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Abstract: A key issue in the field of kidney transplants is the analysis of transplant recipients’ 
survival. By means of the information obtained from transplant patients, it is possible to analyse in 
which cases a transplant has a higher likelihood of success and the factors on which it will depend. 
In general, these analyses have been conducted by applying traditional statistical techniques, as the 
amount and variety of data available about kidney transplant processes were limited. However, two 
main changes have taken place in this field in the last decade. Firstly, the digitalisation of medical 
information through the use of electronic health records (EHRs), which store patients’ medical 
histories electronically. This facilitates automatic information processing through specialised 
software. Secondly, medical Big Data has provided access to vast amounts of data on medical 
processes. The information currently available on kidney transplants is huge and varied by 
comparison to that initially available for this kind of study. This new context has led to the use of 
other non-traditional techniques more suitable to conduct survival analyses in these new conditions. 
Specifically, this paper provides a review of the main machine learning methods and tools that are 
being used to conduct kidney transplant patient and graft survival analyses.  
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1. Introduction 

In 2002, the Kidney Disease Outcomes Quality Initiative (K/DOQI) defined the term “chronic 
kidney disease” (CKD) and classified its seriousness levels [1]. CKD is a disorder that consists in the 
gradual loss of the kidney function. According to the figures given by the association of European 
kidney specialists, ERA-EDTA (European Renal Association—European Dialysis and Transplant 
Association) [2], it is estimated that 850 million people worldwide have some form of kidney disease. 
All CKD stages are associated with a higher risk of early death, cardiovascular morbidity and 
decreased quality of life. If not treated, CKD can advance and cause a kidney failure, until, at a given 
point, the kidneys cease to work. The only option for survival in end-stage renal disease (ESRD) is 
Renal Replacement Therapy (RRT), such as haemodialysis, peritoneal dialysis and kidney transplant. 
These treatments extend patients’ lives, but do not cure the disease.  

Mortality among CKD patients who use an RRT therapy amounts to 8 to 9% of the total of dead 
CKD patients, where 2.8% of the mortality considered is due to patients who had received a 
transplant [3]. It is interesting to study the data available on patients who underwent kidney 
transplants to assess the success or failure of this therapy and compare it to the information from 
patients who underwent other types of RRT. This kind of comparative study is what is known as a 
survival analysis. Even though there are various approaches to this study, the current trend in the 
study of survival analysis in kidney transplant focuses on long-term renal graft survival [4–6], 
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basically due to advances in Major Histocompatibility Complex (MHC) and immunosuppressive 
therapy (such as use of ciclosporin), which has improved short-term graft survival and reduced the 
acute renal graft rejection rates [7]. 

Traditionally, to conduct the survival analysis, a number of classic statistical terms are used, 
seeking to model the time that it takes for an event of interest to occur (e.g., the death of a transplant 
patient or the emergence of symptoms of transplant graft rejection) [8]. However, one limitation on 
the application of this kind of technique is the fact that the event of interest cannot always be fully 
observed due to the lack of available data on the RRTs performed. Thus, the most frequent form of 
data non-completeness in survival analyses is what is known as right-censoring [9]. The term 
“censoring” informally refers to situations where there is a loss of information regarding the variable 
of interest, that is, sometimes it cannot be observed, but what is observed is another variable known 
as the censoring variable. Right-censoring is a type of censoring that usually occurs for the following 
reasons [10]: an individual does not experience the event before the end of the study, a subject ceases 
to be monitored during the study period, the individual leaves the study due to their death (if the 
cause of their death is not the event of interest) and other reasons. The statistical techniques most 
frequently used to deal with censoring are, according to[11], the Kaplan-Meier estimator and Cox 
regression. Scientific literature includes many studies that apply these techniques to data pertaining 
to kidney transplant. For example, in [12] the rate of kidney failure after transplant in Europe between 
1986 and 2015, and [13] studies the mortality due to a cerebrovascular accident in kidney transplant 
recipients using the data in the Taiwan National Health Insurance Research Database (NHIRD) from 
2000 to 2011. The Kaplan-Meier estimator [14] is a statistical technique that makes it possible to 
estimate subjects’ survival function using as data only the time that they remain alive, and the 
function indicating censoring. As for Cox regression [15], it is a class of regression model that, in 
addition that using the survival time and the variable indicating censoring, uses additional data 
(regressor variables), such a sex, age, whether the subject is a smoker and others. 

The statistical techniques that were initially used were adequate in a scenario in which the 
quantity and variety of the data available were limited. However, two events have occurred in the 
last decade that have changed this situation. The first one is the digitalisation of medical information, 
and specifically, the introduction of electronic health records (EHRs) that contain patients’ medical 
histories and facilitate computer processing of information. The second has been the Big Data [16,17] 
phenomenon, which is characterised by the availability of vast amounts of data in various formats, 
generated at an exponential speed. Thus, the exploitation of the information included in those data 
can assist decision-making (e.g., in medicine it can help to improve the doctors’ diagnoses [18–20] 
that are currently made on the basis of their experience with similar cases, such as the interpretation 
of medical images[21–23], among others). This phenomenon has also affected medicine, and made 
available vast amounts of data on various digital formats on the medical and healthcare activity of 
the patients who come to health centres or undergo a healthcare procedure (blood tests, X-rays, 
treatments, operations, organ transplants, among others). To optimally process this information 
under the new conditions, other analysis techniques are required, such as machine learning 
algorithms [24] in the field of artificial intelligence [25]. These algorithms make it possible to create 
models that can learn automatically and generate predictions from previous knowledge or experience 
on a specific topic, improving information processing with no need to explicitly program all the 
possible cases. In addition, in many cases, algorithms can improve their capacity by acquiring new 
experiences that refine and improve the system by providing more knowledge about the problem 
that they try to solve. Researchers in [26] give some reasons that makes the use of machine learning 
in processing tasks interesting, particularly in the field of biomedicine: 

• They help to extract the factors considered by experts in their field of study when evaluating 
a situation or making decisions.  

• They make it possible to find unknown functional relationships or properties among the 
entry data. 

• They quickly adapt to changing environments with no need to redesign the system if the data 
are updated or replaced by other data. 
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• They can handle missing and noisy data. 
• They make it possible to find relations and correlations among large amounts of data, and to 

generate solutions with a high degree of accuracy. 
The purpose of this paper is to provide a narrative review of the main machine learning 

techniques used to conduct the survival analysis for kidney transplantation.  
For this review, searches were carried out in the following free search engines: PubMed [27], 

Science Direct [28] and DBLP (Digital Bibliography & Library Project)  that is a computer science 
bibliography website [29]. Luck et al [30] was found in the bibliography when Tapak et al was being 
reviewed [31]. 

The search terms were [kidney, transplant, graft, graft failure, survival analysis, survival, 
machine learning, neural network, deep learning, random forest, random survival forest, 
classification and regression tree, decision tree, C5.0, J48, survival decision tree, svm, bagging, 
support vector machine, multilayer perceptron, naïve Bayes, k-nearest neighbour], comprising all the 
literature between January 2016 and May 2019. 

The papers that met the following criterion were selected: use of machine learning techniques to 
solve problems in the survival analysis of kidney transplant patients, written in English. This 
exploratory search resulted in the selection of nine papers.  

As can be seen in Table 1, the papers reviewed are very heterogeneous in terms of the size of the 
population analysed as well as in terms of the methods used. All methods mentioned are explained 
in the section 2.1 and in Appendix B.  

Table 1. Papers analysed in this study. 

Authors Data source Population Methods used 
Yoo et al., 
2017 [7] 

Three centers in Korea 
(1997–2012) 

3117 
Survival decision tree, bagging and 

random forest 

Mark et al., 
2019 [32] 

United Network for 
Organ Sharing 

(UNOS) (1987–2014) 
100,000 

Combines predictions from random 
survival forest constructed from 

conditional inference trees with a Cox 
proportional hazards model 

Bae et al., 
2019 [33] 

Organ Procurement 
and Transplantation 

Network (OPTN) 
(2005–2016) 

120,818 kidney 
recipients and 

376,272 candidates 
on the waiting list 

Combinations of The Kidney Donor 
Profile Index and the Estimated Post 

Transplant Survival score using random 
survival forest, and waitlist survival by 

Estimated Post Transplant Survival score 
using Weibull regressions 

Atallah et al., 
2019 [34] 

Urology and 
Nephrology Center, 

Mansoura, Egypt 
(1976–2017) 

2728 
Merges information gain with Naïve 

Bayes and k-nearest neighbour 

Nematollahi 
et al., 2017 

[35] 

Nemazee 
Hospital, Shiraz, 

southern Iran (2008–
2012) 

717 
Artificial neural network and support 

vector machines 

Tapak et al, 
2017 [31] 

Ekbatan or Besaat 
hospitals, Iran (1994–

2011) 
378 Artificial neuronal networks 

Shahmoradi 
et al., 2016 

[36] 

Sina Hospital Urology 
Research Center, Iran 

(2007–2013) 
513 

C5.0, artificial neural networks and 
classification and regression trees 

Luck et al., 
2017 [30] 

Scientific Registry of 
Transplant Recipients 

(2000–2014) 
131,709 

Artificial neural network taking into 
account two kinds of information loss, 
the presence of ties and the presence of 

censoring. 
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Topuz et al., 
2018 [37] 

UNOS (2004–2015) 31,207 

Feature selection with support vector 
machine, artificial neural network and 
bootstrap to construct a Bayesian belief 

network   

The paper is structured as follows. Section 2 presents the review conducted in two different 
subsections. Subsection 2.1 shows the various machine learning techniques being used to conduct 
survival analyses in the area of kidney transplants. Subsection 2.2 describes the situations in which 
the techniques described are being applied. The papers analysed are then discussed in section 3, and, 
finally, the future directions and conclusions are given in sections 4 and 5.  

In the Appendix A, a more detailed explanation of the machine learning techniques most used 
in the reviewed articles is provided and in Appendix B the rest of methods mentioned is explained. 

2. Results 

2.1. Machine Learning Techniques. 

This section presents the first result of the review carried out. These are the machine learning 
algorithms used in the analysis of survival in kidney transplant. The use of decision trees, ensemble 
methods, neural networks and support vector machines is described. 

2.1.1. Decision Trees 

Decision trees [38]are a segmentation method that tries to achieve a classification into 
homogeneous groups of the observed sample, gradually segmenting them in accordance with the 
variable of interest or segmentation variable. To do so, a division process is carried out in tree form, 
where nodes represent the features of the sample to be classified, and each tree branch represents a 
possible value of that feature (Figure 1). A sample subject is allocated to a specific segment by 
selecting the features that best discriminate and by building a decision rule that makes it possible to 
select the best possible division at each of the division process levels. This feature will define the first 
division of the sample into two segments. Then, the previously created segments are segmented 
again, and division continues successively until the process end, using a stop criterion previously 
established or voluntarily halting the process [39]. A more detailed explanation of the decision trees 
can be found in Appendix A. 

 

Figure 1. Topology of decision tree. 
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According to the review carried out, in the survival analysis, there are several types of decision 
trees used like CART (Classification And Regression Trees)[40–44], C5.0[36], J48 [34] and the survival 
decision tree model. CART [45] is a method that works with all types of variables, with no need to 
make continuous features discrete, so that the classification is used when the variable of interest is 
categorical and regression is used in the case of a continuous variable. C5.0 algorithm [46,47] is the 
extension of C4.5 algorithm. C5.0 improves the speed, memory and the efficiency of its predecessor 
[48]. J48 algorithm [47] is an open source implementation of the C4.5 decision tree algorithm. 

As for the survival decision tree, it is a prediction model composed of decision trees [49] to 
estimate the survival functions [50] used to represent the probability that a subject will survival 
beyond a pre-specified point in time. The main difference between decision trees and survival 
decision tree is the selection of the segmentation criterion [51]: rather than using the entropy index 
(it is a statistic that measures the degree of homogeneity of the data from a segmentation given by 
the machine learning algorithm) or the Gini index (it is a statistic that measures the degree or 
probability that a variable is misclassified when taken randomly) [52], as conventional decision trees 
do, survival decision trees can use, e.g., the survival analysis statistic [50]. The survival decision tree 
also considers the interactions among the explanatory variables and can process censored data using 
a tree structure.  

2.1.2. Ensemble Methods 

Ensemble methods are a machine learning technique in which multiple models are trained (or 
estimated in the usual statistical language), in order to combine their predictions and thus achieve a 
more accurate result. According to the papers reviewed, two ensemble methods are being used in 
survival analysis: bagging and the random forest method. 

The ensemble method known as bagging or bootstrap aggregation [53] is to create different 
models by using random samples with substitution, to later combine the results. This model reduces 
the variance of the base models being used. Bagging is usually performed on the basis of decision 
trees. In survival analysis, bagging is performed on the basis of survival decision trees [53,54]. 

Regarding random forest (RF) [55], it is an ensemble method that adds more randomness to 
bagging, because, in addition to randomly selecting observations, it also randomly selects subsets of 
the explanatory variables. The algorithm constructs a large number of trees (a “forest"), which are 
trained, and finally a prediction based on the majority vote principle is obtained (Figure 2), i.e., “after 
a large number of trees are generated, they vote for the most popular class” (see Section 1.1 in [55]). 
A more detailed explanation of RF can be found in Appendix A. 

 

Figure 2. Topology of Random forest. 
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The standard approach to analyse survival data using random forest is known as random 
survival forest (RSF) [56], which extends the RF method. RSF is a method for the analysis of right-
censored survival data. The algorithm combines bootstrap techniques to select the observations and 
the explanatory variables with other statistical techniques to generate the trees and finally to estimate 
the function of the cumulative risk rate in presence of censored data.   

2.1.3. Artificial Neural Networks 

Artificial Neural networks [57] (ANNs) are a regression or classification model inspired in 
biological neural networks. The structure of a neural network is composed of nodes, layers and 
synapses. A node or neuron is the basic element of a computation. It receives the entry data from an 
external data source or another node. Every entry has an associated synaptic weight that is modified 
through the learning process. A neuron consists of a set of entries, a propagation rule (which 
determines the potential result of the neuron's interaction with its neighbouring nodes), an activation 
function (which determines the neuron current activation status) and an exit function (which yields 
the neuron's exit value). These functions depend on the neural network used. The layers are structural 
units that group nodes. Nodes are interconnected by synapses with an associated weight (synaptic 
weight). The network's behaviour is determined by the structure of the synaptic connections. 
According to our review, one of the neural network architectures most frequently used in the study 
of survival analyses in the area of kidney transplants is the multilayer perceptron (MLP) [58]. MLP is 
a neural network that contains one or more hidden layers and uses the backpropagation (BP) 
algorithm [59] to train. This type of network is used to directly model the survival function [30] as 
well as to classify graft and patient survival [34,35]. In Appendix A, more detailed information on the 
ANN can be found. 

2.1.4. Support Vector Machines 

The machine learning technique known as support vector machine [60] (SVM) uses entry data 
represented in a features space that can have multiple dimensions and generates an optimal function 
for separation of the values of the variable to be modelled. If the population is separable or quasi-
separable (presence of noise), a linear function that can separate the data in the original space of the 
entry samples is used. When the population is not linearly separable, a kernel function is used to 
transform the original entry data and take them to a new space of features where the hyperplane can 
achieve linear separation of the classes in the variable to be modelled. Figure 3 shows that the 
separation hyperplane is equidistant from the closest observations in each class to constitute a 
maximum margin on either side of the hyperplane. The support vectors are the observations on the 
border of these margins. A more detailed explanation of SVM can be found in Appendix A. 

 
Figure 3. Graphic representation of the SVM hyperplane. 
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In the literature reviewed, SVM are used in survival analysis as a classification technique 
without modelling the survival function [34,35]. 

2.2. Application of Machine Learning Algorithms 

This section presents the result of the review carried out. The ways in which the machine 
learning algorithms described in the previous section are applied to the survival problem are 
described. The papers examined show two different approaches: (i) classification of transplant 
patients depending on whether they survive and (ii) modelling of the survival function to estimate 
patients’ survival time. These two approaches are described below. 

2.2.1. Classification of Patient Survival 

This approach is intended to predict whether transplant patients or grafts will survive for a given 
period of time after the reception of the transplant or predict survival in terms of time ranges or risk 
classes. The authors of [34] proposed a new method to predict five-year kidney graft survival, which 
combines a hybrid feature selection function to select the minimum number of features that make the 
analysis most accurate, and the K-nearest neighbour (KNN) algorithm (more information is provided 
in Appendix B) to classify input data, such as survival and non-survival. The hybrid feature selection 
function combines the information gain criterion with the naïve Bayes classifier (see Appendix B for 
more information), selecting the minimum number of features that generate the highest accuracy. In 
this study, censoring is measured in days in the graft time variable. The method proposed was 
experimentally evaluated, proving that it exceeds, in terms of accuracy (cross-validation) and F-
measure, techniques such as the J48 algorithm, naïve Bayes, multilayer perceptron ANN, RF and 
SVM, as it achieves maximum accuracy and the F measurement with minimum errors. The accuracy 
value achieved in experiments shows that the KNN indicators improves its classification capacity 
when combined with a feature selection function rather than without it.  

The authors of [35] evaluated three machine learning techniques to predict kidney transplant 
recipients’ five-year survival: multilayer perceptron of artificial neural network, SVM and logistic 
regression (LR). The authors did not mention any specific treatment for censored data. The criteria 
used to compare the results obtained with each technique are: sensitivity (ratio of surviving subjects 
which the model has classified as surviving), specificity (which indicates the ratio of subjects 
predicted as graft rejections have rejected the graft), accuracy (number of correct predictions carried 
out by the model from among all the predictions made) and AUROC (Area Under the Receiver 
Operating Curve). The results of the study show that SVM is the best technique at 90.4% accuracy, 
98.2% sensitivity, 49.6% specificity and 86.5% AUROC. It is followed by MLP, at 85.9% accuracy, 
97.3% sensitivity, 26.1% specificity and 76.9% AUROC. LR would come last, with an accuracy, 
sensitivity, specificity and AUROC of 84.7%, 97.5%, 17.4% and 77.4%, respectively. Thus, the study 
experimentally proves that for the data analysed, two machine learning techniques surpass the 
logistic regression technique whose discriminating capacity has been established in the statistics 
literature. 

The authors in [31] also approached survival from a binary classification, i.e., transplant success 
or failure. Two predictive techniques are used: a neural network (an MLP) and a logistic regression 
model. As in the previous case, predictive power is measured on the basis of the accuracy, sensitivity, 
specificity, and AUROC metrics, obtaining values of 75%, 91%, 74% and 88%, respectively, for MLP 
and 55%, 91%, 51% and 75% for LR. 

The authors in [36] evaluated the C5.0, multilayer perceptron of artificial neural network, and 
CART to predict kidney transplant survival before the transplant. The authors do not mention any 
specific treatment for censored data. Accuracy is considered to compare the results obtained with 
each technique. The most accurate model is C5.0 (96.77%), followed by CART (83.7%) and the neural 
network at 79.5%. This study shows that, with the data analysed, survival prediction is more accurate 
when tree-based algorithms rather than neural network-based algorithms are used. 

The authors in [37] used a multinomial classification to classify the kidney graft's survival degree 
into three risk classes: high risk (0 to 3 years), medium risk (3 to 7 years) and low risk (more than 7 
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years). To do so, expert judgement was combined with information derived from the combination of 
a feature selection framework function, machine learning algorithms: SVM, ANN and bootstrap 
forest (in an RF approach) [59–61], and the elastic net variable regularisation and selection technique 
[62]. Bayesian belief networks (see Appendix B for more information) were also used to identify non-
linear relations and interactions between the explanatory factors and risk levels for kidney graft 
survival. The advantages of this model are the possibility of modelling the interaction between a large 
number of variables and use of a variable selection methodology based on objective metrics that 
enrich expert judgement. The weak point of the study is its failure to evaluate the predictive power 
of the approach proposed with respect to other classification techniques.  

2.2.2. Modelling the Patient Survival Function 

This approach tackles the problem of estimating the distribution function for the time between 
transplant and graft failure considering data censoring. In [7], authors focused on patient survival 
after a kidney transplant and evaluated the survival decision tree technique with respect to a decision 
tree and a Cox regression model. The study used as explanatory variables the 3-month serum 
creatinine level post-transplant, which is known to offer a high degree of discriminating capacity in 
the field of kidney transplants. The result obtained was that the survival decision tree offers greater 
predictive power than conventional decision trees and Cox regression models. The study also 
examined other tree-based models: bagging and RF. However, it provides no results on the 
performance of the models examined to compare the different techniques. 

The authors in [32] describes an ensemble method that combines the RSF model with conditional 
inference trees (RF constructed on a non-parametric class of decision trees, see more information in 
Appendix B) [53,63] with the Cox’s proportional hazards model to create a survival prediction model 
for kidney transplant patients and identify the predictive variables. To do so, the importance variable 
based on the Breiman-Cutler method [64] for RSF is used to order the variables in terms of their 
importance in the model's prediction. The result is that the best variable is the graft recipient’s age. 
Then, the data were segmented considering this variable, using decision trees that generate two 
cohort groups (cohort 1: subjects aged 50 or younger, and cohort 2: subjects aged 51 or older). The 
algorithm selects the model that offers the best results for each cohort (RSF with conditional inference 
trees or Cox’s proportional hazards). In the case of cohort 1, more accurate results were obtained by 
using RSF models with conditional inference trees as base learners, while, for cohort 2, the best results 
were obtained on the basis of the Cox’s proportional hazards model. The advantage found on the 
basis of the results presented by the authors is that the model obtained improves the estimated power 
of the Estimated Post-Transplant Survival (EPTS), a measure used to allocate some kidneys in the 
United States kidney allocation system  [65] (0.724 against 0.697), proposing a new graft survival 
methodology. 

The authors of [33] developed an online tool to evaluate whether kidney offers from marginal 
donors (i.e., older people or people with medical comorbidities) provided candidates with a 
substantial survival benefit. In this paper, the authors analysed survival prediction after transplant 
and for patients on the waiting list to receive a kidney. In the first case, they used the RSF algorithm 
combined with Kidney Donor Profile Index (KDPI, see Appendix B for more information) and the 
EPTS, and compared it to the Kidney Donor Risk Index (KDRI, more information of this estimator 
could be found in Appendix B) model in terms of the C-index statistic. In the second case, the authors 
predicted waitlist survival by EPTS using a Weibull model (see Appendix B for more information) 
estimating directly the survival function of the patients. The result of the evaluation yielded a 0.637 
index for the RSF algorithm, which is slightly higher than KDRI model, which yields an approximate 
C-index value of 0.6.  

The authors of [30] evaluated a multilayer perceptron of an artificial neural network that taking 
into account two kinds of information loss, the presence of ties and the censored nature of the dataset. 
Its performance was compared to the use of Cox's regression method in terms of the C-index statistic  
and AUROC, modified to consider right-censored data. A 0.6550 C-index was obtained for the former 
model, and a 0.6504 C-index was obtained for the latter model. Thus, the 0.0046 difference in the C-
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index statistic was not statistically significant, and it could not be concluded that there was a gain in 
the predictive power of the model proposed. However, the main advantage of this study was that it 
considered the existence of censure in MLP configuration, and ties in terms of survival time using 
Efron's technique [66] were considered. 

3. Discussion 

By using electronic health records in hospitals, the volume and complexity of the data connected 
to each patient substantially increases. For this reason, the need arises to replace traditional 
quantitative techniques by artificial intelligence algorithms that can process mass data. In the context 
of survival analyses in the area of kidney transplants, the review has found that some of the 
techniques most frequently used in the recent past have been neural networks, survival decision 
trees, random forest and support vector machines, among others.  

According to the literature reviewed, the problem of survival analysis is tackled from two 
different approaches: as a classification problem or as a problem of survival function modelling. 

The first approach treats it as a classification problem, focusing on predicting whether patients 
or grafts survive a specific period of time. Table 2 shows the papers that classify patient and graft 
survival. The first three papers compared the predictive power of several machine learning models, 
the first of which being the one with the highest predictive power with an SVM model. The last two 
papers proposed a hybrid model, focusing on the selection of the features that offered the highest 
predictive capacity for the algorithm used.  

In Table 2, the classifier’s performance is measured in terms of accuracy and sensitivity. The 
sensitivity is a statistic that measures the probability of correctly classifying patients who survive 
transplantation according to how survival was classified in each of the studies cited in this table. The 
accuracy is a statistic that takes values between 0 and 100, with 0 being the absence of precision and 
100 being the maximum precision.    

Table 2. Classification of patient survival. 

Authors Method used Benchmark Best performance Accuracy Sensitivity 
Nematollahi 
et al., 2017 

[35] 
ANN and SVM 

Logistic 
regression 

SVM 90.40 98.20 

Tapak et al, 
2017 [31] 

ANN 
 

Logistic 
regression ANN 75 91 

Shahmoradi 
et al., 2016 

[36] 
C5.0, ANN and CART N/A C5.0 87.21 90.85 

Atallah et al., 
2019 [34] 

Merges information 
gain with naïve Bayes 

and K-NN 

J48, Naïve 
Bayes, ANN, 

RF, SVM, 
KNN  

Proposed method 80.77 80.40 

Topuz et al., 
2018 [37] 

Feature selection with 
SVM, ANN and 

bootstrap to construct 
a Bayesian Belief 

Network  

N/A Proposed method 68.40 41.00 

In Table 2, the benchmark techniques used are machine learning models known in the context 
of classification [67] (fourth paper in the table) or a logistic regression (first and second papers). In 
both cases, the model proposed provided better results than the benchmark. 

The second approach focuses on predicting transplant patient survival periods, that is, the 
survival function. Table 3 shows the papers that follow this approach. As can be seen, there are two 
types of study: those that uses a neural network (the third paper) and those that use tree-based 
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models (the other papers). As regards the latter, in all cases random forest was used; however, only 
two of them used a type of RF adapted to consider the presence of data censure, random survival 
forest [56]. 

Table 3. Modelling the patient survival function. 

Authors Method used Benchmark 
Best 

performance C-Index 

Yoo et al., 
2017 [7] 

Survival decision tree, bagging, and 
RF 

Decision tree and 
Cox regression 

Survival 
decision tree 

0.80 

Mark et 
al., 2019 

[32] 

Combines predictions from RSF 
constructed from conditional 

inference trees with a Cox 
proportional hazards model 

EPTS,  
Cox model, 

random forest 

Proposed 
method 0.724 

Luck et al., 
2017 [30] 

Artificial neural network taking into 
account two kinds of information 
loss, the presence of ties and the 

presence of censoring. 

Traditional Cox 
model using 

Efron's method 

Proposed 
method 0.6550 

Bae et al., 
2019 [33] 

Combinations of KDPI and EPTS 
using RSF KDRI  

Proposed 
method 0.637 

In Table 3, the benchmark is the classic statistical technique, Cox’s regression (first three papers), 
and the EPTS and KDPI metrics (last paper). The methods proposed outperform the benchmarks in 
terms of C-Index. C-Index is a statistic that measures the goodness of fit of probability models. It is 
commonly used in survival models as it is adapted to take into account censored data. This statistic 
takes values between 0 and 1, the closer to 1 the better the goodness of fit obtained. 

Finally, Table 4 provides a summary of the factors that influence transplant patient or graft 
survival. To do so, the two most highly ranked factors in each of the papers analysed have been 
selected (two have been selected because Shahmoradi et al., 2016 only has two). Five out of the eight 
papers mention the factors that influence survival[7,31,32,35–37].   

Table 4. Main factors influencing survival. 

Recipient/Donor factors 
The 3-month serum creatinine level post-transplant 

Recipient age 
Kidney cold ischemic time  

Donor age 
Discharge time creatinine 

Body mass index 
Pre-transplant dialysis 

Recipient functional status at registration  
Recipient diabetes at registration 

 
Other factors influencing survival that was mentioned in the papers review are: hypertension, 

smoking, a history of viral hepatitis B and C, cerebral and peripheral vascular disease, recipient 
ethnicity category or recipient HCV status, among others. 

There are also several factors that influence transplant outcomes that has not been mentioned 
like, for example, retransplantation [68–70], infection or malignancy post transplant [71]. 

4. Future directions 

At present, machine learning techniques are seen, in general, by both researchers and 
practitioners as black boxes. This leads to the natural interest of how to make these algorithms more 
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explainable. In particular, it would be interesting to be able to determine the contribution of each of 
the explanatory variables, or even, of the possible interactions between them in the models, trying to 
achieve the highest possible level of explanation, for example, as in the traditional regression models. 
Today, as seen in the review, this cannot be determined directly, but only from the final output of the 
model (C-Index, AUC, sensitivity, accuracy, among others). 

5. Conclusions 

In the context of survival analyses in the area of kidney transplants, the review has found that 
some of the techniques most frequently used in the recent past have been neural networks, survival 
decision trees, random forest and support vector machines. The review conducted also shows that 
machine learning techniques are being mainly used for two purposes. Firstly, as a mechanism to 
model the survival function, and secondly, as mechanisms for patient or graft classification in terms 
of transplant survival or non-survival. 

The first goal involves predicting transplant patient or graft survival periods, that is, estimating 
the survival function. The most widely used techniques are tree-based, adapted to consider the 
presence of data censure, namely survival decision trees and random survival forest. The cases 
examined show that the predictive power of the models proposed surpassed one of the classic 
techniques most frequently used in survival analysis, namely Cox’s regression. 

According to the literature under review, there is a certain trend to use some machine learning 
algorithms, such as, for example, the multilayer perceptron neural network or support vector 
machine approaches, focusing on transplant patients’ or grafts’ classification capacity, that is, 
whether they survive or not, rather than estimate their survival time. This can be due to, among other 
reasons, the limitations of these techniques due to their not being sufficiently adapted to the censored 
data scheme which is usually present in the study, the short-term observation windows, limited 
knowledge of the factors that influence transplant patients’ or grafts’ survival, or a potential high 
disproportion between positive cases (patients or grafts in whom the event of interest is observed) 
and the negative cases (survivors at the end of the study and censored cases). 

As was previously discussed, one of the most interesting features of machine learning 
algorithms is their flexibility and their capacity to adapt to the problem of interest. In this respect, 
one of the strategies that is receiving the most attention in recent literature is the use of ensembles of 
machine learning algorithms, that is, the combination of various algorithms in order to make 
maximum use of the potential of each model to achieve better predictions. 

In the recent literature of machine learning models, it is not possible to find unanimity on which 
is the best algorithm under any data structure, that is, an omnibus algorithm that is above the others. 
On the contrary, given the nature of these algorithms, which are highly dependent on both the 
structure and the quality of the input data, in certain circumstances one type of algorithm may 
outperform others or vice versa. An example that synthesises this idea can be observed by contrasting 
the results presented in Table 2, where the accuracy ratios thrown by the SVM in article [39] and 
article [38] are not even similar. 
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Appendix A 

This appendix explains in more detail the machine learning techniques most used in the 
reviewed articles. 
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Decision Tree 

The decision tree [72] is an algorithm that uses a tree-shaped structure to model the relationships 
between the characteristics. This structure begins in a trunk known as root node and is divided into 
branches. Decisions are made in each of these divisions or decision nodes. Finally, it ends up reaching 
the leaf nodes where the data is homogeneous enough not to continue dividing them further. 

The division of the tree is usually done by identifying the feature that will star in that division. 
In most cases, splitting functions are univariate, that is, an internal node is divided according to the 
value of a single feature. There are several univariate criteria, such as criteria based on impurities, 
binary or information theory [72]. Some of the most used criteria are those in which the purity of the 
data is checked, that is, the fact that the data contains a single class. There are different measures of 
purity to identify the best candidate for division of the decision tree. Some of the most used are 
entropy and the Gini Index [52,73]. 

The tree growth phase can continue until a stop criterion is met, for example, that the division 
criterion is not better than a given threshold or that the maximum tree depth is reached [72]. 

Some notable advantages are that they require less effort in preparing the data in the 
preprocessing phase, which is intuitive and easy to explain. 

One of the main disadvantages is that decision trees are that they are very sensitive to data 
structure, attributes that do not provide relevant information and noise [74]. 

Random Forest 

The random forest (RF) method [55] works with sets of decision trees combining bagging 
principles [75] with random selection of features to add additional diversity to the decision trees. 
Once the trees are generated, they work as a whole. Each tree in the RF calculates a class prediction, 
with the class with the most votes (majority vote) being the model prediction. The goal is that many 
uncorrelated trees that work together outperform any of the individual trees that make it up. 

RF offers some advantages over decision trees such as reducing the possibility of over-fitting, 
especially when the tree is of a particular dimension or can be used in data with a large number of 
features or samples, among others. 

The decision trees are one of the "black-box" type of algorithm, this is that it is not easily 
interpretable because it does not have a simple display to see the model as in the case of the decision 
trees. In addition, it may require work and experience to adjust the parameters that optimise the 
algorithm configuration. 

Artificial Neural Networks 

An artificial neural network [76] (ANN) models the relationship between a set of input signals 
and an output using a model that has been made based on how it is understood that a brain works. 
That is, how it reacts to stimuli using a network of interconnected cells called neurons to create a 
massive parallel processor. That is why it is said that ANNs use a network of artificial neurons or 
nodes to solve learning problems. 

This type of algorithm is known as black box because it is not possible to know the model it uses. 𝑦(𝑥)  = 𝑓(෍ 𝑤௜𝑥௜௡௜ୀଵ ) (1)

Equation (1) explains how a single artificial neuron works. A relationship between input signals 
(variables x) and an output signal (dependent variable y) is defined. Each of the inputs received 
receives a weight (wi) according to its importance. These are added together and the signal obtained 
is passed through an activation function f. 

From the basic scheme of operation of a single neuron, different layers can be concatenated to 
end up obtaining a more complex network that represents a set of data from which it would like to 
end up obtaining a model. In general, neurons are usually grouped into structural units called layers. 
Within a layer, neurons are usually of the same type and there may be different numbers of neurons. 
Three types of layers can be distinguished (Figure A1): 
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• Input layer: receive data or signals from the environment. 
• Output layer: provide the network response to input stimuli. 
• Hidden layer: they do not receive or provide information to the environment (internal 

processing of the net). 

. 

Figure A1. Topology of Multi-layer network. 

According to the number of layers, neural networks can be classified into: 
• Single-layer network. Only one input layer related to the output layer. 

Multi-layer network (MLP). One or more layers are added between the inputs and outputs, 
as can be seen in Figure A1. The MLP is a neural network that contains one or more layers of 
hidden neurons and uses the backpropagation (BP) algorithm [57] to train. This algorithm 
consists of two phases: feed-forward and feed-back propagation. In the feed-forward phase, 
the network output is calculated with all fixed weighting values while the input vector is 
entered from the input layer to the output one through the hidden layers. In the feed-back 
propagation phase, the error signal is calculated by subtracting the network output value 
from the expected output value. An error signal originates from an output neuron and 
spreads backwards layer by layer through the network [76]. It then propagates through the 
hidden layers to the input layer so that the weighting values are corrected. These two phases 
are repeated and the learning process is recycled to generate a better approach to the output. 
The learning process ends when the stop condition is met. 

A neural network with multiple hidden layers is known as a Deep Neural Network (DNN) and 
the practice of training a network of this style is often called Deep learning. 

Some of the characteristics of neural networks are that they can handle noise even in the presence 
of incomplete or distorted data and are fault tolerant since they have the information distributed 
among their neurons, thereby achieving some redundancy. Finally, neural networks act as a black 
box and cannot determine how information is processed internally. 

Support Vector Machine 

A Support Vector Machine (SVM) [77] can be imagined as a surface that creates a division 
between data points represented in a multidimensional way that represents their classes and their 
characteristics. The objective of an SVM is to create a flat boundary known as a hyperplane that 
divides the space to create homogeneous partitions on each side of it. 

The complexity of the SVM algorithm lies in the fact of identifying a line that separates the two 
classes. The algorithm looks for the hyperplane with maximum margin, that is, the hyperplane that 
maximises the distance to the data points closest to the classes. 

This algorithm works efficiently with noisy data and with non-linear data. Some disadvantages 
of this technique are that the proper choice of kernel function is a difficult task and that it only 
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supports numerical variables. The kernel function is a function that transforms the space of 
characteristics into another space, generally of greater dimension [77]. 

Appendix B 

This appendix explains the techniques or statistics that is used in some reviewed articles. 

Bayesian Belief Networks 

A Bayesian belief networks (BBN) [78] is a probabilistic graphical model that make predictions 
based on a priori assumptions. 

Conditional Inference Trees 

Conditional inference tree [63] is a type of regression tree that use statistical inference in its 
decision rules. 

Estimated Post-Transplant Survival 

Estimated Post-Transplant Survival (EPTS) score [65] is a measure used to allocate some kidneys 
in the United States kidney allocation system.   

Information Gain 

Information gain [71] is a measure for deciding the relevance of an attribute. In [34] this measure 
was used for feature selection, by evaluating the gain of each variable in the context of survival or 
not survival. 

K-Nearest Neighbours 

K-nearest neighbours (KNN) [79] is a model that classifies each unlabelled sample by the 
majority label of its nearest neighbours.    

Kidney Donor Risk Index 

Kidney Donor Risk Index (KDRI) is an estimator of the relative risk of post-transplant kidney 
graft failure model [80]. 

Kidney Donor Profile Index 

The Kidney Donor Profile Index (KDPI) [80] is a measure that summarises the quality of 
deceased donor kidneys relative to other recovered kidneys as a single figure. 

Naïve Bayes 

Naïve Bayes is a probabilistic classifier based on Bayes’ theorem [81]. 

Weibull Model 

Weibull model [82] is one of the most popular parametric regression model [83]. It provides 
estimate of baseline hazard function and coefficients for covariates.  
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