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Abstract: Ischemia-reperfusion injury (IRI) constitutes a significant source of morbidity and 

mortality after orthotopic liver transplantation (OLT). The allograft is metabolically impaired 

during warm and cold ischemia and is further damaged by a paradox reperfusion injury after 

revascularization and reoxygenation. Short-term and long-term complications including post-

reperfusion syndrome, delayed graft function, and immune activation have been associated with 

IRI. Due to the current critical organ shortage, extended criteria grafts are increasingly considered 

for transplantation, however, with an elevated risk to develop significant features of IRI. In recent 

years, ex vivo machine perfusion (MP) of the donor liver has witnessed significant advancements. 

Here, we describe the concept of hypothermic (oxygenated) machine perfusion (HMP/HOPE) 

approaches and highlight which allografts may benefit from this technology. This review also 

summarizes clinical applications and the main aspects of ongoing randomized controlled trials on 

hypothermic perfusion. The mechanistic aspects of IRI and hypothermic MP—which include tissue 

energy replenishment, optimization of mitochondrial function, and the reduction of oxidative and 

inflammatory damage following reperfusion—will be comprehensively discussed within the 

context of current preclinical and clinical evidence. Finally, we highlight novel trends and future 

perspectives in the field of hypothermic MP in the context of recent findings of basic and 

translational research. 
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1. Introduction 

Liver ischemia-reperfusion injury (IRI) poses a universal risk of adverse clinical outcomes in 

extended liver resections and orthotopic liver transplantation (OLT). The development of hepatic IRI 

after OLT has been associated with perioperative complications, including post-reperfusion 

syndrome, delayed graft, and primary non-function as well as acute rejection [1,2]. 

The overall success of liver transplantation has resulted in an increasing spectrum of indications 

[3,4]. Based on the critical organ shortage, an increasing number of extended criteria donor (ECD) 

allografts are utilized today, which were previously considered unsuitable for transplantation [5,6]. 

Frequently employed ECD characteristics include advanced donor age, prolonged cold storage of >12 

h, macrosteatosis of >30%, mixed steatosis of >60%, organ dysfunction at procurement, and donation 

after circulatory death (DCD) [7]. Despite the positive impact on waiting list times, the utilization of 

ECD livers has also been linked to inferior posttransplant outcomes due to their increased 

susceptibility to IRI and a subsequently reduced ability for functional recovery [8–10].  

The key steps of IRI occur at several timepoints during solid organ transplantation. In an oxygen-

depleted graft, reperfusion triggers an inflammatory cascade followed by a subsequent acute and 

chronic downstream graft injury [11,12]. Various cellular and subcellular compartments are involved 

which results, for example, in hepatocyte necrosis and endothelial cell apoptosis [13].  

Static cold storage (SCS) sufficiently sustains most allografts during organ transport and has 

remained the standard of organ preservation for more than three decades [14]. In ECD allografts, 

however, SCS imposes an increased susceptibility to IRI and allograft related complications; as such, 

dynamic preservation techniques including machine perfusion (MP) have evolved as important tools 

to preserve and recondition such livers [6]. While normothermic machine perfusion (NMP) aims to 

closely mimic in vivo conditions with the use of oxygenated blood-based perfusate or artificial 

oxygen carriers, hypothermic machine perfusion (HMP) relies on the use of artificial, cooled 

perfusion solutions with oxygenation.  

This review summarizes the underlying mechanisms of IRI and the impact of HMP in the 

transplantation of ECD livers. Additionally, current clinical applications and future perspectives of 

hypothermic liver perfusion are detailed.  

2. Ischemia-Reperfusion Injury and Marginal Allografts 

2.1. The Mechanism of Ischemia-Reperfusion Injury 

Ischemia-reperfusion injury is characterized by three chronological events: The phase of 

ischemia, followed by the reperfusion, and late or latent injury [15]. In OLT, injury accumulates 

during the ischemic phase and significantly depends on the type of organ donation (donation after 

brain (DBD) vs. circulatory death (DCD)) [16]. The next event is the organ reperfusion, which 

immediately occurs when an organ is reoxygenated under normothermic conditions, either following 

implantation or ex situ on a normothermic perfusion device. When oxygen is introduced to hypoxic 

and energy depleted tissue, reactive oxygen species (ROS) are immediately released from the 

mitochondrial respiratory chain. This key event triggers further downstream inflammation and links 

the acute phase of IRI to the third component of injury: the activation of resident and recruited 

immune cells. During this recovery phase of IRI, the newly transplanted solid organ is challenged 

further through interaction with immunosuppressive drugs, infections, and potential surgical 

complications [17].  

Standard cold storage (SCS) relies on hypothermia to decelerate cell metabolism and reduce the 

oxygen demand of the allograft. However, the cellular metabolism does not cease completely during 

SCS, and continues as anaerobic metabolism at a low rate, with subsequent depletion of adenosine 
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triphosphate (ATP) stores and the generation of catabolic ATP products [18]. Simultaneously, the 

respiratory chain, redox active enzymes, and electron carrier pools including NADH and 

CoenzymeQ10 (CoQ) are reduced [19]. It has been suggested that ischemia increases intracellular 

cAMP levels, which in turn stimulate glycolysis, with subsequent accumulation of hexose-6-

phosphates and lactate [20]. Significant cellular ATP depletion results in ionic deregulation due to 

failure of membranous sodium-potassium (Na+-K+) ATPases, calcium accumulation, and an acidic 

pH [21,22]. 

The reintroduction of oxygen to the ischemic tissue following allograft revascularization leads 

to massive mitochondrial reactive oxygen species (ROS) production and release [19]. Studies on ROS 

release from the mitochondrial respiratory chain have delineated Complex I as a major source of ROS 

formation [23,24]. The mitochondrial injury causes further energetic depletion, an impaired 

mitochondrial calcium buffering capacity, and triggers cell death by ROS released through the 

mitochondrial permeability transition pore (MPTP) with subsequent danger-associated molecular 

patterns (DAMPs) released from the nucleus [25]. DAMPs in turn activate Kupffer cells and other 

non-parenchymal cells through reaction with Toll-like receptors (TLRs) [26]. This provokes a 

sustained inflammation dominated by innate immune cells, particularly Kupffer cells, which results 

in the recruitment and activation of additional neutrophil leukocytes and monocytes [27–30]. 

Essential microstructures of the liver including the endothelial glycocalyx are highly susceptible to 

oxidative stress and deteriorate quickly in an ischemic setting [31], leading to further leukocyte and 

platelet adherence, aggregation, and activation [32]. Furthermore, the discrepancy between 

vasoconstrictive mediator accumulation and suppression of nitric oxide (NO) levels impairs the 

microcirculation and perfusion of the liver [33,34], and further aggravates the allograft injury.  

The clinical effects of IRI can manifest as a broad spectrum of short-term and long-term 

complications, resulting in an overall inferior patient survival [5,6]. IRI-induced complications 

include intraoperative post-implantation hemodynamic instability (post-reperfusion syndrome), 

delayed graft function (DGF), and primary nonfunction (PNF), with the latter being the most serious 

posttransplant complication requiring retransplantation and frequently leading to patient death [6]. 

Severe IRI furthermore contributes to acute cellular rejection (ACR) according to Lund’s “injury 

hypothesis”, where the innate inflammatory immune response during IRI provokes a response of the 

adaptive immune system [1]. 

2.2. The Heterogeneity of ECD Grafts 

The term ECD comprises a heterogenous group of different graft types with distinct functional 

impairments and an increased susceptibility to IRI [6,35]. Based on the growing obesity epidemic, 

steatotic grafts have emerged as an essential part of the ECD donor pool [36]. Fatty livers—

particularly with high percentages of macrosteatosis—are not only prone to develop severe IRI due 

to their metabolic ATP depletion, but also have an impaired microcirculation [37], and are more 

susceptible to oxidative stress [38]. Such features create an intrinsically pro-inflammatory 

microenvironment [39,40]. Both vasoconstriction and excessive ROS formation exacerbate the 

microcirculatory dysfunction and consecutively activate the innate immune system and lead to 

massive Kupffer cell activation with neutrophil infiltration and subsequent ACR or chronic graft 

dysfunction [36,41]. Due to this susceptibility to IRI, steatotic grafts are thought to especially benefit 

from MP, with the optimal application of MP for steatotic livers currently being evaluated [5,36,42]. 

Hypothermic perfusion has been shown to improve the metabolic status and recharge energy stores, 

leading to improved graft survival compared to unperfused macrosteatotic human and rodent livers 

[42]. However, further clinical evidence is needed in this field. At normothermic temperatures, 

reoxygenation of the fatty allograft leads to significant IRI. As such, the role of normothermic organ 

“reconditioning” and defatting protocols remains controversial [36]. 

In DCD livers, the additional period of in-situ donor warm ischemia time exposes the recipient 

to a higher risk of developing ischemic-type biliary lesions (ITBLs). The underlying mechanism is 

multifactorial and includes an impairment of the microcirculation with subsequent ischemic injury 

of the peribiliary arterial plexus and the formation of non-anastomotic biliary strictures (NAS) [43]. 
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This type of injury remains a critical determinant of the long-term outcome of OLT using DCD 

allografts [44]. Energy depletion further contributes to the development of ITBLs though the impaired 

function of ATP dependent hepatocyte bile acid transporters [45]. The initial bile production 

following reperfusion appears to have a toxic effect, conferring further injury to the cholangiocytes 

and the entire biliary tree [46].  

In the context of the demographic development in the Western world, elderly donors have 

likewise become an important part of the donor pool. Various reports demonstrate that 

transplantation of elderly donor allografts (>80 years) is safe and not associated with inferior overall 

outcomes per se [47,48]. Septuagenarian and octogenarian donor livers are successfully utilized with 

acceptable results [49,50]. However, older livers have a reduced functional reserve and regeneration 

capacity and are therefore more vulnerable to IRI injury; they show a higher incidence of biliary and 

arterial complications as well as inferior initial graft function [49]. This graft category was shown to 

benefit from ex vivo MP to mitigate the impact of additional risk factors such as prolonged periods 

of cold ischemia [49].  

3. Machine Liver Perfusion Technology 

3.1. History and Clinical Application 

Machine perfusion with oxygenated blood was already implemented in the first series of 11 

successful human OLTs in the 1960s [51]. However, the logistical simplicity and reliable performance 

of SCS led to its quick adoption as the standard solid organ preservation technique in clinical practice. 

The increased utilization of high-risk organs has unveiled the limitations of SCS, furthering the 

debate on the impact of different MP techniques. Today, perfusion conditions vary broadly, 

especially in preclinical research. Parameters under discussion include different temperatures, 

perfusate composition, the application of dynamic perfusion (continuous or pulsatile), the timing and 

duration of the perfusion, starting either at the donor site or applied only end-ischemic in the 

recipient center. Three main principles have been translated into clinical practice today: hypothermic 

MP (HMP), hypothermic oxygenated perfusion (HOPE) with active oxygenation, and normothermic 

MP (NMP). The latter differs significantly from the other two hypothermic approaches because the 

allograft is perfused with oxygenated blood or acellular oxygen carriers at physiological 

temperatures with the aim to reduce the ischemic graft injury by minimizing the duration of cold 

preservation and perfectly mimicking physiological conditions [52]. Normothermic perfusion is most 

effective when applied during the entire period of organ preservation [53], while end-ischemic 

applications in marginal DBD and DCD livers failed to protect from the development of ITBLs and 

subsequent graft loss [54]. An additional challenge is the graft transportation on an NMP device 

because a perfusion standstill will inevitably result in graft damage by warm ischemia.  

A recently completed randomized controlled trial (RCT) by Nasralla et al. proved the feasibility 

of NMP for OLT and demonstrated a significant reduction in peak aspartate aminotransferase (AST) 

and subsequent early allograft dysfunction (EAD), however without a significant difference in graft 

and patient survival [55]. Notably, the cold storage control group achieved a 96% one-year survival 

rate [55,56]. A development in the NMP technique that allowed a 7-day preservation of human livers 

with sustained metabolic function and intact liver structure was recently reported by Eshmuminov 

et al. [57]. Based on the sustained full hepatic metabolism during NMP, several groups are currently 

exploring the possibility of normothermic viability testing [58]. The cellular mechanisms of organ 

protection by NMP do not center around IRI mitigation and reconditioning, but IRI prevention, and 

are altogether different from cold perfusion techniques. 

3.2. Hypothermic Machine Perfusion 

During HMP, perfusion solution circulates through the liver at 4–11 °C, delivering metabolic 

substrates and washing out metabolic waste products [56]. The perfusate is not actively oxygenated, 

and therefore has a pO2 of approximately 20 kPa [59]. Based on evidence from a large, multicentric 

RCT that demonstrated superior kidney function, HMP from retrieval to implantation (for example 
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with the LifePort® device) has become routine clinical practice in some European countries in the 

transplantation of extended criteria kidneys [60]. HMP without additional oxygenation was first 

described by James Guarrera, who published the first clinical series already in 2010, proving mainly 

feasibility and safety. Although graft function and survival rates were comparable between HMP-

treated livers and unperfused controls, recipient renal function was improved, and the length of 

hospital stay was shorter with a significant reduction of peak AST in the first week after 

transplantation (Table 1) [59,61]. While exploring the underlying molecular mechanisms, the group 

noted a lower expression of liver inflammatory injury indicators, including acute phase proteins, 

cytokines and parameters of apoptosis, adhesion molecules and oxidative stress, both at the end of 

preservation and after reperfusion [62]. HMP was shown to ameliorate ultrastructural changes 

sustained during SCS and reduced the number of CD68+ macrophages in livers [62]. The same group 

currently recruits participants for the PILOT study (Perfusion to Improve Liver Outcomes in 

Transplantation, NCT03484455) to delineate the effects of HMP in liver transplantation from retrieval 

to implantation using the LifePort® liver transporter (Organ Recovery Systems Inc., Chicago, IL, USA) 

[63]. 

3.3. Hypothermic Oxygenated Perfusion (HOPE) 

The HOPE technique evolved in parallel to HMP with the main difference found in the 

additional active perfusate oxygenation with the aim to provide oxygen to the liver at a partial 

pressure of 60–100 kPa [64]. The impaired mitochondrial function after warm and cold ischemia was 

shown to benefit from the additional active oxygenation at a level of 60–100 kPa. The positive effect 

on graft function and survival was also demonstrated in macrosteatotic grafts, where HOPE 

treatment improved mitochondrial metabolism and reduced succinate prior to normothermic 

reperfusion [42]. Importantly, the beneficial effect of HOPE was lost when deoxygenated perfusates 

were used in the same settings of macrosteatotic grafts (one-week survival of animals: 10/12 steatosis 

+ HOPE vs. 8/12 steatosis only vs. 5/12 steatosis + non-oxygenated HMP) [42].  

The first clinical implementation of the HOPE technique was described in 2014, when Dutkowski 

et al. conducted a case-matched analysis to assess the impact of HOPE treatment on Maastricht Type 

III-DCD allografts [65]. The group pursued this work in another analysis of 25 HOPE-perfused DCD 

livers which were compared to 50 unperfused cold-stored DCD livers. HOPE treatment resulted in a 

superior outcome regarding early liver function, peak alanine aminotransferase (ALT) levels, 

intrahepatic cholangiopathy, and overall biliary complications [66]. Their most recent paper analyzed 

the impact of HOPE perfusion on five-year outcomes in 50 patients and demonstrated similar graft 

survival in HOPE-perfused DCD livers and matched standard DBD grafts. Excellent five-year graft 

survival of 94% was reported in the HOPE-DCD group, compared to 78% in the matched SCS DCD 

cohort, despite a significantly higher donor risk (Table 1) [67]. 
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Table 1. Published prospective clinical hypothermic machine perfusion studies in orthotopic liver transplantation (OLT) 1. 

Author Groups Design N Donors Perfusion Setting Primary Endpoint Outcome and Main Findings 

Guarrera et al., 

2010 [61] 
HMP/SCS case-matched  20 vs. 20 

DBD, ECD grafts 

excluded 

Modified Medtronic PBS®; 4–

8 °C; End-ischemic HMP, 

dual (PV+HA) 

Incidence of PNF, 

EAD, and patient 

and graft survival at 

1 month and 1 year 

-No significant differences in PNF, EAD, and survival but 

shortened hospital stay, reduced peak serum AST levels, 

reduced serum creatinine levels 

-Trends towards lower incidence of NAS 

Guarrera et al., 

2014 [59] 
HMP/SCS case-matched  31 vs. 30 

declined ECD 

grafts  

Modified Medtronic PBS®; 4–

8 °C; End-ischemic HMP, 

dual (PV+HA) 

Incidence of PNF, 

EAD, and vascular 

complication, graft 

and patient survival 

at 1 year 

-Similar EAD and 1 year patient survival but shortened 

hospital stay, reduced peak serum AST and creatinine levels, 

improved early renal function 

-Lower incidence of biliary complications within the first year 

-Strong correlation with the 2 h effluent AST and LDH and 

peak recipient AST. High portal pressure also correlated with 

severity of reperfusion injury 

Dutkowski et al., 

2014 [65] 
HOPE/SCS case-matched 8 vs. 8 

DCD (Maastricht 

III) 

LiverAssist; 10 °C; End-

ischemic HOPE, PV perfusion 

Proof of clinical 

application of HOPE; 

Can HOPE rescue 

DCD organs? 

-Clinical application of HOPE feasible and safe, even in DCD 

transplantation and the outcome of perfused DCD grafts is 

similar to matched DBD graft performance  

-Similar 1-year graft and patient survival 

-No biliary strictures in the HOPE-DCD group 

-Higher 6-months GFR in the HOPE group 

-HOPE-DCD group showed lower hospital costs 

Dutkowski et al., 

2015 [66] 
HOPE/SCS case-matched  

25 vs. 50 

DCD vs. 50 

DBD 

DCD (Maastricht 

III) 

LiverAssist; 10 °C; End-

ischemic HOPE, PV perfusion 

Incidence and 

severity of biliary 

complications within 

1 year after 

transplantation 

-Decreased incidence of intrahepatic cholangiopathy and 

biliary complications in the HOPE group as well as lower rate 

of retransplantation for ischemic cholangiopathy and PNF  

-Improved 1-year graft survival in the HOPE group 

-Decreased peak ALT, AST, and bilirubine, less EAD, lower 

day 1 INR and intraoperative fresh-frozen plasma transfusions 

-Lower 3 and 6 months ALP and 6-months bilirubin 

-Trends in better renal function, ICU and hospital stay, HAT, 

acute rejection, and PNF 

-HOPE DCD livers achieved similar results as matched DBD 

livers in all investigated endpoints 

van Rijn et al., 

2017 [68] 
DHOPE/SCS 

prospective case-

control study 
10 vs. 32 

DCD (Maastricht 

III) 

LiverAssist; 10 °C; End-

ischemic HOPE, dual (PV + 

HA) 

Graft survival at 6 

months after OLT 

(time from 

transplantation to 

retransplantation or 

-Higher 6 months graft survival in HOPE group vs. SCS  

-Safety and feasibility of dual HOPE 

-Increase of hepatic ATP content during HOPE and lower 

peak serum ALT and lower day 7 post-OLT bilirubin 

-Lower median ALT, gamma GT, ALP, and bilirubin serum 

levels 30 days after OLT  
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death from graft 

failure) 

-Trends to a lower incidence of NAS and in length of ICU or 

hospital stay 

-Higher incidence of hypokalemia after reperfusion in HOPE 

group 

van Rijn et al., 

2018 [69]  
d-HOPE/SCS 

prospective phase I 

stury 
10 vs. 20 DCD 

LiverAssist; 10 °C; End-

ischemic HOPE, dual (PV + 

HA) 

Histological biliary 

injury based on bile 

duct biopsies 

-The reduced bile-duct injury and less injury of the deep 

peribiliary glands in d-HOPE-preserved livers 

Schlegel et al., 

2019 [67]  
HOPE/SCS case-matched  

50 vs. 50 

DCD vs. 50 

DBD 

DCD (Maastricht 

III) 

LiverAssist; 10–12 °C; End-

ischemic HOPE, dual (PV + 

HA) 

Post-transplant 

complications, and 

non-tumor-related 

patient death or graft 

loss 

-Similar graft survival in HOPE-DCD livers like in DBD 

-Five-year graft survival was 94% after HOPE-DCD vs. 78% in 

untreated DCD 

Patrono et al., 2019 

[70] 
d-HOPE/SCS case-matched 25 vs. 50 DBD 

LiverAssist; 10 °C; End-

ischemic HOPE, dual (PV + 

HA) 

Multiple clinical 

endpoints  

-HOPE was associated with a lower severe post-reperfusion 

syndrome  

rate and stage 2–3 acute kidney injury 

-Lower transaminases peak and a lower early allograft 

dysfunction (EAD) rate after HOPE 

-A steeper decline in arterial graft resistance throughout 

perfusion 

was associated with lower EAD rate 

van Leeuwen et 

al., 2019 [60] 

d-HOPE-COR-

NMP 

prospective single 

arm 
16 DCD 

LiverAssist; 8–12 °C End-

ischemic HOPE, dual (PV + 

HA), followed by COR and 

NMP 

3-months graft 

survival 

-All livers (n = 11) which met viability criteria were 

transplanted successfully with 100% 6-months survival 

-Introduction of HOPE-COR-NMP increased the number of 

transplantations by 20% 

1 Only completed clinical trials are shown. Case reports and unstructured single center experiences are excluded from the table. Only main aspects of the study are detailed. 

Listed perfusion devices: Medtronic PBS (Minneapolis, MI, USA); LiverAssist, Organ Assist (Groningen, The Netherlands); Exiper, Bologna Machine Perfusion (Medica 

s.p.a., Bologna, Italy). Abbreviations used: ALP, alkaline phosphatase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; COR, controlled oxygenated 

rewarming; DBD, donation after brain death; DCD, donation after circulatory death; d-HOPE, dual hypothermic oxygenated machine perfusion; EAD, early allograft 

dysfunction; ECD, extended criteria donation; HA, hepatic artery; HAT, hepatic artery thrombosis; HMP, hypothermic machine perfusion; HOPE, hypothermic oxygenated 

machine perfusion; ICU, intensive care unit; INR, international normalized ratio; IRI, ischemia-reperfusion injury; kPa, kilopascal; LDH, lactate dehydrogenase; MP, 

machine perfusion; NAS, non-anastomotic biliary strictures; NMP, normothermic machine perfusion; OLT, orthotopic liver transplantation; PNF, primary non-function; 

PV, portal vein; SCS, static cold storage. 
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Currently, five RCTs investigate this cold perfusion technique. The Zurich group initiated a 

multicentric RCT to assess the impact of HOPE on DBD allografts, utilizing broad inclusion criteria 

(e.g., retransplantations, marginal and non-marginal livers) and is powered to assess major 

complications (Clavien grade ≥III) (NCT01317342). The Groningen team explores the dual HOPE (d-

HOPE) technique in DCD grafts. The incidence of biliary complications in DCD liver transplantation, 

reported as high as 25–60% [44], has prompted the development of d-HOPE for DCD grafts, aiming 

to achieve a better oxygen supply to the arterial peribiliary plexus. While the necessity of an 

additional perfusion through the hepatic artery remains a subject of ongoing debate [71], the RCT on 

end-ischemic d-HOPE of DCD livers has been initiated at the University of Groningen with the 

primary endpoint of the incidence of symptomatic NAS [72] (NCT02584283). 

A multicentric RCT on HOPE application in ECD-DBD liver transplantation began recruitment 

in 2017 in Aachen, Germany (NCT03124641). The primary endpoint of the HOPE-ECD-DBD trial is 

early graft injury, assessed by peak ALT during the first seven days post-transplantation [5]. The 

fourth trial led by James Guarrera investigates the application of HMP from retrieval to implantation 

using the LifePort® liver transporter (NCT03484455). A further multicenter RCT, using a two-arm 

design (end-ischemic HOPE vs. SCS) and aiming to recruit 266 patients receiving ECD allografts, has 

recently been initiated by Lesurtel et al. from the University Hospital Lyon (NCT03929523). The 

clinical results as well as the consecutive molecular translational analyses of these RCTs are expected 

to improve our understanding of IRI protection and shape the future of ECD liver transplantation 

(Table 2). 

Table 2. Overview of currently ongoing randomized control trials (RCTs) on hypothermic machine 

perfusion (MP) in liver transplantation. 

Group/NCT MP and 
Comp. 

Design N Donors Perfusion 1 Primary Endpoint 

Zurich, 
Switzerland 
NCT01317342 

HOPE/SCS recruitment 
completed 
multicenter 
RCT 

85 
vs. 
85 

DBD LiverAssist; 8–10 °C; end-
ischemic HOPE, single (PV) 
perfusion 

Major 
postoperative 
complications 
(Clavien grade 
≥III) and CCI 

Groningen, 
Netherlands 
NCT02584283 

DHOPE/SCS recruitment 
completed 
multicenter 
RCT 

78 
vs. 
78 

DCD 
(Maastricht 
category 
III) 

LiverAssist; 8–10 °C; end-
ischemic dual (PV+HA) 
HOPE, 2 h 

Incidence of NAS 

Aachen, 
Germany 
NCT03124641 

HOPE/SCS Recruiting 
multicenter 
RCT 

23 
vs. 
23 

ECD-DBD LiverAssist; 8–10 °C; end-
ischemic HOPE, single (PV) 
perfusion, 1(–2) h 

Early graft injury 
(peak ALT level) 

New Jersey, 
USA 
NCT03484455 

HMP/SCS Recruiting 
multicenter 
RCT 

70 
vs. 
70 

Not stated LifePort Liver Transporter, 
Temperature not stated; 
preservation HMP, dual 
perfusion from retrieval to 
implantation, no active 
oxygenation, 3–7 h 

Early allograft 
dysfunction (EAD) 

Lyon, France 
NCT03929523 

HMP/SCS Recruiting 
multicenter 
RCT 

133 
vs. 
133 

ECD-DBD LiverAssist; 8–10 °C; end-
ischemic HOPE, single (PV) 
perfusion, 1(–2) h 

Early allograft 
dysfunction (EAD) 

1 Listed perfusion devices: LiverAssist, Organ Assist (Groningen, The Netherlands); LifePort Liver 

Transporter, Organ Recovery Systems (Chicago, IL, USA). Abbreviations: RCT, randomized 

controlled trial; CCI, comprehensive complication index; ALT, alanine aminotransferase; DBD, 

donation after brain death; DCD, donation after circulatory death; d-HOPE, dual hypothermic 

oxygenated machine perfusion; EAD, early allograft dysfunction; ECD, extended criteria donation; 

HA, hepatic artery; HOPE, hypothermic oxygenated machine perfusion; MP, machine perfusion; 

NAS, non-anastomotic biliary strictures; PV, portal vein; SCS, static cold storage. 

3.4. Multimodal Perfusion Approaches 

Both normothermic and hypothermic perfusion approaches have demonstrated different clinical 

benefits. Several research groups have therefore recently postulated that the combination of cold and 

warm perfusion sequences, for example HOPE + NMP with gradual rewarming might further exploit 
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the benefits of ex vivo perfusion while eliminating some inherent limitations of the different 

techniques [73,74].  

Van Leeuwen et al. recently reported the clinical experience of the Groningen group with the 

sequential application of dual HOPE, followed by controlled oxygenated rewarming (COR), and a 

period of NMP [73]. Based on their previous clinical and preclinical experiences, the group 

hypothesized that a combination of the reconditioning effects triggered by HOPE, a subsequent 

transition from cold to warm perfusion using COR, and the possibility of ex situ functional 

assessment during NMP would further exploit the benefits of end-ischemic machine perfusion. A 

HOPE-COR-NMP protocol was applied to 16 discarded human livers, 11 of which met the predefined 

viability criteria and were successfully transplanted with 100% patient and graft survival at six 

months [73]. The group estimated that the introduction of d-HOPE-COR-NMP increased the number 

of deceased donor liver transplants by 20% in their center. To enable the transition between perfusion 

temperatures without the need for intermittent perfusate exchange, the authors used a hemoglobin-

based oxygen carrier (Hemopure , HBOC-201, Hbo2 Therapeutics LLC, Souderton, PA, USA) [73,74].  

3.5. Viability Assessment under Hypothermic Conditions and Biomarkers of IRI 

Viability assessment during MP can guide the clinical decision whether to accept a liver for 

transplantation and is therefore an important emerging tool in ECD OLT [49]. The possibility of a 

reliable viability assessment is advocated as a considerable advantage of normothermic perfusion 

techniques [75]. By sustaining full metabolism, NMP allows to analyze several makers of liver 

function and injury, including biliary parameters (e.g., bile flow, bile glucose, bicarbonate, and pH), 

perfusate pH and base excess, portal venous and hepatic artery flow and perfusate hepatocellular 

enzymes [76]. Despite the reduced metabolic activity during cold storage and hypothermic liver 

perfusion, there is increasing evidence that a prediction of future graft performance after 

transplantation may be possible during HMP and HOPE [77]. Analysis of the cold perfusate during 

HMP/HOPE provides a unique opportunity to identity potential biomarkers which are associated 

with various post-OLT outcomes. A recent study involving 31 human ECD-DBD grafts initially 

rejected for transplantation, found that cold perfusion not only ameliorates reperfusion injury but 

also allows for graft viability assessment. Thus, the 2-h perfusate AST and lactate dehydrogenase 

(LDH) correlated significantly with the peak AST after implantation. In two grafts with a significant 

postreperfusion transaminase release, a high portal perfusion pressure was noted [59]. 

The Zurich group has recently presented a new mitochondrial marker to assess the viability of 

entire liver grafts during HOPE. Real-time fluorometric analysis of mitochondrial flavin 

mononucleotide (FMN) in the HOPE perfusate predicted human liver function, complications, and 

graft loss prior to transplantation [78]. The use of this surrogate parameter could facilitate proper 

clinical decision making on whether to accept or decline high-risk ECD allografts. This marker is 

currently validated in other solid organs and also in the RCT of the Guarrera group [63]. Importantly, 

the quantification of FMN is possible in real time, requiring only a spectroscope, and reliably predicts 

graft survival at a threshold of 10,000 A.U., detected within the first 30–45 min of HOPE [78].  

In addition to the above-mentioned studies, multiple groups have extensively assessed the role 

of various biomarkers of inflammation, innate immunity responses, and hepatocellular injury as 

recently summarized in detail by Bhogal et al. [79].  

In the near future FMN as well as other mitochondrial and inflammatory biomarkers will be 

assessed not only in other organs, but also during different perfusion approaches at various 

temperatures [78].  

3.6. Allograft Therapies, Surgical Interventions, and On-Pump Drug Delivery  

The use of ex vivo machine perfusion provides a unique opportunity to selectively target the 

allograft and to deliver drugs and other pharmacological agents without systemic side-effects, 

potentially limiting complications and drug interactions in the recipient [80].  

Several preclinical studies reported the successful delivery of various pharmacological agents, 

including propofol, hydrogen sulfide, carbon monoxide, nitric oxide, defatting cocktails, and 
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nanoparticles, with the aim to modulate the release of molecules, involved in the IRI-cascade or to 

provide anti-oxidative protection during machine perfusion [81–87]. Due to the fact that most of the 

therapeutic interventions were tested during NMP, only limited data are available with in vivo 

therapeutics in HMP/HOPE [82,85,86]. Optimized perfusion solutions for HMP/HOPE containing 

amino acids, metabolic substrates, vitamins, and organic buffers have been investigated in kidneys 

and other organs showing the potential benefits in terms of post-transplant graft function [82,88,89].  

The innate process of post-transcriptional gene regulation known as RNA interference holds 

promise to modulate the detrimental subcellular pathways involved in IRI. However, the systemic 

application of short interfering RNAs (siRNA) is associated with various challenges and high costs 

[86]. In a groundbreaking report, Gillooly et al. recently showed the successful transfection of 

siRNAs, coated in lipid nanoparticles, into hepatocytes of rat livers during hypothermic and 

normothermic machine perfusion [85]. This novel therapy, applied during ex vivo machine 

perfusion, could not only mitigate the injury transmitted through IRI, but also target other genes and 

pathways to, for example, reduce acute rejection and the need of systemic immunosuppression, 

induce tolerance, and eliminate viral solid organ contamination [86].  

Another specific issue in liver transplantation is the need for allograft-recipient size matching 

and the unique ability of the liver to regenerate. In this context, machine perfusion may provide a 

possible platform for ex vivo splitting or size reduction of donor allografts [89,90].  

Further research is however required to assess the role of HMP/HOPE as a potential method to 

deliver various targeted therapies, while bypassing the difficulty of delivering drugs, cells, and 

nanoparticles to the desired sites of action in systemic applications. 

4. Molecular Effects of Hypothermic Machine Perfusion 

Hypothermic machine perfusion targets different sites of the IRI cascade. While the 

understanding of organ protection through MP remains incomplete, several essential effects have 

already been identified. Hypothermic MP substantially recharges the cellular energy pool through 

modification of the different complexes in the respiratory chain, thereby metabolizing the 

accumulated succinate and other molecules [62,91]. 

4.1. The Role of the Endothelial Cells 

Liver sinusoidal endothelial cells (LSECs) are regulators of liver homeostasis, and their injury is 

associated with impaired post-OLT liver function. In contrast to other cells and compartments, their 

injury is predominantly sustained during cold ischemia, where the absence of physiological blood 

flow-derived shear stress causes a disruption of endogenous NO production [92,93].  

Machine perfusion confers a protective effect on LSECs, independent from the level of 

oxygenation [94]. Machine perfusion without additional oxygenation has improved endothelial cell 

integrity in a porcine DCD liver model. Although non-oxygenated HMP did not impact the high-flux 

mitochondrial electron transfer stages in hepatocytes, sinusoids were found with better preservation 

compared to static cold storage [91]. Concerns that cool perfusion temperatures reduce membrane 

fluidity and increase vascular resistance, thus causing unphysiological shear stress of endothelial 

cells, have prompted a careful adaption of perfusion pressures. Avoiding endothelial injury in the 

preserved liver is essential to prevent inadvertent inflammatory reactions due to adhesion molecule 

expression and subsequent leucocyte attachment [95]. Current clinical and experimental studies 

therefore control the perfusion pressure, and usually adapt it to sub-physiological levels between 20–

30 mmHg in the hepatic artery, and 3–5 mmHg for the portal vein during hypothermic liver perfusion 

[68]. 

4.2. The Role of Cold Oxygenation 

The importance of additional perfusate oxygenation was first identified in hypothermic kidney 

perfusion. Lazeyras et al. assessed the link between perfusate oxygenation and ATP production 

during cold perfusion. The authors described a required oxygen content of 100 kPa to efficiently build 
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ATP and metabolize NADH [91,96]. Such results were paralleled by findings of the Zurich group, 

where hypothermically-perfused livers with deoxygenated perfusate did not recover their energy 

pool and experienced severe reperfusion injury following implantation [91,97]. Figure 1 highlights 

the underlying mechanisms of protection through cold oxygenation [77]. Reintroduction of oxygen 

to an ischemic graft in the cold has a distinctly different effect compared to the normothermic setting: 

a low rate of ROS formation coupled with the restoration of mitochondrial oxygen reserves results in 

markedly decreased oxidative stress at subsequent warm reperfusion [98]. 

 

Figure 1. Mechanisms of ischemia-reperfusion injury and clinical application with (sub)cellular effects 

of hypothermic oxygenated machine perfusion. Abbreviations: IRI, ischemia-reperfusion injury; 

HOPE, hypothermic oxygenated machine perfusion; FEF, forward electron flow; ROS, reactive 
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oxygen species; ADP, adenosine diphosphate; ATP, adenosine triphosphate; OLT, orthotopic liver 

transplantation; HSCs, hepatic stellate cells; TNFα, tumor necrosis factor alpha; LSECs, liver 

sinusoidal endothelial cells; DAMPs, damage associated molecular patterns; ET-1, endothelin 1; IL-6, 

interleukin 6; KC, Kupffer cell; TLR4, Toll-like receptor 4. 

Oxygen depletion during cold storage leads to a cessation of oxidative phosphorylation [99]. In 

a DCD pig MP model, Dutkowski et al. observed a switch from a high-flux electron transfer stage—

representative of a high rate of mitochondrial respiration—to a low-flux electron transfer stage within 

the first 60–90 min of HOPE, as measured by the rate of NADH oxidation and CO2 production [91]. 

This effect was not observed in MP with deoxygenated perfusate, which failed to prevent 

mitochondrial and nuclear injury. The effect of ATP restoration during HOPE was confirmed by the 

Groningen group [68]. The underlying mechanism of cold oxygenation is also employed in the 

concept of cold oxygen persufflation, where molecular oxygen is applied in the cold [100,101]. 

Mitochondrial respiratory Complex I has been recognized as the major source of superoxide 

formation and IRI catalyzation [102]. Under physiological conditions, forward electron transport in 

the mitochondrial respiratory Complex I generates a protonmotive force through a redox energy 

difference, which eventually enables ATP synthesis at Complex V [103]. Electrons move from NADH 

to reduce CoQ to CoQH2, enabling protons to move across the inner mitochondrial membrane. A 

prerequisite for forward electron flow is a reduction potential of NAD+/NADH pool that exceeds the 

protonmotive force [103]. Consequently, both a diminished reduction potential and an increased 

protonmotive force can cause reverse electron transport. During reperfusion, several factors, such as 

the reduction of the CoQ pool or flavin mononucleotide (acceptor of electrons from NADH), decrease 

the reduction potential, while the reintroduction of oxygen triggers proton pumping into the 

intermembrane space by Complex III and IV and increases the protomotive force [19,104]. 

Oxygenation in the cold increases the reduction potential by shifting the mitochondrial redox state 

from reduced to oxidized [77]. Furthermore, oxygenated perfusion reduces mitochondrial electron 

transfer rates, thus decreasing the protonmotive force [91].  

The group of Minor et al. compared the effect of perfusate oxygenation with air (20% oxygen) 

with high concentrations of perfusate oxygen (100%) in a model of 18 h cold perfusion. Importantly, 

the group showed a significantly reduced enzyme release during subsequent rewarming and 

normothermic reperfusion of livers which underwent cold perfusion with a high oxygen 

concentration. Additionally, lactate, a key indicator of anaerobic metabolism, was significantly lower 

in livers exposed to high oxygen levels in the cold. Only these livers achieved an enhanced bile 

production after normothermic reperfusion. Interestingly, the authors observed a free radical-

mediated lipid peroxidation and activation of the AMP-activated protein kinase (AMPK) salvage 

pathway and upstream activation of protein kinase A after perfusion with 100% oxygen saturation 

[105]. 

Comprehensive metabolic analyses have identified the accumulation of succinate—a Complex 

II substrate—as the central driver of IRI [106]. Cold oxygenation has been recently shown to 

metabolize accumulated succinate prior to normothermic reperfusion [107].  

Concerns that exceedingly high oxygen concentrations may confer allograft toxicity have been 

brought forward in the context of HOPE. These were largely based on preclinical studies, for example 

by Hart et al., who observed a non-significant increase in ROS formation after cold storage with 95% 

oxygen equilibration compared to equilibration with 21%. Both groups exhibited significantly less 

thiobarbituric acid reactive substances formation than the group stored in non-oxygenated solution 

[108]. Such results should be interpreted with caution, because the experimental settings, where an 

increased lipid peroxidation, reflective of ROS formation was found, involved prolonged 

oxygenation times (18 h vs. 24 h and 48 h) and are therefore difficult to transfer into clinical settings 

[105,108]. HOPE treatment is currently applied for 1–4 h in most studies and different groups explore 

results following long-term HOPE or d-HOPE perfusion in various countries [91]. 
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5. Future Outlook and Remaining Challenges 

Ischemia-reperfusion injury remains one of the leading problems in solid organ transplantation. 

After decades of virtually unchanged organ preservation practice, significant progress has been made 

in the field of ex vivo machine perfusion over the last years. Balancing wait list mortality and organ 

shortages, MP may ultimately lead to an expansion of the donor organ pool by incorporating ECD 

allografts previously deemed unsuitable for transplantation [5,109]. A central question in this context 

is whether an individualized approach to liver preservation will develop for the different types of 

ECD grafts. As such, the RCTs on HMP and HOPE already recruit distinctly different study 

populations [110]. 

Prospective clinical data comparing or combining different static and dynamic organ 

preservation techniques (e.g., NMP vs. HOPE and HOPE-COR-NMP) are urgently awaited to 

facilitate clinical application [73]. With the advent of clinical MP and the context of a dire donation 

situation in the Western world, it will be of utmost clinical importance to identify novel tools for 

allograft viability assessment and outcome prediction at various MP conditions [78]. Dynamic organ 

preservation techniques such as HOPE hold promise to not only enhance the performance of 

“marginal” ECD and DCD allografts, but also may lead to an optimized organ pool utilization. 

Machine perfusion techniques with further improvement of perfusates, the use of additives including 

pharmaceutics [111] or allograft treatment with mesenchymal stem cells during MP [87], defatting of 

steatotic allografts [112], and gene therapies [86], are currently being investigated to improve organ 

preservation and to resuscitate marginal donor allografts.  

Pushing the boundaries and exploring the potentials of MP technology—such as the seven-day 

perfusion of human livers with preserved function and intact liver structure [57]—raise the question 

of the limits of this technological development. The enthusiasm for MP has to be viewed in the context 

of the limitations of the current technologies, which need to be defined clearly and early enough 

through clinical and translational efforts. Dynamic organ preservation techniques hold promise to 

not only enhance the performance of “marginal” ECD and DCD allografts, but also to optimize organ 

pool utilization, thus improving the prognosis for patients on our waiting lists. 
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