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Abstract: It is estimated that at least one million people die by suicide every year, showing the
importance of suicide prevention and detection. In this study, an autoencoder and machine learning
model was employed to predict people with suicidal ideation based on their structural brain imaging.
The subjects in our generalized g-sampling imaging (GQI) dataset consisted of three groups: 41
depressive patients with suicidal ideation (SI), 54 depressive patients without suicidal thoughts
(NS), and 58 healthy controls (HC). In the GQI dataset, indices of generalized fractional anisotropy
(GFA), isotropic values of the orientation distribution function (ISO), and normalized quantitative
anisotropy (NQA) were separately trained in different machine learning models. A convolutional
neural network (CNN)-based autoencoder model, the supervised machine learning algorithm extreme
gradient boosting (XGB), and logistic regression (LR) were used to discriminate SI subjects from NS
and HC subjects. After five-fold cross validation, separate data were tested to obtain the accuracy,
sensitivity, specificity, and area under the curve of each result. Our results showed that the best
pattern of structure across multiple brain locations can classify suicidal ideates from NS and HC with
a prediction accuracy of 85%, a specificity of 100% and a sensitivity of 75%. The algorithms developed
here might provide an objective tool to help identify suicidal ideation risk among depressed patients
alongside clinical assessment.
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1. Introduction

Suicide is an important and serious worldwide public health problem. In 2012, approximately
800,000 people died from self-inflicted injuries [1]. Suicide is conceptualized as a continuum of
ideations/behaviors, including suicidal ideation, suicide planning, attempted suicide, and completed
suicide [2]. An international survey showed a 9.2% prevalence of lifetime suicidal ideation [3]. Only
0.8-10% of suicide attempters reported the absence of previous suicidal ideation [2]. Overall, suicidal
ideation emerges as the first stage of the suicide process and a potential gate for suicide prevention.
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Suicide risk evaluation still relies on clinicians” experiences, and many health-related workers are
not familiar with suicide risk assessment. However, patients” denials of suicidal ideation can lower the
vigilance of clinicians’ assessments, even in persons with a known suicide risk [2]. Very high rates of
suicide among post-discharge patients reflect the limitations of assessments of suicide risk based on
existing strategies. [4]. Monitoring suicidal ideation behavior should therefore not rely heavily on such
denials [2]. Thus, it is important to create new objective methods to evaluate the risk of suicide.

Recently, neuroimaging studies have shown that suicidal behavior is a state-based condition
stored in the neural circuitry that can be quickly switched on by the recall of an experience of mental
pain [5]. Myung et al. used diffusion tensor imaging (DTI) to assess topological organization changes
of white matter networks according to suicidal ideation in major depressive disorder (MDD) patients.
They suggested that the reduced structural connectivity of the frontosubcortical circuit, including
regions associated with executive function and impulsivity, is important in the emergence of suicidal
ideation among MDD patients [6]. Taylor et al. used anatomical analyses and DTI and found that
a depressed group with suicidal ideation exhibited reduced cortical thickness in the frontoparietal
regions and the insula. Depressed patients with suicidal ideation also showed widespread white
matter differences in fractional anisotropy and radial diffusivity. These differences were observed
primarily in posterior parietal white matter regions and central white matter tracts adjacent to the
basal ganglia and thalamus [7].

Traditional statistics can only differentiate different groups with suicidal ideation from those
without, rather than detect which individual is at risk. New analytical methods, such as machine
learning, have been used in an attempt to develop algorithms to classify individual risk [8-11]. One
study used machine learning algorithms based on functional magnetic resonance imaging (fMRI)
neural signatures of death- and life-related concepts to detect individuals with suicidal ideation with
91% accuracy [12]. There have been few related studies exploring whether machine learning methods
of structural magnetic resonance imaging (MRI) can be additional tools to identify patients with
suicidal ideation.

The present study aimed to investigate whether MRI-measured structural changes can assist
in suicide risk stratification among individuals with suicidal ideation and non-suicidal ideation
populations (depressed patients and healthy controls) using machine learning-based analysis.

2. Methods

2.1. Participants

In our study, we recruited 153 participants which were in one three groups of: 41 depressive
patients with suicidal ideation (SI; age 21-60 years, mean = 42.17 years, SD = 11.85 years), 54 depressive
patients without suicidal thoughts (NS; age 21-60 years, mean = 46.17 years, SD = 9.86 years), and 58
healthy control subjects (HC; age 20-57 years, mean = 40.22 years, SD = 9.65 years). All participants
were at least 20 years of age and right-handed. The confirmation of MDD, suicide ideation was primarily
based on psychiatrists” diagnosis and the Mini-International Neuropsychiatric Interview (MINI) carried
out by the trained research nurse. The final confirmation was carried out by the principle investigator
(V.C.-H.C.) according to all available information. The participants were recruited via the outpatient
clinic of the department of psychiatry at Chiayi Chang Gung Hospital and recruitment advertisements.
Exclusion criteria for all participants were any eye diseases (e.g., cataract and glaucoma), history of
suicide attempt, another primary severe mental disorder (e.g., schizophrenia or bipolar disorder),
alcohol/illicit substance use disorder during the past year, any neurological illnesses, and metallic
implants or other contraindications for MRI. The study was approved by the Institutional Review
Board of Chang Gung Memorial Hospital, Chiayi, Taiwan (No. 104-0838B, 104-9337B, 201602027B0).
All participants joined in the study after providing informed consent, and all research was performed
in accordance with relevant guidelines and regulations.
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2.2. Diffusion Magnetic Resonance Imaging Data Acquisition

All participants were scanned using a 3 T MRI (Verio, SIEMENS, Munich, Germany) system
with a single-shot diffusion-weighted spin echo-planar imaging sequence. Diffusion images were
obtained with repetition time (TR)/ echo time (TE) = 8943/115 ms, field of view (FOV) = 250 x 250 mm?,
matrix = 128 x 128, slices = 35, in-plane resolution = 2 x 2 mm?, slice thickness = 4 mm, signal average
= 1192 noncollinear diffusion weighting gradient directions with b = 1000, 1500, 2000 s/mm?, and one
null image without diffusion weighting (b = 0 s/mm?).

2.3. Generalized q-Sampling Imaging Analysis

Generalized g-sampling imaging (GQI) is a new reconstruction method based on the Fourier
transform between the diffusion magnetic resonance (MR) signals and the diffusion displacement,
which allows the deduction of a new relationship between the directly estimated spin distribution
function (SDF) and the diffusion MR signals. GQI is a model-free method that quantifies the density of
water, which diffuses in different orientations. Model-free methods estimate the empirical distribution
of water diffusion with no hypotheses. The SDF is the density of diffusing water in different directions
and is a kind of diffusion orientation distribution function (ODF). Generalized g-sampling imaging
provides information on the relationship between the diffusion signals of water and the SDF; therefore,
GQI can provide directional and quantitative information about crossing fibers. Studies have shown
that GQI has good sensitivity and specificity for white matter properties and pathology [13].

In GQI analyses, eddy correction was first performed using FSL (FMRIB Software Library, Oxford,
UK), and the corrected diffusion images were subsequently registered to the null image in native
diffusion space with a linear transformation. The registered diffusion images were then mapped to
the standard T2-weighted template after an affine transformation with 12 degrees of freedom and
nonlinear warps using statistical parametric mapping (SPM, Wellcome Department of Cognitive
Neurology, London, UK) After the preprocessing procedure, GQI index mapping was reconstructed
from multi-shell diffusion data using DSI studio (National Taiwan University, Taipei, Taiwan), including
generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA), and the isotropic
value of the orientation distribution function (ISO). GFA is calculated from an ODF, and GFA is defined
as the standard deviation divided by the root mean square of the ODF, indicating a measurement of the
anisotropy of water diffusion in microstructures. NQA is the normalized QA, which is defined as the
amount of anisotropic spins that diffuse along the fiber orientation. ISO is the minimum distribution
value of an ODF and thus represents the background isotropic diffusion [13].

2.4. Autoencoder and Supervised Machine Learning Analysis

To conduct the largest number of clinically required trials possible that target ideation subjects
from non-suicide-attempt subjects, we attempted to classify ideation subjects separately from the
others except for those who had previously attempted suicide. In other words, this was a binary
classification of ideation subjects and non-ideation subjects, the latter of which included the HCs and
depression subjects. In this analysis, we employed a 3D autoencoder for feature extraction in the
GQI dataset, which contained GFA, ISO, and NQA maps of the healthy controls, depressed subjects,
ideation subjects, and suicidal attempt subjects (58, 54, 41, and 33 subjects, respectively). For the
simplicity of convolutional neural network (CNN) design, the edges of the GQI images were pruned
to change the size from (91; 109; 91) to (88; 104; 88) before being sent to the CNN-based autoencoder
model. The structure of the network is shown in Figure 1. In addition to the structural MRI data, the
autoencoder was compiled with an Adadelta optimizer along with a learning rate of 0.01 and a binary
cross-entropy loss function in 50 epochs. Following autoencoder feature extraction, the supervised
machine learning algorithm extreme gradient boosting (XGB) and logistic regression (LR) were used
to discriminate ideation subjects from HCs and depression subjects using the resulting compressed
images, the sizes of which were (11; 13; 11; 16) and flattened to (25,168).
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Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 88, 104, 88, 1) 0
conv3id_1 (Conv3D) (None, 88, 104, 88, 32) 896

max_pooling3d 1 (MaxPooling3 (None, 44, 52, 44, 32) 0

conv3d_2 (Conv3D) (None, 44, 52, 44, 16) 13840

max_pooling3d 2 (MaxPooling3 (None, 22, 26, 22, 16) %]

conv3d_3 (Conv3D) (None, 22, 26, 22, 16) 6928

max_pooling3d 3 (MaxPooling3 (None, 11, 13, 11, 16) 0

conv3d_4 (Conv3D) (None, 11, 13, 11, 16) 6928

up_sampling3d 1 (UpSampling3 (None, 22, 26, 22, 16) 2]

conv3d_5 (Conv3D) (None, 22, 26, 22, 16) 6928

up_sampling3d 2 (UpSampling3 (None, 44, 52, 44, 16) 0

conv3d_6 (Conv3D) (None, 44, 52, 44, 32) 13856

up_sampling3d_3 (UpSampling3 (None, 88, 104, 88, 32) @

conv3d_7 (Conv3D) (None, 88, 104, 88, 1) 865

Total params: 50,241
Trainable params: 50,241
Non-trainable params: ©

Figure 1. The structure of the autoencoder, which consists of six 3D convolution layers, three
max-pooling layers, and three upsampling layers, resulted in compressed images with sizes of (11, 13,
11, 16) for feature extraction.

Considering the imbalanced proportion of non-ideation to ideation subjects (112:41), we decided
to split the non-ideation subjects into two halves. Each half contained 29 HCs and 27 depression
subjects and were then concatenated with the ideation subjects and used for training and testing.
In the dataset, the proportion of training set, validation set, and testing set were 4:1:1 by random
selection, which means 5-fold cross validation (CV) and independent separate testing set were used.
The stratify parameter in train_test_split was used to obtain a 4:1 ratio of the training set and testing
set. A 10-fold iteration was performed on train_test_split to obtain results with less bias. In detail,
to prevent overfitting, the data was randomly separated into training and test sets 10 times using an
iteration of train-test split. The numbers, from 1-9, were assigned to the random_state parameter. The
process was designed to keep the model from overfitting a single train and test set. For tuning of
the XGB, the max_depth and n_estimators parameters were set to 5 and 1000, respectively, while the
default values of the remaining XGB parameters and all parameters of LR were used in scikit-learn [14].
The average accuracy, sensitivity, specificity, and area under curve (AUC) of each result were recorded.
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3. Results

3.1. Participants

Table 1 shows the demographic characteristics of the participants. There were significant
differences in age, gender, and years of education among the three groups. Therefore, these parameters
were used as covariates for subsequent analyses.

3.2. Autoencoder and Supervised Machine Learning Analysis

The results of the supervised machine learning binary classification, distinguishing the ideation
subjects from HCs and depression subjects via LR and XGB, are shown in Tables 2 and 3. The results
show the accuracy (ACC), sensitivity (SEN), specificity (SPE), and AUC of the 5-fold CV and testing
set. In Table 2, each metric is an average result of a 10-fold iteration, while the results with the highest
AUC are presented in Table 3. As mentioned in the methods, the data from the HCs and depression
subjects were combined and then split into halves. The two halves were separately distinguished from
the ideation subjects and denoted as -1 (first half) or -2 (second half). Receiver operating characteristic
(ROC) curves of the test results having maximum AUCs are depicted in Figure 2. Among the averaged
results, the highest CV accuracy, 0.74, was attained via XGB-ISO-2. The highest CV AUC, 0.81, was
attained via XGB-ISO-2. The highest testing accuracy, 0.73, was attained via XGB-GFA-1 and XGB-ISO-2.
The highest testing AUC, 0.84, was obtained with XGB-ISO-2. Among the best results, the highest CV
accuracy, 1.00, was attained via XGB-GFA-1. The highest CV AUC, 1.00, was attained via XGB-GFA-1,
XGB-ISO-2, LR-GFA-2, LR-ISO-2, and LR-NQA-1. The highest testing accuracy, 0.95, was attained via
XGB-GFA-1. The highest testing AUC, 0.97, was attained via XGB-ISO-2.
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Figure 2. The testing set classification receiver operating characteristic (ROC) curves showing

the best results of (a) extreme gradient boosting (XGB)- generalized fractional anisotropy (GFA),
(b) XGB- isotropic value of the orientation distribution function (ISO), (c) XGB- normalized quantitative
anisotropy (NQA), (d) logistic regression (LR)-GFA, (e) LR-ISO, and (f) LR-NQA following autoencoder
and supervised machine learning analysis, along with the area under curves (AUCs) (AUC:
XGB-GFA-1 = 0.92; XGB-GFA-2 = 0.94; XGB-ISO-1 = 0.91; XGB-ISO-2 = 0.89; XGB-NQA-1 = 0.90;
XGB-NQA-2 = 0.75; LR-GFA-1 = 0.93; LR-GFA-2 = 0.93; LR-ISO-1 = 0.85; LR-ISO-2 = 0.92; LR-NQA-1
=0.92; LR-NQA-2 = 0.79).
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Table 1. Summary of characteristics of demographic data and neuropsychological tests.

. Depressive Patients with Depressive Patients without o
Characteristics Suicidal Ideation (SI; # = 41) Suicidal Ideation (NS; 1 = 54) Healthy Controls (HC;n=58) A (SIvs. NS) B (SIvs. HC) C (NS vs. HO)
Mean SD Mean SD Mean SD p-Value

Age 42.17 11.85 46.17 9.86 40.22 9.65 0.08 0.39 0.002

Age range 21-60 N/A 21-60 N/A 20-57 N/A N/A N/A N/A
Gender (M/F) 18/23 N/A 23/31 N/A 7/51 N/A 0.90 0.0007 0.0003

Education (years) 13.17 3.36 13.19 2.85 14.11 2.94 0.98 0.585 0.092
HAM-D 17.49 6.17 14.96 6.54 4.5 5.85 0.058 <0.0001 <0.0001
Anxiety of HADS 12.05 4.09 8.00 4.53 4.75 3.61 <0.0001 <0.0001 <0.0001
Depression of HADS 12.56 4.43 7.09 4.62 3.85 3.27 <0.0001 <0.0001 <0.0001

A, T-test between depressive patients with suicidal ideation and depressive patients without suicidal thoughts; B, T-test between depressive patients with suicidal ideation and healthy
controls; C, T-test between depressive patients without suicidal ideation and healthy controls; HADS, Hospital Anxiety and Depression Scale; HAM-D, Hamilton depression rating scale;
N/A, not applicable; SD, Standard deviation; p-value < 0.05 indicating significant difference.

Table 2. The results of identifying ideation subjects from healthy control (HC) subjects and depression subjects by extreme gradient boosting (XGB) and logistic
regression (LR) are the average of a 10-time train_test_split iteration. The data of HCs and depression subjects was split into two halves (-1 and —2) to reduce
imbalance. ACC, accuracy; AUC, area under curve; SEN, sensitivity; SPE, specificity.

5-Fold cross validation (CV) Test
ACC SEN SPE AUC ACC SEN SPE AUC

GFA-1 067 055 079 077 073 065 078 0.82
GFA-2 061 053 069 0.66 064 055 071 072
ISO-1 063 051 073 0.66 067 055 075 0.69

Model Metric

XGB ISO-2 074 0.65 0.81 0.81 073 068 078 0.84
NQA-1 063 047 075 071 063 054 069 070

NQA-2 060 049 0.69 0.64 059 041 071 0.1

GFA-1 067 054 079 076 069 056 077 077

GFA-2 065 056 074 075 068 060 073 079

IR ISO-1 063 052 071 0.67 066 059 070 0.70

ISO-2 063 053 070 0.69 070 061 077 076
NQA-1 069 056 079 0.74 063 046 074 072
NQA-2 056 039 071 0.60 064 049 074 0.69
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Table 3. The results of identifying ideation subjects from HCs and depression subjects by XGB and LR
are the highest of a 10-time train_test_split iteration. The data of HCs and depression subjects was split
into two halves (-1 and —2) to reduce imbalance. Note that the maximum values presented in a row
came from a single prediction that attained the highest AUC. ACC, accuracy; AUC, area under curve;
SEN, sensitivity; SPE, specificity.

5-Fold CV Test
ACC SEN SPE AUC ACC SEN SPE AUC

GFA-1 100 100 100 1.00 085 062 1.00 092
GFA-2 080 083 078 0091 085 075 092 0.94
ISO-1 073 050 100 093 070 062 075 091

Model Metric

XGB 1SO-2 067 083 100 100 080 062 092 0.89
NQA-1 088 100 080 098 070 038 092 090

NQA-2 088 100 050 08 080 075 083 0.75

GFA-1 080 100 073 098 080 062 092 093

GFA-2 080 100 073 1.00 080 062 092 093

IR ISO-1 080 1.00 070 09 075 050 092 0.85

ISO-2 087 1.00 082 100 080 062 092 092
NQA-1 093 080 100 100 065 025 092 092
NQA-2 081 060 073 082 065 062 067 0.79

4. Discussions

To our knowledge, this is the first study using a machine learning algorithm based on the structural
MRI to identify individuals with suicidal ideation. The results showed that the best pattern of structures
across multiple brain locations can classify suicidal ideates from non-ideation depressed patients and
healthy controls with a prediction accuracy of 85%, a specificity of 100%, and a sensitivity of 75%.

Compared to previous studies, we used a different approach to determine the effect of machine
learning. One neurosemantic study used machine learning algorithms based on fMRI neural signatures
of death- and life-related concepts to detect youth with suicidal ideation with 91% accuracy [12].
Based on this approach, they distinguished 17 suicidal ideates from 17 controls with no diagnosis of
depression. This accuracy is similar to that from our findings. Just proposed a concept-based study to
detect alterations in the neural representations of concepts related to death and life. The approach
provided a profound method to explore theories about suicidal ideation. Since assessments based
on task-based functional MRI require more time and higher technique requirements, our machine
learning classifier based on the structural MRI provides another feasible clinical method to detect
at-risk suicidal ideates.

In previous traditional structural MRI studies [6,7], the results showed reduced structural
connectivity of the frontosubcortical circuit [6], reduced cortical thickness in the frontoparietal regions
and the insula, and widespread white matter differences in posterior parietal white matter regions
and central white matter tracts adjacent to the basal ganglia and thalamus [7]. Traditional MRI
analysis can only discriminate the difference between groups with suicidal ideation from those without
suicidal ideation. Newer analysis methods, such as the machine learning algorithm used in this study,
can classify individual risks. This approach more closely resembles risk assessment in real-world
clinical practice.

In our autoencoder and supervised machine learning analysis, we first tried to use
scale_pos_weight in the XGB model, controlling the balance of positive and negative weights, to
reduce the imbalance in the proportion of ideation patients to non-ideation participants. Generally,
the value of this parameter should be set as the ratio of negative samples to positive samples, which
was 2.73 (112/41) in our case. However, the imbalance remained strong after tuning, resulting in a
high specificity and a low sensitivity (for example, GFA: CV accuracy = 0.74; testing accuracy = 0.77;
CV sensitivity = 0.42; testing sensitivity = 0.49; CV specificity = 0.87; testing specificity = 0.87; CV AUC
= 0.76; testing AUC = 0.77; the results were the averages of a 10-fold train_test_split iteration). Thus,
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we decided to adopt the current method, dividing the dataset of HCs and depression subjects into
two halves.

Another issue that may exist is the high dimensionality of the imported feature set, which
contained 25,168 features for each subject that remained even after 3D-CNN compression. As a result,
feature selection methods were also used to reduce the dimensionality but did not yield better results.
In addition to the XGB algorithm, support vector machine (SVM) and random forest (RF) were utilized
for prediction as well, but inferior results were attained compared with XGB and LR.

There are some strengths in the present study. First, we used several different machine learning
methods to determine the most appropriate algorithm. Second, the diagnosis of depression was
based on clinical assessment, and confirmation of suicidal ideation was based on both self-report
and structural interviews. Third, we recruited both nondepressed and depressed control subjects
to control for the effect of depression. The sample size was large compared to the only previous
study. Notwithstanding, this study had some limitations. A total of nine classification machine
learning models were used in this study including: (1) logistic regression (LR); (2) XGBoost (XGB);
(3) decision tree classifier (CART); (4) linear discriminant analysis (LDA); (5) Gaussian na.ve Bayes (NB);
(6) k-nearest neighbors classifier (KNN); (7) support vector machine (SVM); (8) multilayer perceptron
(MLP); and (9) random forest (RF) [15]. However, only XGB and LR showed significant predictions
on classifying GQI images into suicidal ideation and non-ideation subjects. Since different accuracies
were obtained among the different methods tested, it may imply that more samples are warranted.

5. Conclusions

The results from the present study showed the good accuracy of a machine learning algorithm
based on data from structural MRI, and it might provide an objective tool to help identify suicidal
ideation risk among depressed patients alongside clinical assessment.
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