

Supplementary Table 1. Primer sequences

Accession no.	Gene	Forward primer sequence (5'-3') Reverse primer sequence (5'-3')	Application	
NM_004235.4	KLF4	ACCTACACAAAGAGTTCCCATC	TGTGTTTACGGTAGTGCCTG		
NM_002701.5	OCT4	CAATTTGCCAAGCTCCTGAAG	GTTGCCTCTCACTCGGTTC		
NM_003106.3	SOX2	TTCACATGTCCCAGCACTAC	TCCATGCTGTTTCTTACTCTC	undifferentiated hiPSC markers	
NM_024865.3	NANOG	CAGAAATACCTCAGCCTCCAG	GCCACCTCTTAGATTTCATTCTCTG		
NM_174900	REX1	CAGATCCTAAACAGCTCGCAGAAT	GCGTACGCAAATTAAAGTCCAGA		
NM_002046.5	GAPDH	AATCCCATCACCATCTTCCAG	ATGACCCTTTTGGCTCCC	housekeeping gene	
	SeV	GGATCACTAGGTGATATCGAGC	ACCAGACAAGAGTTTAAGAGATA TGTATC	Sendai virus transgene- specific primer	
NM_001134	AFP	CTGCAATTGAGAAACCCACTG	TTCCCTCTTCACTTTGGCTG	endoderm markers	
NM_022454	SOX17	AGAATCCAGACCTGCACAAC	GCCGGTACTTGTAGTTGGG		
NM_000280	PAX6	GCCCTCACAAACACCTACAG	TCATAACTCCGCCCATTCAC	ectoderm markers	
NM_006617	NESTIN	TGCGGGCTACTGAAAAGTTC	GGCTGAGGGACATCTTGAG		
NM_004821	HAND	TGAGAGCAAGCGGAAAAGG	TCGGCTCACTGGTTTAACTC	mesoderm markers	
NM_005992	BRACHYURY	CGTGCAGCTAGAGATGAAGG	CATATAGTCGGCCATGGGATC		
NM_001001890	RUNX1	CCAGGTTGCAAGATTTAATGACC	TTTTGATGGCTCTGTGGTAGG		
NM_001145661	GATA2	TTCAATCACCTCGACTCGC	GCTGTGCAACAAGTGTGG	hematopoietic differentiation transcription	
NM_001136154	ERG	TGTGCAAGATGACCAAGGAC	ACCGTGGAGAGTTTTGTAAGG		
NM_152739	HOXA9	AATGCTGAGAATGAGAGCGG	GGGTCTGGTGTTTTGTATAGGG	lactors	
NM_001008540	CXCR4	CTTCATCTTTGCCAACGTCAG	GGACAGGATGACAATACCAGG		
NM_001130145	YAP	GGCTAGACCCAAGGCTTGAC	GGCTGTTTCACTGGAGCACT	naïve state- induced gene	
NM_002167	ID3	CTACAGCGCGTCATCGACT A	TCGTTGGAGATGACAAGTTCC		
NM_003412	ZIC1	GCGCTCCGAGAATTTAAAG A	GTCGCTGCTGTTAGCGAAG	naïve state- specific genes	
NM_006521	TFE3	TGCCTGTGTCAGGGAATCT G	CGACGCTCAATTAGGTTGTGAT		
NM_031944	MIXL1	AGCTGCTGGAGCTCGTCTT CGCCTGTTCTGGAACCATAC		primed state-	
NM 005442	EOMES	CGCCACCAAACTGAGATGA T	CACATTGTAGTGGGCAGTGG	genes	

Name	Subclass	Structure	Proliferation	Name	Subclass	Structure	Proliferation
Ipriflavone	Isoflavone	1.500	+++	Troxerutin	Flavone		+++
Puerarin	Isoflavone		+++	3,2'-DHF	Flavone		+++
Biochanin A	Isoflavone		++	Neohesperidin	Flavanone		++
Icariin	Flavonol		++	Naringenin	Flavanone	illa.	++
Rutoside	Flavonol		++	Hesperetin	Flavanone	-jef-	+++
Quercetin	Flavonol		-	Hesperidin	Flavanone	9-06. 25-06	+++
Diosmetin	Flavone	- they	++	Methyl- Hesperidin	Flavanone	70-02	}-, + +
Apigenin	Flavone	·····	+	Naringin	Flavanone		++
Baicalein	Flavone	il.	-	Taxifolin	Flavanone		+++
Baicalin	Flavone		-	Naringin Dihydrochalcone	Flavanone	- Andre	+++
Chrysin	Flavone		+++	Dihydromyricetin (Ampelopsin)	Flavanol		+++
Formononetin	Flavone		++	Bergenin	Flavanol		+
Kaempferol	Flavone		+++	Isoliquiritigenin	chalcone	مکنی	-
Luteolin	Flavone	. they	+	Butein	chalcone		-
Myricetin	Flavone		++	Phloretin	Anthocyan		+++
Myricitrin	Flavone		++	Silibinin	flavonolignan	-gifadq	++
Nobiletin	Flavone	stag.	++	Silymarin	flavonolignan	-jitaqa	++
Phlorizin	Flavone		~ +++	Morin Hydrate	Flavone	-illi-	++
Quercetin Dihydrate	Flavone		-	NHDC	Chalcone	-3444 -3444	++
Tangeretin	Flavone	Ha.	++				

Supplementary Figure 2. List of names, subclasses, and structures of tested flavonoids with their effect on stem cell proliferation.

Proliferation inhibition : -, proliferation no effect : +, proliferation low enhance : ++, proliferation high enhance : +++

Supplementary Figure 3. (A) Proliferation effects of 10 μ M 3,2'-DHF treatment on PB-iPSC lines. (B) Survival upon dissociation-induced apoptosis condition on several types of hPSCs. (C) Proliferation effect of 10 μ M 3,2'-DHF treatment on several types of hPSCs. (* *p* < 0.05, ** *p* < 0.01). *n* = 3 biological samples.

Supplementary Figure 4. Derivation of naïve state hiPSCs. (A) Scheme of conversion to naïve state hiPSCs. (B) mRNA expression of YAP. (C) Protein expression of YAP. (D) mRNA expression of naïve and primed state-specific markers. (E) Primed-specific flat and naïve state-specific dome-like colony morphology. H3K9me3 expression was more strongly reduced in naïve state hiPSCs than in primed state hiPSCs. Scale bar: 200 μm. (F) Cells with naïve state-specific dome-like colony morphology showed strong positive immunocytochemical staining for pluripotency markers Nanog, OCT4, Tra-1-60, Tra-1-81, and SSEA4. Scale bar: 100 μm. (G) Relative hiPSC proliferation rate with or without 3,2'-

Supplementary Figure 5. hiPSC-derived HPC differentiation morphology at days 8, 12, 14 and 16 with or without 3,2'-DHF. Scale bar: 200 μ m.