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Abstract: We investigated the capability of a trained deep learning (DL) model with a convolutional 
neural network (CNN) in a different scanning environment in terms of ameliorating the quality of 
synthetic fluid-attenuated inversion recovery (FLAIR) images. The acquired data of 319 patients 
obtained from the retrospective review were used as test sets for the already trained DL model to 
correct the synthetic FLAIR images. Quantitative analyses were performed for native synthetic 
FLAIR and DL-FLAIR images against conventional FLAIR images. Two neuroradiologists assessed 
the quality and artifact degree of the native synthetic FLAIR and DL-FLAIR images. The 
quantitative parameters showed significant improvement on DL-FLAIR in all individual tissue 
segments and total intracranial tissues than on the native synthetic FLAIR (p < 0.0001). DL-FLAIR 
images showed improved image quality with fewer artifacts than the native synthetic FLAIR images 
(p < 0.0001). There was no significant difference in the preservation of the periventricular white 
matter hyperintensities and lesion conspicuity between the two FLAIR image sets (p = 0.217). The 
quality of synthetic FLAIR images was improved through artifact correction using the trained DL 
model on a different scan environment. DL-based correction can be a promising solution for 
ameliorating the quality of synthetic FLAIR images to broaden the clinical use of synthetic magnetic 
resonance imaging (MRI). 

Keywords: neural networks (computer); deep learning; image enhancement; magnetic resonance 
imaging; image interpretation; computer-assisted 

 

1. Introduction 

Synthetic magnetic resonance imaging (MRI) is based on a quantitative approach using absolute 
physical properties such as the longitudinal T1-relaxation time, transverse T2-relaxation time, and 
proton density [1–5]. It can generate multiple contrast-weighted images in a single scan with 
modifiable acquisition parameters such as repetition time (TR), echo time (TE), and inversion time 
(TI) derived from mathematical inferences rather than being predetermined [1–5]. In previous 
studies, the clinical utility of synthetic MRI was investigated by assessing its image quality and 
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diagnostic performance for detecting a range of brain abnormalities [4–8]. However, synthetic fluid-
attenuated inversion recovery (FLAIR) artifacts are major drawbacks limiting the effectiveness of 
synthetic MRI for clinical use, even though synthetic MRI has a comparable diagnostic performance 
with that of conventional MRI and can reduce the scan time in the clinical setting [4–8]. It is well-
known that synthetic FLAIR artifacts appear as thin, granulated, and marginal hyperintensity along 
the brain surface [4–6,8] or parenchymal swelling in the brain-cerebrospinal fluid (CSF) interface [9], 
resulting in a decrease in the overall image quality. Therefore, further efforts to improve the image 
quality of the synthetic FLAIR images are essential to expand the clinical use of synthetic MRI in daily 
clinical practice. 

Two recent studies using deep learning (DL) have introduced the improvement of the synthetic 
FLAIR image quality [10,11]. Although those studies employed different methodological 
approaches—convolutional neural network with perceptual loss function (CNN) vs. pixel-wise 
neural network with conditional generative adversarial network (GAN) loss function—both of them 
showed remarkable potential to solve this issue [10,11]. However, the studies used DL-based 
correction for a synthetic FLAIR image employed a limited number of study participants at each 
institution; therefore, these new approaches should be validated in a different scan environment to 
establish their clinical utility. Thus, we aimed to investigate the capability of the already-trained DL 
model with CNN [10] in a different scanning environment from the perspective of ameliorating the 
image quality of synthetic FLAIR images. 

2. Patients and Methods 

2.1. Study Population 

A review of our institutional database revealed 321 consecutive patients who underwent routine 
brain MRI with synthetic acquisition between July and December 2018. Among them, two patients 
who had not undergone 2D or 3D conventional FLAIR images were excluded. We ultimately enrolled 
319 of the 321 patients for this study, comprising 176 men and 143 women with a mean age of 58.7 ± 
12.7 years (range, 21–83 years). Of these, 19 patients had 2D FLAIR images, whereas 300 patients had 
3D FLAIR images.  

MRI examinations were performed for headache (73/319, 22.9%), dizziness or vertigo (58/319, 
18.2%), infarction follow-up (43/319, 13.5%), brain metastasis work-up (37/319, 11.6%), weakness of 
the extremities (27/319, 8.5%), syncope (25/319, 7.8%), brain tumor follow-up (21/319, 6.6%), sensory 
change (19/319, 6%), and altered mental status (16/319, 5%). 

In the present study, the retrospective data collection and analyses were performed in 
accordance with the local institutional review board guidelines after obtaining its approval. The 
institutional review board determined that patient approval and informed consent were not required 
for retrospectively reviewing images and electronic medical records. 

2.2. Image Acquisition 

MRI was performed using a 3T system (Signa™ Architect; GE Healthcare, Milwaukee, WI, USA) 
with a 48-channel head coil. All the patients underwent synthetic MRI and conventional 2D or 3D 
FLAIR imaging. Synthetic MRI was acquired using the multiple-dynamic multiple-echo sequence [3]. 
The acquisition parameters of the synthetic MRI were as follows: TE = 16.8 and 92.4 ms; delay times 
= 210, 610, 1810, and 3810 ms; TR = 4000 ms; FOV = 220 × 194 mm; matrix size = 320 × 288; ETL= 16; 
bandwidth = ±35.71 kHz; slice thickness = 5 mm; resulting in a total acquisition time of 4 min 32 s. 

Four synthetic images were retrieved from the SyMRI software (Version 8.0; Synthetic MR, 
Linköping, Sweden): FLAIR, T1-weighted image, T2-weighted image, and proton density image. The 
parameters for the image synthesis were as follows: TR/TE/TI = 10,000/118/2566 ms for FLAIR, TR/TE 
= 500/10 ms for the T1-weighted image, TR/TE = 5000/70 ms for the T2-weighted image, and TR/TE = 
3500/30 ms for the proton density image. 

The acquisition parameters for the conventional FLAIR imaging were as follows: TR/TE/TI = 
10,000/118.5/2566.65 ms, ETL = 27, and acquisition time = 2 min 7 s for the 2D FLAIR image, other 
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parameters such as FOV or resolution were equivalent to the synthetic images; and TR/TE/TI = 
6800/105/1912 ms, ETL = 180, FOV = 250 × 250 mm; matrix size = 220 × 220; ETL= 16; bandwidth = 
±62.5 kHz; slice thickness = 1.2 mm; and acquisition time = 3 min 22 s for the 3D FLAIR image. 

2.3. DL Framework 

To apply the DL-based artifact correction in the present study, a pretrained CNN from an 
original work by Ryu et al. [10] was used. The network architecture was based on the residual nets 
(RESNET) architecture [12] with several modifications. This network used two combined loss 
functions, namely the mean absolute error and perceptual loss [13]. While this DL-based method has 
shown promising results in correcting artifacts in synthetic FLAIR, the previous validation study of 
the method relied on a dataset from a single scanner and only a small number of test data for 20 
subjects [10]. Moreover, the network of the previous study was entirely trained on images obtained 
from a single scanner (GE Discovery 750W GE Healthcare, Milwaukee, USA) in a single institution 
[10]. 

For additional validation in this study, the network was tested in a different environment from 
our institution. The data for this study was obtained from a different scanner (Signa™ Architect; GE 
Healthcare, Milwaukee, WI, USA) and using a different number of receiver coils (48-channel head 
coil). Note that no additional training was performed in the current study. The imaging protocols of 
training and test sets were similar in terms of TE/TR, slice thickness, decay times, and bandwidth. In 
addition, the image voxel of the test set in the current study was 40% smaller than that of the training 
set. 

For the subjects in the current study, the forward-pass of the network was used to produce the 
DL corrected images. This process was repeated slice by slice. It took approximately 1.1 s per subject 
for 25 slices to obtain the output images. After the completion of the process for a subject, the native 
synthetic FLAIR (input), DL-FLAIR (output), and conventional 2D or 3D FLAIR images were stored 
separately for evaluation. 

The testing was performed using a single GPU (NVIDIA TITAN XP) with the Keras framework 
[14] and a TensorFlow [15] backend, CUDA 10.0, and CUDNN 7.1 on a Linux server. 

2.4. Image Analyses of Native and Corrected Synthetic FLAIR Images 

2.4.1. Quantitative Analyses 

Of the 319 patients, the quantitative analyses were performed for 19 patients who had available 
conventional 2D FLAIR images for a direct comparison of the region-wise evaluation. For the 
quantitative evaluation, normalized root mean squared error (NRMSE), peak signal-to-noise ratio 
(PSNR), and structural similarity index (SSIM) were used. The NRMSE measures the normalized 
voxel-wise intensity differences (errors) while the SSIM measures the nonlocal structural similarity. 
PSNR was calculated by the following equation: 

 
where 25,500 is the maximum range of the FLAIR signal intensity. 

The NRMSE and PSNR were compared based on three automatically segmented regions as 
follows: gray matter (GM), white matter (WM), and CSF. This region-wise evaluation was conducted 
to indicate which region was most improved, and the segmentations for the regions were retrieved 
via segmentation with FSL-FAST32 using the synthetic T1-weighted images (Figure 1). 
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Figure 1. Illustration of the segmented regions during the region-wise evaluation. The region-wise 
evaluation is based on three automatically segmented regions: gray matter, white matter, and 
cerebrospinal fluid (CSF). The segmentations for the regions are retrieved via segmentation with FSL-
FAST32 using the synthetic T1-weighted images. 

2.4.2. Qualitative Analyses 

All the datasets were anonymized, and the reader reviewed all images using the picture 
archiving and communication system. Two attending neuroradiologists, having nine and four years 
of experience, performed independent analyses of the native synthetic FLAIR and DL-FLAIR images 
of all 319 patients according to assessment criteria of each item listed in Table 1. The synthetic FLAIR 
and DL-FLAIR images were assessed in random order after mixing the two FLAIR image sets to 
minimize bias. The image analyses were performed twice by each reader with a memory wash-out 
period of two weeks. In each session, the order of review of the studies was random. 

Table 1. Assessment criteria for qualitative analysis using the Likert scale. 

Criteria Assessed Assessment Scale 

Image quality 

(1) Non-diagnostic 
(2) Bad (not acceptable for diagnostic use) 
(3) Acceptable (acceptable for diagnostic use 
but with minor issues) 
(4) Good (acceptable for diagnostic use) 
(5) Excellent (acceptable for diagnostic use) 

Preservation of the periventricular white matter 
hyperintensities or lesion conspicuity 

(1) Extremely poor 
(2) Poor 
(3) Acceptable 
(4) Good 
(5) Excellent 

Degree of typical synthetic FLAIR artifacts* and other 
artifacts+ 

(1) None or negligible 
(2) Mild (less than 30% of the axial images) 
(3) Moderate (between 30%–50% of the axial 
images) 
(4) Severe (above 50% of the axial images) 

FLAIR, fluid-attenuated inversion recovery. * Typical synthetic artifacts are surface hyperintensity, 
granular artifact, or cortical swelling artifact. + The degree of other artifacts that substantially degraded 
the image quality through, for example, flow artifact, were also assessed. 

2.5. Statistical Analysis 

The data were tested for normal distribution using the Kolmogorov–Smirnov test. Paired t-tests 
were performed on the quantitative assessment results. For qualitative results, the scores of each 
image set from the two readers were averaged, and the Wilcoxon signed-rank test was conducted to 
compare the scores of synthetic FLAIR and DL-FLAIR images. Interobserver agreement between two 
readers was calculated using weighted kappa statistics. According to the recommendation by Landis 
and Koch [16], the weighted kappa value was interpreted as follows: 0, no agreement; 0.01–0.20, slight 
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agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial 
agreement; and 0.81–1.00, almost perfect agreement. All the statistical analyses were conducted using 
SPSS, version 24.0 (IBM Corp., Armonk, NY, USA), and the statistical significance was set at p < 0.05 
(two-sided). 

3. Results 

Of 319 patients, 203 (63.6%) had abnormal MRI findings and 116 (36.4%) had normal findings. 
The following diagnoses were made: ischemic/hemorrhagic stroke or small vessel disease (154/203, 
75.9%), intracranial neoplasm (18/203, 8.9%), vascular abnormality (11/203, 5.4%), infectious or 
demyelinating disease (7/203, 3.4%), metabolic or degenerative disorder (4/203, 2%), and 
miscellaneous, including trauma or indeterminate condition (9/203, 4.4%). 

Representative examples are depicted in Figures 2–5. Table 2 summarizes the results of the 
quantitative assessment of NRMSE, PSNR, and SSIM for native synthetic and DL-FLAIR images 
calculated against the conventional 2D FLAIR images of 19 patients. Theoretically, images with a 
lower NRMSE, higher PSNR, and higher SSIM indicate better image quality. In this study, all values 
of NRMSE, PSNR, and SSIM were improved by the DL-based correction of the synthetic FLAIR 
images. The NRMSE was significantly lower for DL-FLAIR than for the native synthetic FLAIR 
images in GM, WM, CSF, and total intracranial tissues (all p < 0.0001). The NRMSE of the synthetic 
and DL-FLAIR images was the highest in CSF, with GM showing higher values than WM (all p < 
0.0001). However, the percent change in NRMSE was the highest in GM, followed by CSF and WM. 
The PSNR was significantly higher for DL-FLAIR than for native synthetic FLAIR images in GM, 
WM, CSF, and total intracranial tissues (all p < 0.0001). The PSNR was the lowest in CSF, with GM 
showing lower values than WM in both DL-FLAIR and native synthetic FLAIR images (all p < 0.0001). 
In contrast, the percent change in PSNR was the highest in CSF, followed by GM and WM. In 
addition, the SSIM is improved from 0.907 to 0.938 (p < 0.0001). For the region-wise NRMSE and 
PSNR values, the improvement was more distinctive in GM and CSF than in WM. 

 

Figure 2. Representative results of synthetic fluid-attenuated inversion recovery (FLAIR) artifact 
reduction. Pairs of native synthetic FLAIR, deep learning (DL)-FLAIR, and conventional FLAIR 
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images are shown (a–d). (a) Surface hyperintensity artifacts (arrowheads) and cortical swelling 
artifacts (arrows) on synthetic FLAIR are almost removed on DL-FLAIR image. (b) Cortical swelling 
artifacts (arrows) on native synthetic FLAIR are successfully removed on DL-FLAIR image. (c) 
Periventricular hyperintense artifacts along the margin of bilateral lateral ventricles (black arrows) 
and surface hyperintensity artifacts (white arrows) on the native synthetic FLAIR are successfully 
eliminated on DL-FLAIR image. (d) Flow artifacts in the prepontine cistern (white arrows) and surface 
hyperintensity artifacts along the pons (white arrowheads) on the native synthetic FLAIR are 
improved on DL-FLAIR image. 

 
Figure 3. Representative case of lesion conspicuity on DL-FLAIR images. Focal marginal gliosis 
showing hyperintensity (arrows) is seen at the anterior aspect of the surgical cavity in the right 
cerebellum (a–c). The lesion is well delineated on the native synthetic FLAIR (a), DL-FLAIR (b), and 
conventional FLAIR images (c). However, the hyperintense lesion on the native synthetic FLAIR 
(arrow on a) is incompletely preserved on DL-FLAIR image (arrow on b), showing a decrease in the 
degree of its hyperintensity. Flow artifacts in the fourth ventricle on the native synthetic FLAIR 
(arrowhead on a) are successfully removed on DL-FLAIR image (arrowhead on b). Multiple FLAIR 
hyperintense lesions in both centrum semiovale, suggesting grade II small vessel disease on the native 
synthetic FLAIR (d) are well preserved on DL-FLAIR image (e). (f) Conventional FLAIR image is 
shown for comparison. 

 

Figure 4. Representative case of lesion conspicuity on DL-FLAIR image. Intracranial hemorrhage 
(ICH) (arrowheads) is well visualized in the right thalamus on the native synthetic FLAIR (a), DL-
FLAIR (b), and conventional FLAIR images (c). In particular, the thalamic ICH is more conspicuously 
delineated on DL-FLAIR (b) than on the native synthetic FLAIR image (a). However, the conspicuity 
of the true hyperintensity around the encephalomalacia in the left basal ganglia (arrows on a, c) is 
slightly decreased on DL-FLAIR image (arrow on b). 
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Figure 5. Representative case of preservation of true sulcal lesion in patient with brain and 
leptomeningeal metastases from lung cancer. Leptomeningeal metastases showing sulcal 
hyperintensity (arrows) on the native synthetic FLAIR (a) are preserved on DL-FLAIR (b), whereas 
surface hyperintense artifacts on the native synthetic FLAIR (arrowheads on a) are removed on DL-
FLAIR image (b). The leptomeningeal metastases are conspicuously delineated on 3D-FLAIR (c), and 
the corresponding lesions show prominent enhancement on Gd-enhanced FLAIR (d) and Gd-
enhanced 3D T1-weighted image (e). 

Table 2. NRMSE, PSNR, and SSIM of native synthetic FLAIR and DL-FLAIR images against 
conventional 2D FLAIR images in various regions in 19 patients. 

 Native Synthetic  
FLAIR Images DL-FLAIR Images 

GM   
   NRMSE 0.214 ± 0.076*+ 0.128 ± 0.016 (−40.187%)*+ 
   PSNR 47.654 ± 2.520*+ 51.950 ± 2.239 (+9.015%)*+ 
WM   
   NRMSE 0.093 ± 0.031*+ 0.085 ± 0.007 (−8.602%)*+ 
   PSNR 54.895 ± 2.641*+ 55.705 ± 2.582 (+1.476%)*+ 
CSF filled spaces   
   NRMSE 0.481 ± 0.230*+ 0.297 ± 0.089 (−38.254%)*+ 
   PSNR 45.386 ± 1.821*+ 49.485 ± 2.122 (+9.031%)*+ 
Total intracranial tissues   
   NRMSE 0.202 ± 0.055* 0.134 ± 0.018 (−33.663%)* 
   PSNR 48.907 ± 2.031* 52.442 ± 2.120 (+7.228%)* 
SSIM 
for total intracranial tissues 

0.907 ± 0.040* 0.938 ± 0.030 (+ 3.418%)* 

Values are means ± standard deviation. Percentage changes in NRMSE, PSNR, and SSIM for DL-
FLAIR vs. native synthetic FLAIR are in parentheses. CSF, cerebrospinal fluid; DL, deep learning; 
FLAIR, fluid-attenuated inversion recovery; GM, gray matter; NRMSE, normalized root mean 
squared error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; WM, white matter. 
* p < 0.0001 for native synthetic FLAIR vs. DL-FLAIR images. + p < 0.0001 for GM vs. WM, GM vs. CSF, 
and WM vs. CSF. 

For the qualitative analyses of 319 patients, the mean scores of both DL-FLAIR and native 
synthetic FLAIR images showed acceptable image quality for diagnostic use. The qualitative 
assessment scores given by the two readers and the corresponding interobserver reliability are shown 
in Table 3. The average mean scores of DL-FLAIR image quality were significantly higher than those 
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of the image quality of the native synthetic FLAIR (4.73 ± 0.46 vs. 3.12 ± 0.69; p < 0.0001). The average 
mean scores of the degree of preserving the preexisting periventricular WM hyperintensities or lesion 
conspicuity were not statistically significant for DL-FLAIR and native synthetic FLAIR: 4.69 ± 0.68 vs. 
4.70 ± 0.61 (p = 0.217). Among the 319 patients, there was no case of generation of artificial 
pseudolesions during DL processing. However, it was possible to identify incomplete preservation 
of the preexisting true hyperintensities on DL-FLAIR images in 11 patients (3.4%) among 319 patients 
owing to the unexpected partial removal of the true hyperintensities (Figures 3b and 4b). The mean 
scores of the typical synthetic FLAIR artifacts including surface hyperintensities, granularities, or 
cortical swelling were identified for DL-FLAIR and native synthetic FLAIR images as follows: 1.32 ± 
0.51 vs. 3.35 ± 0.68 (p < 0.0001) (Figure 2). In addition, other artifacts that substantially degraded the 
image quality, such as flow artifacts, were also improved in DL-FLAIR rather than in the native 
synthetic FLAIR: 1.27 ± 0.46 vs. 2.43 ± 0.72 (p < 0.0001) (Figure 2d). 
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Table 3. Qualitative assessment of each reader on DL-FLAIR and native synthetic FLAIR images in all 319 patients. 

 DL-FLAIR Native Synthetic FLAIR 

 Reader 1 
(Mean ± SD) 

Reader 2 
(Mean ± SD) 

Agreement 
(κ value) p value# Reader 1 

(Mean ± SD) 
Reader 2 

(Mean ± SD) 
Agreement 
(κ value) p value# 

Image quality 4.72 ± 0.48 4.74 ± 0.46 0.834 <0.001 3.11 ± 0.68 3.07 ± 0.63 0.817 <0.001 
Degree of conspicuity* 4.68 ± 0.63 4.69 ± 0.61 0.961 <0.001 4.71 ± 0.64 4.70 ± 0.67 0.956 <0.001 

Synthetic FLAIR artifacts+ 1.30 ± 0.46 1.33 ± 0.49 0.897 <0.001 3.38 ± 0.72 3.32 ± 0.71 0.794 <0.001 
Other artifacts‡ 1.25 ± 0.41 1.28 ± 0.43 0.876 <0.001 2.38 ± 0.77 2.48 ± 0.74 0.823 <0.001 

DL, deep learning; FLAIR, fluid-attenuated inversion recovery. * Degree of conspicuity are degrees of preservation of the periventricular white matter hyperintensities or lesion 
conspicuity. + Synthetic FLAIR artifacts are surface hyperintensity, granular artifact, or cortical swelling artifacts. # Other artifacts are artifacts that substantially degraded the 
image quality through, for example, flow artifact. # p values are derived from the kappa statistics.
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4. Discussion 

The findings of our study indicate that artifact correction using an already-trained DL algorithm 
could improve the image quality of synthetic FLAIR images by successfully removing native artifacts 
from an external data set in a different scanning environment, and it could also provide significantly 
better values of quantitative parameters. In addition, to the best of our knowledge, this is the first 
study to employ such a large sample size for the external validation of the trained DL model and 
provide three quantitative parameters for evaluating the image quality of DL-FLAIR and native 
synthetic FLAIR images. 

In previous studies, synthetic FLAIR artifacts did not have a significant effect on the diagnosis 
because the artifacts could easily be differentiated among the pathologic conditions [5,8]. However, 
synthetic FLAIR artifacts are an issue for routine clinical use because they can mimic a pathology in 
the CSF-filled spaces or CSF–brain interface; to identify them, radiologists should undergo an 
adaptation period to gain familiarity with this issue. Thus far, the exact cause of such artifacts remains 
unclear; however, it may be related to the partial volume and flow effects from previous studies 
[4,5,10]. Fortunately, synthetic FLAIR artifacts have characterized patterns, thin, granulated, and 
marginal hyperintensity along the brain surface and CSF spaces, and they tend to appear in high 
convexities and posterior compartments, such as temporo-occipital regions and the brainstem. 
Therefore, DL-based artifact correction can improve the image quality of the synthetic FLAIR images. 

Recently, DL methods have been applied increasingly in the field of radiology, and they have 
demonstrated enormous potential in several MRI processing areas [17], including artifact correction 
for specific pulse sequences [18,19]. Thus, recent studies have developed DL algorithms using 
variants of CNN to remove synthetic FLAIR artifacts and have thus demonstrated the feasibility of 
this method. However, two studies presented limitations because they were conducted using the 
same 3T MR scanner provided by a single vendor, although the institutions were different [10,11]. 
Therefore, our results are promising for generalizing the application of the DL method for improving 
synthetic FLAIR image quality because overfitted DL models only work for internal datasets and 
exhibit poor performance for external datasets [20]. 

The results of the current study also revealed that the DL algorithm using CNN improved the 
image quality of the synthetic FLAIR images by correcting the typical artifacts in both quantitative 
and qualitative analyses, and it is consistent with the results of two recent studies [10,11]. In the 
current study, both NRMSE and PSNR values in the DL-FLAIR image were more distinctive in GM 
and CSF regions than in WM in the region-wise analyses, which is consistent with the quantitative 
analysis of the recent study [10]. This may indicate that our DL-based artifact correction mainly acted 
on the brain surface and CSF spaces, which are the most common locations of synthetic FLAIR 
artifacts. Therefore, these results show the potential for the application of synthetic MRI in clinical 
use by enabling accurate detection of true intracranial pathologies at the brain–CSF interface on the 
synthetic FLAIR images. In addition, the improvement shown in the quantitative analysis was the 
lowest in WM, with no significant difference noticed in the degree of preserving the preexisting 
periventricular WM hyperintensities or lesion conspicuity on the visual assessment for DL-FLAIR 
images. The reason for this is unclear; therefore, additional studies are required to investigate this 
issue by comparing native synthetic FLAIR, DL-FLAIR, and conventional FLAIR images for 
expanding the diagnostic use of synthetic MRI in daily clinical practice. 

In terms of image artifacts, the typical synthetic FLAIR artifacts were significantly improved in 
DL-FLAIR images (Figure 2), which is consistent with the original work [10]. The CNN used in the 
current study is well-known for being highly effective in sensing and learning spatial patterns or 
features [20,21]. Fortunately, synthetic FLAIR artifacts have characterized patterns showing 
granulated and marginal hyperintensity along the brain-CSF interface [4,5,8,10]. Therefore, our DL 
method enables the efficient detection and removal of artifacts according to their spatial patterns. 
However, further comparative studies using different DL methods should be conducted to 
investigate the effectiveness and differences to reduce synthetic FLAIR artifacts. 

In the present study, we could identify the incomplete preservation of pre-existing true 
hyperintensities on DL-FLAIR images in 11 patients, owing to the unexpected partial removal of the 
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true hyperintensities. In all these cases, the hyperintense lesions were located in the vicinity of cystic 
encephalomalacias, and the lesions were considered to be reactive gliosis. The reason for this finding 
is unclear; however, it may be related to the processing of DL-based artifact correction to distinguish 
artifacts from true hyperintensities, especially when the true hyperintensities were seen near fluid-
containing lesions, making the fluid-lesion interface likely to be similar to the CSF-brain parenchyma 
interface. We believe that the issue can be solved if the DL algorithm is improved through a further 
training process using various pathologic cases that can differentiate a normal CSF-tissue interface 
from the lesion-fluid interface. 

Although the results are promising, this study has certain limitations. First, we did not directly 
compare the qualities of DL-FLAIR and conventional FLAIR images because this study included two 
types of conventional FLAIR images: 2D and 3D. This was unavoidable because this study was 
retrospectively designed. We believe that further studies should be required to directly compare the 
image quality of DL-FLAIR and conventional FLAIR images for attesting the clinical use of DL-FLAIR 
images and validating our results. Second, the quantitative analyses were performed only for 19 
patients owing to the mentioned heterogeneity of the conventional FLAIR images. Third, we obtained 
all data by using a different MR scanner with different scan parameters in a single institution; 
however, previous studies used scanners from the same vendor [10,11]. Therefore, we expect that 
future studies with different scanners from other vendors in multiple institutions will be conducted 
to validate and generalize our results. Finally, we did not perform a meticulous evaluation of the 
intracranial pathologies during the analyses because we focused on the improvement of the synthetic 
FLAIR image quality by DL-based correction and the heterogeneous brain MRI protocols related to 
the patients’ medical condition. 

5. Conclusions 

In conclusion, the artifact correction with the already-trained DL algorithm led to successful 
improvements in the image quality of the synthetic FLAIR images upon usage of an external dataset 
on a different MR scanner in different scan environments. This was verified both qualitatively and 
quantitatively, and the obtained images were compared with the conventional FLAIR images. 
Therefore, we believe that the DL-based approach can provide a promising solution for improving 
the image quality of synthetic FLAIR images to broaden the clinical use of synthetic MRI in daily 
clinical practice. 
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