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Abstract: Early detection of patients at risk for clinical deterioration is crucial for timely intervention.
Traditional detection systems rely on a limited set of variables and are unable to predict the time of
decline. We describe a machine learning model called MEWS++ that enables the identification of
patients at risk of escalation of care or death six hours prior to the event. A retrospective single-center
cohort study was conducted from July 2011 to July 2017 of adult (age > 18) inpatients excluding
psychiatric, parturient, and hospice patients. Three machine learning models were trained and tested:
random forest (RF), linear support vector machine, and logistic regression. We compared the models’
performance to the traditional Modified Early Warning Score (MEWS) using sensitivity, specificity,
and Area Under the Curve for Receiver Operating Characteristic (AUC-ROC) and Precision-Recall
curves (AUC-PR). The primary outcome was escalation of care from a floor bed to an intensive care or
step-down unit, or death, within 6 h. A total of 96,645 patients with 157,984 hospital encounters and
244,343 bed movements were included. Overall rate of escalation or death was 3.4%. The RF model
had the best performance with sensitivity 81.6%, specificity 75.5%, AUC-ROC of 0.85, and AUC-PR
of 0.37. Compared to traditional MEWS, sensitivity increased 37%, specificity increased 11%, and
AUC-ROC increased 14%. This study found that using machine learning and readily available clinical
data, clinical deterioration or death can be predicted 6 h prior to the event. The model we developed
can warn of patient deterioration hours before the event, thus helping make timely clinical decisions.

Keywords: Failure to Rescue; Modified Early Warning Score; clinical deterioration; Machine Learning
Classifiers; Unexpected Escalation
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1. Introduction

Timely detection of patient deterioration and prompt clinical intervention is key to lowering the
potentially preventable morbidity and mortality among hospital inpatients [1,2]. All too often however,
the early abnormalities and clinical signs that precede serious clinical deterioration may remain
unidentified [3,4]. Studies on the identification of hospital patients at risk for clinical deterioration over
last two decades have resulted in the development of prediction tools that use rule-based scoring [5–8].
The Modified Early Warning Score (MEWS), for example, incorporates physiological parameters
including systolic blood pressure, pulse rate, respiratory rate, temperature, and level of consciousness.
There are some limitations to this approach: (1) the schemas of these scores are usually defined
manually; (2) alarm triggers rely on empirically chosen values; (3) the thresholds are usually set to
capture the greatest percentage of clinically significant events, resulting in non-specific alerts that
include a large number of false alarms. This creates an excess of warning notifications that can generate
alarm fatigue [9–11]. Indeed, it has been shown that as the number of non-actionable alarms increases,
the response time of providers increases as well [12]. Additionally, the usefulness of these systems is
limited by inability to quantify the risk for decompensation and the lack of a defined time window
for intervention.

Recent work by Bedoya et al. has confirmed the poor performance and minimal impact of
implementing a traditional Early Warning Score [13]. However, machine learning approaches that
use large Electronic Health Record (EHR) data can be trained to have good performance in predicting
deterioration, exceeding that of traditional models [14,15]. We hypothesized that a machine learning
model trained on a large dataset could have better performance than MEWS. We aimed for our model
to predict escalation of care or death within the next 6 h. A six-hour prediction window was chosen
based on clinical considerations such as the typical duration of nursing and physician shift length
(8–12 h) and the desire to alert within a time frame that was both believable and actionable by the same
care team that received the alert.

2. Patients and Methods

Institutional Research Board approval was obtained for this retrospective cohort study. Inclusion
criteria were all adult inpatient admissions (age > 18) between July 2011 and July 2017. We excluded
patients admitted to psychiatry, labor and delivery, and hospice units. This is due to low frequency
of escalation or lack of adequate monitoring in these units. Patients were categorized into Major
Diagnostic Categories (MDCs) derived from ICD-9 diagnostic codes [16].

We retrieved data via our institutional data warehouse from the following sources:
admission-discharge-transfer (ADT) events; structured clinical assessments (e.g., nursing notes);
physiologic data (e.g., vital signs); laboratory results; and automated electrocardiogram (ECG) results.

2.1. Phenotyping of Patient Deterioration

Most existing MEWS algorithms have been developed on cohorts of modest size (i.e., dozens to
hundreds of patients). Adverse events were identified via either retrospective manual chart review or
prospective data collection [6,17,18]. Given our intention to use a much larger cohort, we developed
an automated phenotyping algorithm to identify escalation of care [19]. We decided a priori to base
our algorithm on bed movement (ADT) data. Our base assumption was that bed movements were
independent events. Using administrative data, each bed in the hospital was assigned to a generalized
level of care such as floor, ICU, step-down, and so-on. We then applied a set of rules developed
by authors MAL and RF to classify each bed transition as expected or unexpected (see Table S1 in the
Supplement for the full list of phenotyping rules). Expected transitions were those between beds at
the same level of care. Unexpected transitions were those to a higher level of care such as the ICU or
step-down unit, or death.
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A retrospective chart review was performed to validate the performance of the phenotyping
algorithm. A random sample of 286 hospital encounters (1193 bed movements) was drawn from
157,984 hospital encounters. Authors MAL and RF reviewed the charts in consensus and classified
each as a true positive, false positive, true negative or false negative. The review was done in rounds of
20–40 charts to tune the phenotyping algorithm. The final result showed sensitivity of 90.5%, specificity
of 81.9%, and positive predictive value (PPV) of 82.1%.

2.2. Algorithms Evaluated

We compared a Random Forest (RF) algorithm to two additional machine learning algorithms: a
linear Support Vector Machine (SVM) and Logistic Regression (LR). RF is a classifier that fits a number
of decision trees on sub-samples of the dataset and uses averaging to improve the predictive accuracy
and control over-fitting [20]. SVM is a classifier that attempts to maximize the linear distance between
p-dimensional vectors representing instances of each class, where p is the number of features [21,22].

2.3. Defining Optimal Prediction Time

The time of escalation (unexpected transition) or death was defined as t0. For patients who never
had an escalation of care (negative cases), the time of discharge was used as t0. Times of predictions, tp,

were defined as the time prior to t0 at which predictions were generated (Figure 1). Predictions were
generated every two hours prior to the escalation event, with data sampled from the 24-h period prior
to prediction (Figure 1). A time series was created by defining a sampling window as the 24-h period
before the prediction time tp. Then, data were sampled every 4 h within the window, i.e., six times
in 24 h (Figure 1). This frequency reflects the typical interval between vital sign measurements on a
medical-surgical hospital unit. The result was a time series V = {V1, V2, . . . V6} with 6 measurements
per 24-h sampling window for each feature. Missing values were imputed by using the median value
of the variable over the entire cohort at the sampling time point [23].
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under-performance [25]. We applied random under-sampling to remove instances of the majority 
class (expected events) until both classes were equally balanced. 

Figure 1. Prediction time and sampling window. t0 is the time of escalation, death, or discharge for
patients with no event. Prediction time tp is the time prior to t0 at which a prediction was generated.
The sampling window is the 24-h period preceding the prediction time tp.

Performance of the models were compared, and an optimal prediction time of 6 h was chosen based
on clinical and operational considerations such as anticipated impact on nursing and clinician workload.

2.4. Data Encoding and Scaling

Categorical variables were one-hot-encoded. Continuous variables were scaled using the MLLib
min-max scaler to be within the range (0,1) [24].

2.5. Resampling

The overall rate of unexpected events (escalation of care) was under 5%, versus 95% expected
events. This large variance between the prevalence of the two classes can lead to over-fitting and
under-performance [25]. We applied random under-sampling to remove instances of the majority class
(expected events) until both classes were equally balanced.
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2.6. Calculation of MEWS Score

MEWS score was calculated as described by Subbe et al. [6]. Briefly, four physiologic variables
(systolic blood pressure, pulse rate, temperature, and respiratory rate) and one level of consciousness
assessment were given a numeric weighting of 0–3 with the MEWS score calculated as the additive
sum of all 5 sub-scores. A MEWS score of 2 was used as the cut-off based on the literature and by
visual inspection of the sensitivity and specificity curves [6] (Supplementary Figure S1).

3. Model Development

All models were built using Python v.2.7.13, MLlib, and Spark 2.3 [26]. Plotly 2.0.6 was used for
visualizations. The primary model developed was the RF model. We called this model MEWS++. We
also evaluated the linear SVM and LR models. The default probability threshold of 0.5 was used for
all models. Parameters for the models are listed in Supplementary Table S2. Briefly, the RF model
used 500 trees, max depth of 10 and max bin of 32. Both SVM and LR models used 10 folds and 500
iterations. The regularization parameter for the SVM model was 0.1 and for the LR model it was 0.3.
The Spark implementation of linear SVM has no slack parameter.

Feature selection and model tuning were performed on a training set consisting of 70% of the bed
movement data. Ten-fold cross-validation was used for both feature selection and model development.
The F1 score was used for best model selection. F1 is the harmonic average of the precision (PPV) and
recall (sensitivity), calculated as:

F1 = 2 ∗
precision ∗ recall
precision + recall

(1)

3.1. Feature Selection

Recursive feature elimination (RFE) was used as the feature selection approach. Feature selection
was only performed only on the training set. A list of 89 variables was created based on review of
relevant literature and clinician feedback, and were used to build an initial RF model (Supplementary
Table S3). Then, using the Gini coefficient, the least important features were pruned [27]. All
features were recursively tested in this fashion. The final list of variables chosen by RFE is listed in
Supplementary Table S4.

3.2. Model Training

The final reduced feature set selected by RFE was then used to build a model, and this model
was trained and cross-validated only on the training set. An average F1 score was computed for each
internal validation model. The final model chosen for testing was the one with the largest average
F1 score.

Under-sampling may result in loss of potentially useful information for defining the majority class,
and thereby can compromise the model accuracy. In order to rule out such influence on RF/MEWS++

model performance, we performed 10 iterations of under-sampling on the majority class in the training
data and compared the performance of resultant models with the main RF-based model. The results
are shown in Supplementary Table S5. The standard deviations of all performance metrics ranged
from 0.003 to 0.67, indicating that the final chosen RF model was not affected by under-sampling bias.

3.3. External Model Testing

The remaining thirty percent (30%) of the bed movement data were used exclusively as an
independent test set for the final chosen RF model. PPV (precision), sensitivity (recall), specificity, F1

score and the Area Under the Receiver-Operator Curve (AUC) and Area Under the Precision-Recall
Curve (AUPRC) were used as metrics.
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4. Results

The raw cohort consisted of 96,645 patients with 157,984 hospital encounters and 244,343 bed
movements. Under-sampling resulted in a training cohort of 15,818 bed movements. The test cohort
consisted of 102,066 bed movements. Basic demographics of the training and test cohorts are shown in
Table 1. The mean age was 63.4 years. Approximately half of the population was female (50.1%). The
rate of unexpected escalation of care or death in the validation set was 3.4%. 56.8% escalated to an ICU,
41.9% to telemetry, 1.3% escalated to an intermediate care unit, and 0.7% died. There was a significant
variation of unexpected escalation rate seen between MDC categories (Supplementary Figure S2). The
respiratory, infectious, and circulatory groups showed the highest rates of escalation (9.2%, 5.9%, and
4.5%, respectively).

Table 1. Cohort demographics.

Total N (%) Training (%) Test (%) p-Value

Bed
movements 117,884 15,818 102,066

Bed
movements per

encounter
1.67 ± 1.15 1.33 ± 0.76 1.59 ± 0.99

Unique
Patients * 63,100 13,168 58,742

Age

18–45 19,422 (16.5) 2107 (13.3) 17,315 (17.0) <0.001
45–65 40,942 (34.7) 5060 (32.0) 35,882 (35.2)
65–80 37,596 (31.9) 5266 (33.3) 32,330 (31.7)
>80 19,924 (16.9) 3385 (21.4) 16,539 (16.2)

Gender
Female 58,345 (49.5) 7760 (49.1) 50,585 (49.6) 0.5
Male 59,532 (50.5) 8057 (50.9) 51,475 (50.4)
Other 7 (0.0) 1 (0.0) 6 (0.0)

Major
Diagnostic
Category
(MDC)

Circulatory system 29,904 (25.4) 3930 (24.8) 25,974 (25.4) <0.001
Musculoskeletal system &

connective tissue 12,521 (10.6) 1291 (8.2) 11,230 (11.0)

Nervous system 8767 (7.4) 1329 (8.4) 7438 (7.3)
Hepatobiliary/pancreas 7368 (6.3) 1223 (7.7) 6145 (6.0)

Respiratory system 7094 (6.0) 1190 (7.5) 5904 (5.8)
Infectious & parasitic 5762 (4.9) 1327 (8.4) 4435 (4.3)

Kidney & urinary tract 5474 (4.6) 723 (4.6) 4751 (4.7)
Endocrine/nutrition/metabolic 4207 (3.6) 513 (3.2) 3694 (3.6)
Ear, nose, mouth, and throat 2859 (2.4) 319 (2.0) 2540 (2.5)
Female reproductive system 2809 (2.4) 259 (1.6) 2550 (2.5)

Skin, subcutaneous tissue,
breast 2459 (2.1) 236 (1.5) 2223 (2.2)

Other (MDCs with ≤ 2%
occurrence) 28,660 (24.3) 3478 (22) 25,182 (24.7)

Overall length
of stay at
hospital

≤5 days 52,087 (44.2) 5410 (34.2) 46,677 (45.7) <0.001
5–12 days 35,210 (29.9) 4876 (30.8) 30,334 (29.7)

12–42 days 26,753 (22.7) 4482 (28.3) 22,271 (21.8)
>42 days 3834 (3.3) 1050 (6.6) 2784 (2.7)

Length of stay
by hospital unit

≤24 h 52,932 (44.9) 6699 (42.4) 46,233 (45.3) <0.001
1–3 days 35,748 (30.3) 4865 (30.8) 30,883 (30.3)
3–7 days 20,916 (17.7) 2833 (17.9) 18,083 (17.7)
>7 days 8288 (7.0) 1421 (9.0) 6867 (6.7)

Length of stay
in the ICU

≤24 h 2805(28.8) 198 (27.1) 2607 (29.0) 0.36
1–3 days 4048 (41.6) 322 (44.1) 3726 (41.4)
3–7 days 1928 (19.8) 134 (18.4) 1794 (19.9)
>7 days 947 (9.7) 76 (10.4) 871 (9.7)

* Some patients appeared in both training and test sets because the data were split on bed movements, not patients.
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Performance of Machine Learning Models at 6 h Prior to Escalation

The model results are shown in Table 2. At 6 h prior to escalation, classical MEWS using a cutoff

score of 2 had sensitivity of 64.5%, specificity of 66.6% and AUC of 0.67 (Table 2). MEWS++ (the RF
model) had the best performance of all ML models and performed significantly better than classical
MEWS, with sensitivity of 81.6%, specificity of 75.5%, and AUC of 0.85 (Table 2 and Figure 2). PPV also
improved, with an AUPRC of 0.39 (Table 2 and Figure 2). Interestingly, while the difference between
the ROC curves of linear SVM and the RF model was not significant (p = 0.16), superior performance
of RF was seen by comparing the computed AUCPR and visual inspection of the precision recall (PR)
curves (Figure 2). The AUCPR for the RF model was 36.2% vs. 28.7% for linear SVM, with no overlap
of the 95% confidence intervals (Table 2).

Table 2. Model performance metrics.

Model Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

Accuracy, %
(95% CI)

PPV, %
(95% CI) F1 Score ROC

(95% CI)
AUC PR
(95% CI) p-Value *

Random Forest
(MEWS++)

78.9
(77.6–80.1)

79.1
(78.9–79.3)

79.1
(78.9–79.3)

11.5
(11.1–11.9) 0.2 87.9

(87.4–88.4)
36.2

(34.7–37.7) <0.0001

Linear SVM 79.0
(77.6–80.3)

77.9
(77.6–78.1)

77.9
(77.7–78.2)

11.0
(10.6–11.4) 0.19 87.3

(86.8–87.9)
28.7

(27.2–30.2) <0.00010.16 **

LR 61.4
(59.8–63.0)

78.5
(78.3–78.8)

77.9
(77.7–78.2)

9.0
(8.6–9.4) 0.16 79.1

(78.4–79.8)
17.2

(16.0–18.5) <0.0001

MEWS Score 64.2
(62.7–65.7)

66.2
(66.0–66.5)

66.2
(65.9–66.4)

6.1
(5.9–6.4) 0.11 66.7

(65.9–67.6)
7.0

(6.2–7.8)

* p-value for difference between AUC ROC for respective ML model and MEWS Score. ** p-value = 0.16 for Random
Forest vs. Linear SVM. AUCPR—Area Under Precision Recall Curve, LR—Linear Regression, SVM—Support Vector
Machine, ROC—Receiver Operating Characteristic.
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The 24-h performance of MEWS++ vs. classical MEWS is shown in Figure 3. As can been seen, 
the RF model is stable over time, whereas the sensitivity of classical MEWS declined as the prediction 
time prior to escalation increased. 

Figure 2. ROC and AUC PR Curves. Receiver Operating Characteristic (ROC) curves (left panel) and
Precision-Recall curves (right panel) for the four models evaluated. MEWS++ (RF) performs better
than other algorithms. LR—Logistic Regression, SVM = Support Vector Machine.

The 24-h performance of MEWS++ vs. classical MEWS is shown in Figure 3. As can been seen,
the RF model is stable over time, whereas the sensitivity of classical MEWS declined as the prediction
time prior to escalation increased.
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Figure 3. Comparison of 24-h performance of RF Model (MEWS++) vs. classical MEWS. Predictions
were generated every 2 h for 24 h prior to escalation. A threshold of 2 was used for MEWS, and 0.5 (the
default) for the RF model. (a) Sensitivity of MEWS begins to degrade after 4 h whereas sensitivity of
MEWS++ remains stable. (b) Specificity of MEWS++ is consistently higher than MEWS.

Since different MDCs showed different rates of unexpected escalation, a subgroup analysis was
performed for the RF model for different MDCs. The five MDCs in which MEWS++ showed the
best performance were Respiratory, Infectious, Digestive, Hepatobiliary/Pancreas, and Cardiovascular
Diseases (Supplementary Figure S3).

5. Discussion

In this retrospective, single center study, we developed a ML model of patient deterioration
(MEWS++) that significantly outperformed classical MEWS in predicting, 6 h in advance, clinical
deterioration requiring transfer to a higher acuity unit, or death. The features utilized in the final model
were variables that are readily available in all patient care areas, consisting mostly of demographics,
vitals, lab results and physical exam findings.

MEWS++ improves on classical MEWS in several ways. The original MEWS algorithm was
developed to identify patients at imminent risk of clinical deterioration, using a limited set of
features [6]. We used a greatly expanded feature set, continuous value assessment that makes no
a-priori assumptions about what constitutes a “normal” range, and time series forecasting where
not only “point in time” measurements, but also prior data and trends, are incorporated into every
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prediction. The RF model demonstrated stable performance across a wide prediction window from 2 h
to up to 24 h prior to the escalation of care. The chosen 6-h window gives enough time for intervention
without straining clinical credibility. Similar to the “golden hour principle” that has been applied
to a number of clinical conditions, including acute coronary syndrome, stroke and severe sepsis,
a 6-h window could enable timely evidence-based interventions that improve outcomes for these
patients [28–30].

One challenge with using ML models for clinical prediction is model interpretability [31,32]. It is
desirable to present clinicians with a list of most important features. Such a list may build trust in
the algorithm as well as provide clinical context for potential action. Ranking features by their Gini
coefficient is one approach that can be applied to RF models [27,33]. The top features for MEWS++ are
shown in Supplementary Figure S4. When applied to an individual patient, the list of features will
vary. For example, the top 10 most important features for patient A may be pulse, BUN, age, systolic
BP, bilirubin, diastolic BP, respiration rate, sodium, and lactate. The prediction for Patient B might have
a very similar set of most important features, but instead of lactate have the INR. Thus, the features
give individualized insight into why a prediction score might be high for a given patient.

Our approach shares similarity with the index developed by Rothman et al [8]. We used similar
input data—nursing flowsheets, labs, vitals, and so forth—and similar sampling methodology. Where
our approach differs was in the clinical endpoint used for model development and validation (escalation
of care/death on the floor vs. 1-year mortality), and the algorithm employed (RF vs. LR). Although the
Rothman index showed good performance for an LR model, we found that in our case the RF model
performed better than LR. This may have been because of the large numbers of features [34].

While ML approaches based on regression and SVM have been evaluated to detect patient
deterioration using only vital signs or in combination with laboratory test results, we found that
an RF model performed better than SVM for our use case, with a much higher AUCPR (36.2% vs.
28.7%) [35–38]. This finding could be explained by the ability of RF to provide a non-parametric, hard
to over-train model which is relatively robust to outliers and noise [39]. Therefore, we felt that the
RF-based model was most suitable for this study.

Limitations

There are several limitations to our approach. This was a single center, retrospective study. Our
results may not be replicable at other institutions with different patient populations. The phenotyping
algorithm used to identify unexpected escalations is based on purely administrative data with no
clinical context. The algorithm cannot distinguish between an appropriate escalation to an ICU
versus an unplanned emergent transfer—an example of the Frame Problem [40]. The assumption that
bed movements are independent events and that prior bed movements do not influence future bed
movements may be incorrect. Thus, our phenotype is not a perfect gold standard. This bias in the
phenotyping is carried forward into the ML classifier, although the model does attenuate the bias.
Also, we did not calibrate the prediction threshold [41,42]. Finally, another limitation of using ML
methods is that scores become hard to interpret, as opposed to linear models where determining the
contributors to a positive result are easily conceptualized [31]. Nonetheless, ML models may augment
human intuition by finding hidden patterns in large datasets.

6. Conclusions

Using ML and a large database we have developed a predictive model called MEWS++ that has
significantly better performance than the classic MEWS. MEWS++ can warn of patient deterioration
6 h prior to the event and thus help clinicians make timely interventions. Future models could be
improved by incorporating additional data, such as more laboratory results, fluid intake and output,
medication data, and free text from provider notes. Looking ahead, the success of using an ML model
such as the one developed here as a clinical tool is contingent on its proper integration into healthcare
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system workflows. This work will require multidisciplinary collaboration between data scientists,
clinicians, and hospital administrators, in order to fully realize the goal of improved clinical care.
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Figure S1: Sensitivity and Specificity of Classical MEWS at Different Thresholds; Figure S2: Rate of Escalation by
MDC; Figure S3: Sub-group analysis of MEWS++ Performance by Major Diagnostic Category (MDC); Figure S4:
Top Features contributing to model, ranked by Gini coefficient; Table S1: Phenotyping Rules; Table S2: Model
Parameters; Table S3: Initial List of Features (Variables); Table S4: Final List of 36 Features (Variables) Chosen
by Recursive Feature Elimination; Table S5: Results of 10-fold under-sampling of training data on final RF
model performance.
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