development of the mathematical representation (i.e., the model) and the identification of constraints 
critical to using OCT to solve the problem. The mathematical representation of the dynamic system 
is then implemented numerically. The OCT structure uses the constraints (derived from real-world 
considerations) and the implemented model to systematically evaluate the objective function to 
determine the optimal treatment. 

5. Applications of OCT in Cancer Therapy 

OCT has been applied to tumor growth and response scenarios considering chemotherapy 
(mono- and combined therapy), targeted treatments, immunotherapy, radiotherapy, and 
combinations of these approaches [43,81,91–112]. Here, we will focus on examples of OCT applied to 
chemotherapy and radiotherapy that demonstrate the importance of selecting an appropriate model 
system and objective function. The details of a complete OCT example outlining the steps for using 
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PMP are presented in the Supplementary Materials. In this section, we present summaries of several 
illustrative examples designed to build up the reader’s intuition for applying OCT to common 
problems in oncology. 

5.1. Examples of OCT Applied to Chemotherapy 

As noted above in Section 4.2, the first paper applying OCT to chemotherapy was the work by 
Swan et al. [81,113], where the authors combined the effects of multiple drugs into a single control 
variable for the treatment of multiple myeloma. The tumor cell growth is assumed to be Gompertzian, 
and the number of cells decrease due to the action of the therapy. The corresponding ODE model is: 

dT(t)
dt

= -rT(t) ln(T(t)/K)  - αz(t)T(t)/(γ + z(t)) (6) 

where T(t) is the number of tumor cells at time t, K is the carrying capacity, z(t) is the drug dose, r is 
the proliferation rate, α is the maximum death rate by the drug, and γ is the dose at which the death 
rate is half of α. The objective of the optimal control problem presented in Reference [81] is to reduce 
the size of T(t) to T(tf) = Tlow, where Tlow and tf are a target tumor size and the final time, respectively, 
while minimizing z(t) by penalizing the use of the drug (a similar formulation was used by Bahrami 
and Kim [82]). The form of the resulting objective functional is: 

. (7)

In Reference [81], the optimal treatment plan is compared with patient data going through the 
standard treatment protocol. The standard protocol was 11 cycles of 1 dose every four weeks, 
resulting in the tumor reducing to Tlow. The resulting optimal treatment plan that satisfies the 
objective function, Equation (7), is to start with less than 1/10 of the standard dose, and gradually 
increase to half of the standard dose. With the continuous drug delivery defined by the optimal 
control solution, the treatment is able to reduce the tumor to Tlow seven times faster than the standard 
protocol, with 1/40 of the standard accumulated dose. 

Similar to Equation (7), a commonly used cost function to optimize therapeutic regimens based 
on an ODE models is: 

, (8)

where W is a subjective weight factor (i.e., variable of choice) that balances the relative importance of 
the two terms in the cost function (see, e.g., References [102,110,114]). The choice of W is problem- 
and drug-dependent. In Equation (8), W might be increased to lower the cumulative dose delivered 
in an effort to reduce the potential toxicity of the drug. However, if the main goal is to decrease the 
tumor at the end of the treatment, with little regard to the cumulative dose, W can be reduced. This 
weight is selected such that the desired feature of the optimal solution appears [43]. While the 
quadratic form of J with respect to the control variable is not motivated by biological phenomena, it 
does ensure the optimization problem is convex (i.e., the optimization problem has several 
mathematical features including the existence of a global minimum). 

5.1.1. How do the Weights of the Cost Functional Affect the Optimal Solutions? 

To explore the consequences of different weights in the cost function, we describe the results of 
numerically solving the OCT problem for a simplified form of the Gompertzian growth ODE model 
above (see, Chapter 10 from Reference [41]): 

dT(t)
dt

= rT(t) ln (1/T(t)) - δz(t)T(t) (9) 

where r is the growth rate, δ is the magnitude of the dose, and z(t) is the effect of an arbitrary therapy. 
The objective function is defined as: 
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where the wi are the weights for each term. In Equation (10), we minimize the (1) tumor density at 
the final time, tf (first term on the right-hand side of the equation), (2) tumor burden during the 
treatment (first term in the integral), and (3) total drug dose (second term in the integral). The system 
was solved by implementing the Forward-Backward Sweep Method (as described in Chapter 4 of 
Reference [41]). For this example, the initial and final conditions were (arbitrarily) chosen as T(0) = 
0.8 and λ(20) = w1 respectively, where the final time is 20 days and the initial normalized tumor 
density is 0.8. The optimal control solutions for four different weight combinations are presented in 
Figure 3. For comparison, if the treatment is not administered, then T(20) = 1, but if the weights are 
(w1, w2, w3) = (1,1,1), T(20) = 0.65. As expected, if we set w3 = 3, which weights the total drug 
administered as more costly, the tumor density at the final day increases to T(20) = 0.83. For the cases 
(w1, w2, w3) = (3,1,1) and (w1, w2, w3) = (1,3,1), the solutions are T(20) = 0.54 and T(20) = 0.50, respectively. 
Despite the fact that the tumor density at day 20 is 8% higher for the case where w1 = 3, the total dose 
is 46% lower than the case w2 = 3. The results from the numerical experiments presented in Figure 3 
are qualitatively similar with the results obtained by Reference [111]. The definitions of the weights 
will significantly alter the optimal treatment protocol. In our simulations, the highest total dose when 
(w1, w2, w3) = (1,3,1) is 485% higher than the lowest total dose when (w1, w2, w3) = (1,1,3) (11.57 and 
2.39, respectively). In practice, the definition of these weights depends upon on the specific treatment 
used and its potential side-effects, the type of the tumor, and the priorities for the desired treatment. 

 
Figure 3. Panel (a) presents the normalized tumor density, while panel (b) displays the therapeutic 
dose using parameter values of r = 0.3 (growth rate) and δ = 0.45 (magnitude of the dose) for Equation 
(6). Depicted is the solution of the model without treatment (black) as well as the optimal control 
solutions for different combinations of weights. The weights depicted are: (w1, w2, w3) = (1,1,1) (red), 
increased weight on the tumor density at the final time (w1, w2, w3) = (3,1,1) (blue), increased weight 
on the tumor density over the whole treatment (w1, w2, w3) = (1, 3, 1) (green), and increased weight on 
the therapy toxicity (w1, w2, w3) = (1, 1, 3) (purple). By varying the weights in the optimal control 
functional, tumor control can vary, and the recommended drug dosage may increase or decrease over 
time. 

5.1.2. What Clinically Relevant Constraints might be Considered? 

Martin and Teo [86] also studied applications of OCT to chemotherapy and included additional, 
clinically relevant constraints to construct optimal treatment schedules. The first constraint assigned 
on the state variable was to account for the efficacy of the drug. As it is undesirable for the tumor 
burden to increase at any point during the course of therapy, the number of cancer cells, T(t), is not 
allowed to exceed the initial condition, T0, at any time: 

T(t) ≤ T0. (11)
For a toxicity constraint, they limited the total drug exposure (calculated by integrating drug plasma 
concentration over the treatment interval), by imposing 
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where ztot is the bound on the total drug exposure. Additionally, since the chemotherapies are not 
effective below certain plasma concentrations, z0, the treatment concentration is expressed in a 
piecewise fashion using the Heaviside function, H, as 

 z(t) = (z(t) - z0)H(z(t) - z0), (13)
where 

H(z(t) – z0) = 0,     z(t) > z0
1,  otherwise. (14)

Imposing the above constraints ensure the drug concentrations below z0 are ineffective but still 
contribute to toxicity. Also, to avoid acute toxicity, when the drug concentration exceeds a maximum 
zmax, the control variable is constrained by the inequality 

z(t) ≤ zmax. (15)
Due to discrete dosing and the therapeutic being effective over a specific range of concentrations, the 
amount of drug that can be administered at any given point in time is bounded by 

zlb ≤ z(tk) ≤ zub     or    z(tk) = 0, (16)
where zlb and zub are the lower and upper bounds of the concentration of drug respectively, given at 
times tk, k = 1, 2, …, N. Therefore, by defining an objective function for the number of cancer cells at tf 
(Equation (8)), while incorporating several constraints on the drug concentration z(t), they were able 
to generate regimens with clinically relevant objectives, that is, the optimal control solution satisfies 
constraints imposed by the established clinical knowledge regarding the drug action, such as the 
maximum allowed cumulative and single drug dose. In particular, they found that in contrast to 
conventional regimens that begin with high-intensity treatments at the beginning of therapy, an 
optimal drug regimen applies the largest doses at the end of the treatment period. This result is 
directly affected by including in the objective function the requirement that the tumor burden is 
minimized at the end of treatment. Also note that while this is an excellent example of applying OCT 
to a clinical problem, actually taking such results and translating them into a practical solution 
remains an open area of investigation. 

5.1.3. What if the OCT Problem is Dependent on more than one Variable? What about Drug 
Resistance? 

Two recent examples of OCT applied to PDE models with respect to chemotherapy are 
References [115] and [116], that discuss the clinical considerations of drug resistance. The research by 
Pouchol et al. [115] is a theoretical study that provides insight into the mechanisms behind the 
emergence of drug resistance. The authors characterize both mutations (i.e., changes in gene base 
pairs) and epimutations (i.e., changes in the expression of genes without a change in the sequence of 
DNA base pairs). In particular, the model allows for continuous transition between resistant and 
sensitive phenotypes via reversible changes in the expression of genes (epimutations). Applying OCT 
to this modeling framework identified the importance of “drug holidays” (i.e., periods of time free of 
drug) for cells to revert to a phenotypic state that is susceptible to therapy. 

Later, Almeida et al. [116] sought to identify optimal chemotherapy regimens for leukemia that 
only incorporated spontaneous epimutations to capture induced resistance. This paper is noteworthy 
in that it represents an early effort attempting to compare OCT modeling results to biological data. 
They defined their system such that the total population, p(t), depends upon the evolution of the 
population density function n(x,t), 

p(t) = ∫ n(x,t)dx
ℝ

, (17)
where the number density of cells in the phenotypic state x over the domain ℝ (such that x = 0 
corresponds to the highest proliferation rate in the absence of drug and x = 1 represents the highest 
level of cytotoxic drug resistance) at time t evolves according to 

∂n
∂t

 = β
∂2n

∂2x2
+R(x,p(t)z(t))n. (18)



J. Clin. Med. 2020, 9, 1314 13 of 25 

 

In Equation (18), the diffusion term (first term on the right-hand side) models the effects of mutations 
that occur with rate β, and the reaction term (second term on the right-hand side) is defined using 
the functional R representing the fitness of the cancer cells in the phenotypic state x dependent upon 
the population size, p(t), and drug concentration, z(t). This fitness functional accounts for the net 
proliferation of the cancer cells in phenotypic state x using terms defining growth, natural death, and 
cell kill due to chemotherapy [116]. Simply exploring the model system, the authors found several 
clinically relevant results including how: (1) periodic piecewise-constant delivery (which accounts 
for many standard regimens) can induce a population bottleneck inducing drug resistance, (2) high 
drug doses may effectively reduce cell number at the cost of inducing greater cell resistance, and (3) 
regimens that have longer drug-free periods (drug holidays) may allow cells in resistance phenotypic 
states to revert to more drug-sensitive states—the same result presented in Reference [115]. With 
models that consider the adaptability (or plasticity) of tumor cells to revert to a phenotype that is 
once again susceptible to therapy after treatment has been withheld, OCT can be used to potentially 
overcome drug resistance by generating regimens that exploit this reversible evolvability. 

For the OCT problem, the authors considered one scenario aimed at minimizing the average 
number of cancer cells over the whole course of treatment and a second scenario aimed at minimizing 
the number of cancer cells at the final time: i.e., similar to above (Equation (10)) with J = 1

T ∫ ptf
0 (t)dt 

and J = p(tf), respectively. Additionally, they incorporated constraints that account for maximum 
tolerated dosages over the course of therapy: 

zj ≤ Ck

k+Mk

j = k

 (19) 

where zi represents the jth dose, Ck, is the maximum administrable dose for the kth therapy cycle, and 
Mk is the maximum duration of therapy. By solving the optimal control problem, the authors 
identified two major conclusions. First, they found that if the goal is to minimize the number of cancer 
cells at the final time point, the optimal dosing regimens consists of high doses toward the end of the 
treatment period. Note that this is a similar result to the Gompertzian example described above that 
considered the tumor at the final time only. However, Almeida et al. acknowledge that such a 
regimen is not ideal for treatment, and by running comparison simulations, if the goal is to simply 
minimize the tumor burden only at the final time, standard regimens may be sufficient. Second, if 
the goal is to minimize the average cancer cell population size throughout the course of therapy, a 
continuous low dose over the therapy period has relatively the same performance compared to the 
optimal result (which consisted of higher doses separated by 4–7 days early in treatment followed by 
low daily doses). This low-dose regimen is also known as metronomic dosing and has been 
previously explored clinically to help minimize side effects for patients [117]. 

5.2. Examples for Radiation Therapy 

Hahnfeldt et al. developed a model to describe tumor development in a murine model of lung 
cancer [118]. In their model, tumor growth is assumed to be Gompertzian, with the carrying capacity 
being proportional to the vascular support (i.e., tumor growth due to nutrients provided by the 
vasculature): 

dT
dt   = -rT ln T

K , (20)
dK
dt  = S(T,K) - I(T,K), (21)

where T is the number of tumor cells, K is the effective vascular support provided to the tumor, and 
r is the tumor cell proliferation rate. The vascular development is modeled as the balance between 
stimulatory, S(T,K), and inhibitory effects, I(T,K): 

S(T,K) = bK2/3, (22)
I(T,K) = dK4/3, (23)
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where b and d are the birth and death rates of the cells, respectively. The model was extended to 
account for the effects of anti-angiogenic drugs on endothelial cells as well as radiotherapy [96] on 
both the tumor and endothelial cells: 

⎩
⎪
⎨

⎪
⎧ dT

dt
  = -rT ln T

K
- DT(αT + βT ∫ D(s) exp (-µT(t - s)) dstf

0 )

radiotherapy

dK
dt

 = -γKν + S(T,K) - I(T,K) - DK(αK + βK ∫ D(s) exp (-µK(t - s)) dstf
0 )

radiotherapy , (24)

where D is the radiation dose, αi are the parameters from the linear component of the radiotherapy, 
βi are the parameters from the quadratic component of the radiotherapy, the µi are the repair rates of 
the DNA breaks, v is the dose of the anti-angiogenic drug, and γ is treatment efficacy. 

5.2.1. How do Effects of Therapy on both Healthy and Tumor Cells Affect the OCT Problem? 

The objective of their optimal control problem is to maximize the tumor cure probability (TCP), 
while constraining the total dose of the anti-angiogenic and the radiation therapies. The objective 
function is defined as J = max(TCP), where the TCP is given as TCP = exp(−F⋅θ⋅Tf ), where F is the 
fraction of tumor cells that are capable of regeneration, θ is the tumor cell density, and Tf is the tumor 
volume at the end of the treatment. To be clinically relevant, the radiotherapy must be given at fixed 
intervals. This constraint is enforced in their optimal control problem by requiring the radiotherapy 
to be administered for one minute per day but that each daily dose can be different. For the case 
where the anti-angiogenic drug is not considered, the resulting optimal radiotherapy protocol is to 
administer an increasing dose of radiation with each session, where the final dose is double the initial 
dose. However, when the anti-angiogenic drug is included with the radiotherapy in the optimal 
control problem, the optimal regimen for the radiation treatment is to initially decrease the dose until 
the midpoint of treatment, reaching half of its initial dose value, and then increasing the dose until 
the end of treatment, reaching the same initial fraction as at the start of therapy. Further, among all 
possible strategies (e.g., sequential versus simultaneous versus partial overlap versus alternating, 
dose intensification versus constant dose rate versus dose de-escalation), their results indicate that 
the optimal scheme is to administer the anti-angiogenic drug at the latter portion of the radiotherapy 
treatment in a dose-intensified manner. This optimal scheme is consistent with the results in 
Reference [119], where the authors concluded that the simultaneous treatment is more effective in 
reducing the tumor size in mice than radiotherapy followed by an anti-angiogenic drug. 

5.2.2. How do we Account for the Spatial Distributions of Radiation dose on Normal Tissue? 

An example of applying OCT to a reaction-diffusion model is provided by Corwin et al. [78,79], 
who worked to optimize intensity-modulated radiation therapy (i.e., spatially varying radiation) for 
glioblastoma patients. To characterize relevant clinical objectives, they considered two equally 
important decision criteria: (1) minimizing radiation dose to normal tissue, and (2) minimizing the 
number of viable tumor cells after seven days. To provide dose fractions that are comparable to the 
standard of care, they incorporated several restrictions including limiting the total daily dose to the 
normal tissue and ensuring that the fraction of dose remains well below a threshold (interpreted as a 
tolerance threshold). Due to a spatially varying control variable, the domain is discretized into 
imaging voxels, and a quadratic objective functional (again, where the quadratic ensures the 
convexity of the optimization problem for a global minimum) is considered with the general form, 

J = ∑ ∑ Wi(Di – zi,j)
2
H(Di – zi,j)ji , (25)

where zi,j is the dose received by the jth voxel of the ith decision criterion (the different decision 
criteria are described below), Wi is the weight of the ith criterion, Di is the dose parameter that 
describes the cost of the ith decision criteria, and H(Di - zi,j) is the Heaviside function that sets the 
weight to 0 in voxels with Di > zi,j and is 1 otherwise. The authors chose an alternative strategy for 
solving their optimal control problem, where instead of incorporating decision criteria directly into 
the objective functional (i.e., Equation (25)), the authors employed a multi-objective evolutionary 
algorithm (for more information see Reference [79]) to optimize the weights and dose. The quality of 
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each optimized plan was judged by three decision criteria: (1) and (2) being minimizing the maximum 
dose per fraction to any voxel and minimizing the uniform equivalent dose to normal tissue, 
respectively. A third decision criterion was also varied to investigate the effects of altering target 
optimization objectives: (3a) tumor cell kill, (3b) tumor survival after one week of treatment, or (3c) 
tumor survival 11 weeks after one week of treatment. Solving this optimization problem, they 
generated spatially heterogenous radiation fields that, when compared to the standard-of-care plan, 
resulted in an overall decrease in the equivalent uniform dose delivered to normal tissue while 
simultaneously increasing the dose to tumor tissue by almost a factor of three for some patients. 

6. Challenges and Opportunities 

A fundamental barrier to the practical and productive application of OCT to optimize the 
response of a tumor to therapy is our current limits on being able to accurately predict—
mathematically—the growth of the individual tumor, the distribution of drugs within that tumor, 
and the response of that tumor’s cells have to various therapies. The development of multiscale 
mathematical models to incorporate several levels of biological data for an individual patient is 
another area for future investigation [120]. The computational challenges of implementing such 
models as well as methods for solving the optimal control problem for these systems are also active 
research areas. Finally, we are currently limited in our ability to adequately quantify the in vivo 
distribution of therapies, though there are new efforts underway in this area [48,121,122]. 

While there is a great deal of data collected from patients undergoing treatment for cancer, not 
all of it is well suited or easily adapted for biologically based modeling efforts [64,65]. There are 
several data types routinely collected from patients (e.g., medical imaging and tissue samples), but 
challenges arise due to the wide variation currently employed in obtaining these data. For example, 
routine imaging data (e.g., magnetic resonance imaging (MRI) or positron emission tomography 
(PET)) might be collected in most patients, but they are frequently not of the kind that can be used 
for quantitative modeling—rather they are collected merely for anatomical evaluation (as in, for 
example, applying the response evaluation criteria in solid tumors (RECIST) [123]). This is especially 
manifest during multi-site clinical trials in which different imaging devices are used to collect the 
data. Fortunately, there are ongoing efforts designed to establish consensus including the National 
Cancer Institute’s Quantitative Imaging Network [124], which has worked to establish the 
repeatability and reproducibility of advanced imaging techniques [125–128]. There has recently been 
an increase in use of medical imaging data to inform patient-specific models of tumor growth and 
response [129]. In principle, images can be collected early in the course of therapy and these data can 
be used to calibrate an appropriate mathematical model to determine patient-specific parameters of 
tumor response to that therapeutic regimen. Using this patient-specific information, an optimal 
control problem can be solved to suggest improvements in the dosing strategy for the individual 
patient—see Figure 4 for an example of the predicted spatio-temporal development of a breast cancer 
tumor for a standard-of-care regimen compared to an alternative dosing regimen using mathematical 
modeling [130]. Emerging MRI and PET imaging methods can provide non-invasive characterization 
of properties including (for example) cellularity, perfusion, permeability, hypoxia, metabolism, and 
proliferation [131–137]. As changes in these properties are often temporally upstream of volumetric 
changes, such data can be used to determine patient-specific response parameters long-before the 
conclusion of treatment. In principle, calibrating a mathematical model with patient-specific, three-
dimensional (3D) imaging data can provide a predictive framework appropriate for applying the 
methods of OCT to determine the best dosing strategy for the individual patient. 
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Figure 4. The figure depicts anatomical images of a central slice of the breast overlaid with the 
predicted total tumor cellularity in color. Panel (a) is the model-predicted tumor response for the 
standard-of-care regimen the patient actually received while panel (b) is the predicted response for a 
regimen of the same total dose with alternate dosing. This simulation indicates that the tumor burden 
may have been better controlled using the alternative regimen. These results were achieved by using 
a mathematical model [130] that is calibrated using quantitative magnetic resonance imaging (MRI) 
data prior to and after one cycle of therapy to define patient-specific parameter values. After 
calibration, the model is then simulated forward to the time of completion of therapy for the standard 
regimen and an alternative regimen for comparison. The standard-of-care regimen consisted of 
combination doxorubicin and cyclophosphamide every two weeks and the alternate regimen pictured 
consisted of a 1/14 of a dose administered daily. Studies such as these provide key motivation for the 
potential of applying OCT to the problem of optimizing therapeutic regimens on a patient-specific 
basis. 

An additional challenge that must be addressed is the uniform processing of data. Beyond the 
challenges mentioned above pertaining to the collection of data, the current methods for processing 
data must be standardized. While the general procedures for assessing clinical data may be the same 
between institutions, the results can vary between individuals because many of these methods are 
not quantitative, allowing for bias and human error to permeate analysis and interpretation of results. 
For example, in radiology, it has been well documented that various factors can cause errors and 
discrepancies between experts in the reading of images [138]. More broadly, there exists a 
repeatability and reproducibility crisis in cancer research (i.e., The Reproducibility Project [139]), and 
this in part can be attributed to the inconsistent processing of data. Robust and precise methods of 
data processing must be developed to not only provide consistent results for any patient, experiment, 
or dataset, but also to alleviate the burden of “hand processing” data. 

Uncertainty quantification, propagation, and mitigation are also central for the proper 
application of OCT. Optimal control is a decision-making process and should account for and/or 
address the uncertainties in its results. Therefore, an important problem in applying OCT to cancer 
treatment is to characterize all sources of uncertainties, trace their propagation through the various 
analysis steps, quantify the uncertainty in model prediction, and ultimately mitigate these 
uncertainties through the control decision making process. Models inherently have uncertainty in 
their construction—a term known as model inadequacy. Nevertheless, if a model can be built or 
modified to be constrained and initialized with measurable data—to produce predictions that are 
directly comparable to clinical or experimental results—these uncertainties can begin to be 
understood and considered as part of the model’s predictions. However, even high-quality 
measurements still have noise and variability between subjects (data uncertainties) that can 
propagate through model simulations. Solutions of optimal control problems depend on the 
uncertainty in mathematical models and the data of tumor development. Robust optimal control 
problems should address uncertainties in their formulations. There are several mathematical and 
computational tools to aid in assessing uncertainties in model prediction. Parameter sensitivity 
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analysis is a broad group of uncertainty assessment techniques used to identify and rank parameters 
by their relative importance (i.e., those parameters that cause the greatest variation in the outputs of 
interest [140,141]). Other methods for handling uncertainty are Bayesian model calibration and 
validation, as it provides a framework for identifying the essential features of a predictive model 
while also providing means of assessing both data uncertainty and model inadequacy [75]. Based on 
contemporary treatments of statistical inverse analysis, in the Bayesian approach, the model 
parameters are random variables or processes characterized by probability theory. Efficient 
computational methods for solving models with random parameters have emerged in recent years 
[142–144], and the development of these analyses of control formulations within a probabilistic 
setting are ongoing [145–148]. 

With the development of various modalities of cancer treatment, we are presented with a unique 
opportunity to not only optimize these regimens individually but also in combination. Currently, 
many combination therapies are given at the same time (such as cytotoxic therapies with targeted 
and/or immune therapies) or consecutively (such as surgery followed by radiation). As an example, 
with our growing understanding of the immune system and the various ways white blood cells can 
be manipulated (check point inhibitors, adoptive cell transfer, cytokine and antibody injections, and 
even vaccines), the order, timing, and dosage of different immunotherapies may be optimized with 
radiation and chemotherapy [149–152]. Many of the current applications of OCT are formulated as 
continuous control problems, and more studies of discontinuous dosing should be explored. 
Furthermore, and of critical importance, other potential regimens not yet considered could be 
systematically evaluated. Such regimens may drive new technology for the administration of drugs. 
For example, take-home infusion pumps [153] may be further developed and made more widely 
available, allowing drugs to be administered over longer periods (from hours to days) giving a lower 
dose over time to decrease potential side effects while also treating the cancer continuously. 

7. Conclusions 

We have presented an overview of the components of OCT that are necessary for optimizing 
therapeutic regimens for oncology patients. While several challenges need to be addressed, it is clear 
that this represents a new and exciting possibility within the broader field of mathematical oncology. 
It is our hope that this contribution raises awareness of OCT for oncology, so that the next era of 
cancer treatment protocols will be shaped by model forecasts that are optimized for the individual 
patients using rigorous mathematical methods. 

Supplementary Materials: The supplementary materials provide descriptions of Pontryagin minimization 
principle along with an introductory example of its application for the more interested reader available online 
at www.mdpi.com/2077-0383/9/5/1314/s1. 
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