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Abstract: A precise diagnosis and a comprehensive assessment of symptom severity are important
clinical issues in patients with schizophrenia (SZ). We investigated whether electroencephalography
(EEG) features obtained from EEG source network analyses could be effectively applied to classify
the SZ subtypes based on symptom severity. Sixty-four electrode EEG signals were recorded from
119 patients with SZ (53 males and 66 females) and 119 normal controls (NC, 51 males and 68 females)
during resting-state with closed eyes. Brain network features (global and local clustering coefficient
and global path length) were calculated from EEG source activities. According to positive, negative,
and cognitive/disorganization symptoms, the SZ patients were divided into two groups (high and
low) by positive and negative syndrome scale (PANSS). To select features for classification, we used
the sequential forward selection (SFS) method. The classification accuracy was evaluated using 10 by
10-fold cross-validation with the linear discriminant analysis (LDA) classifier. The best classification
accuracy was 80.66% for estimating SZ patients from the NC group. The best classification accuracy
between low and high groups in positive, negative, and cognitive/disorganization symptoms were
88.10%, 75.25%, and 77.78%, respectively. The selected features well-represented the pathological
brain regions of SZ. Our study suggested that resting-state EEG network features could successfully
classify between SZ patients and the NC, and between low and high SZ groups in positive, negative,
and cognitive/disorganization symptoms.

Keywords: schizophrenia; subtypes; PANSS (positive and negative syndrome scale); EEG
(electroencephalography); machine learning

1. Introduction

Schizophrenia (SZ) has been primarily diagnosed based on diagnostic criteria from the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5) by asking patients a series of questions
designed to elicit information, such as the duration of illness and presence of clinical symptoms [1].
Various diagnostic tools can aid psychiatrists and clinical psychologists in diagnosing SZ, but traditional
clinical diagnoses might sometimes be inaccurate because SZ patients may intentionally obscure their
symptoms, and even specialists often have difficulty distinguishing SZ from other psychoses due
to similarities of symptoms [2–4]. Thus, several researchers have attempted to improve the overall
accuracy of diagnosis by developing objective quantitative biomarkers using neuroimaging technologies.
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Electroencephalography (EEG) is considered the most effective neuroimaging modality among the
various neuroimaging methods due to its high time resolution and low cost. A number of studies
reported disruption of cortical information processing in SZ, based on distorted functional connectivity
networks [5,6] and decreased source activity [7–10].

SZ is perceived as a complex illness portrayed by heterogeneous symptoms. Over recent decades,
it has been perceived that schizophrenic symptoms in fact go beyond the dichotomous divisions
of positive versus negative domains [11]. The Positive and Negative Syndrome Scale (PANSS) is
one of the most broadly utilized measures to assess the severity of positive symptoms and negative
symptoms in SZ research [12]. Other clinical tools, such as the Brief Negative Symptom Scale
(BNSS) [13,14] and Schedule for the Deficit Syndrome (SDS) [15], can be used to assess negative
symptoms. Cognitive deficits have been emphasized as one of the important features of SZ [16].
The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [17] and Mini-Mental State
Examination (MMSE) [18] could be used to assess such cognitive symptoms. This cognitive impairment
is a broader concept than specific clinical disorganization symptoms. The clinical/disorganization
domain is also one of the fundamental aspects of SZ [19]. The cognitive disorganization could be
assessed by the PANSS with a five-factor model, which was created based on several factor analysis
studies [20,21]. The cognitive/disorganization factor delineates a cognitive dimension, as evidenced
by the expression of the constituent symptoms, including conceptual disorganization, difficulty in
abstract thinking, poor attention, disorientation, and preoccupation [21].

Thus far, the psychiatric symptom severity of SZ has generally been assessed using psychological
measures, such as the PANSS [22], based on interview-based assessments conducted by trained
interviewers. Although these assessments have been reported to provide high inter-rater reliability or
test/retest reliability [12,23], the results might be highly affected by original diagnosis [24] or biased
views on the part of the psychiatrists [4]. In addition, the negative symptoms of SZ are more difficult
to evaluate [2,4], because negative symptoms may have no clear signs or common behaviors that
overlap with other mental diseases [25], and the negative symptoms are divided into two sub-domains:
expressive deficits and social amotivation [26]. The assessment of symptom severity in SZ is critical in
establishing successful treatment strategies or evaluating the effectiveness of treatments. However,
only few quantitative diagnosis tools exist to evaluate the symptom severity of individual patients
with SZ [27].

Previous studies reported that, compared to normal control (NC) groups, patients with SZ have
disruption of small-world networks during a resting-state based on EEG [28–30] and fMRI results [6,31].
Disruptions in the small world network were found in several cortical regions, including the prefrontal,
parietal, and temporal lobes [6,28,30,31]. Several fMRI studies have suggested significant correlations
between psychotic symptoms and decreased efficiency of brain networks. The negative symptom
score on the PANSS has a negative correlation with global efficiency and a positive correlation
with mean path length [32]. A decrease in connectivity between the cerebellum and dorsolateral
prefrontal cortex was found to correlate with increased negative symptoms [33]. Positive symptoms
have shown a positive correlation with functional connectivity in the posterior cingulate and middle
temporal regions [34]. At the same time, disorganization symptoms may be correlated with impaired
functioning of frontoparietal networks [35]. However, these correlation tendencies between the
topological indicators of brain networks and the clinical severity of SZ have not replicated in other
studies [29,31,36].

In this study, we aimed to diagnose SZ compared to NC by brain network connectivity features of
EEG during a resting-state. In addition, we tried to classify patients with SZ into high vs. low symptom
groups for positive, negative, and cognitive/disorganization symptoms.
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2. Materials and Methods

2.1. Participants

A total of 119 SZ patients (male: 53, female: 66, age: 36.26± 12.40 (range: 16–61)) were recruited for
this study; they underwent the Structured Clinical Interview for DSM-V Axis I disorders (SCID-I) [37].
The PANSS was used to evaluate patients’ psychiatric symptoms [12]. Patients with a lifetime history
of central nervous system disease, alcohol or drug abuse, mental retardation, or head injury with loss
of consciousness, and patients with current Axis II disorders were excluded from the study. Among the
119 SZ patients, 25 were drug naive and 94 were taking antipsychotic medications (aripiprazole: n = 11,
amisulpride: n = 10, blonanserin: n = 6, clozapine: n = 5, haloperidol: n = 1, olanzapine: n = 16,
paliperidone: n = 11, quetiapine: n = 10, risperidone: n = 22, ziprasidone: n = 1, zotepine: n = 1)
during the course of the study.

A total of 119 NC participants (male: 51, female: 68, age: 36.67 ± 11.66 (range: 20–61)) were
recruited from local community advertising. They underwent an initial screening interview and were
excluded if they had shown any identifiable neurological disorder, head injury, or any personal or
family history of psychiatric illness. The further exclusion was processed through the Structured
Clinical Interview for DSM V for Axis I Psychiatric Disorders [37]. All procedures followed were
approved by the Institutional Review Board (IRB) at Inje University Ilsan Paik Hospital, Republic of
Korea (2018-12-012-002), and were executed following the guidelines and regulations of the board.
All participants provided written informed consent, and legal guardians provided informed consent if
the participants were under the age of 18. Demographic data of the SZ and NC groups and the mean
and standard deviation (SD) of psychiatric symptom severity scores in the SZ group are reported in
Table 1.

Table 1. Demographic data of the schizophrenia (SZ) and normal control (NC) groups and the mean
and standard deviation (SD) of psychiatric symptom severity scores in the SZ group.

SZ (n = 119) NC (n = 119) p-Value
Mean ± SD or n

Age (years) 36.26 ± 12.40 36.67 ± 11.66 0.792
Sex 0.794

Male 53 51
Female 66 68

Education (years) 13.05 ± 2.89 13.55 ± 2.89 0.186

Number of hospitalization 2.43 ± 2.88

Duration of illness (years) 9.93 ± 9.21

Dosage of antipsychotics
(chlorpromazine equivalent, mg) 887.83 ± 1110.95

Positive and negative syndrome scale (PANSS)
Positive 19.21 ± 8.69
Negative 19.93 ± 6.66
General 41.75 ± 13.80
Total 80.89 ± 25.31

Five-factor model of the PANSS
Positive 11.56 ± 5.26
Negative 19.60 ± 6.95
Cognitive/disorganization 17.69 ± 7.16
Excitement 12.72 ± 5.86
Depression/anxiety 11.79 ± 3.84
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2.2. SZ Subtype Classification according to Symptom Severities

The PANSS [12,38] assesses the severity of the two common types of symptoms (positive and
negative) of SZ and the general psychopathology of the patient based on the interview and reports
of family members. To assess the cognitive/disorganization symptoms, a five-factor model of the
PANSS was used based on evidence from the factor analysis studies [20,21]. Each symptom was
measured by several items, positive (P1, P3, P5, P6), negative (N1, N2, N3, N4, N6, G7, G16),
cognition/disorganization (P2, N5, G9, G10, G11, G13, G15), excitement (P4, P7, G8, G12, G14),
and depression/anxiety (G2, G3, G4, G6) [21].

The general PANSS positive score of the SZ group was 19.21 ± 12.40 (a negative score was
19.93 ± 6.66), and the general score was 41.75 ± 13.80. The five-factor model of the PANSS positive
score was 11.56 ± 5.26, and a negative score was 19.60 ± 6.95. The cognitive/disorganization score was
17.69 ± 7.16, excitement score was 12.72 ± 5.86, and depression/anxiety score was 11.79 ± 3.84.

SZ patients were divided into separate groups based on the median score of the PANSS positive,
negative, and cognitive/disorganization scores. The high PANSS positive (HPSZ, n = 57) group and
the low PANSS positive (LPSZ, n = 62) group were divided based on the median score 11 of the
PANSS positive subscale. The high PANSS negative (HNSZ, n = 55) group and the low PANSS
negative (LNSZ, n = 64) group were divided based on the median score of 19 of the PANSS negative
subscale. The high PANSS cognitive/disorganization (HCSZ, n = 59) group and the low PANSS
cognitive/disorganization (LCSZ, n = 60) group were divided based on the median score of 17 of the
PANSS cognitive/disorganization subscale. Figure 1 presents the distribution of SZ patients according
to the PANSS subscale scores. Three pairs of subgroups did not show any significant differences
between gender and education. Gender: HPSZ (male: 30, female: 27) vs. LPSZ (male: 23, female:
39), p = 0.064; HNSZ (male: 25, female: 30) vs. LNSZ (male: 28, female: 36), p = 0.499; HCSZ (male:
31, female: 28) vs. LCSZ (male: 22, female: 38), p = 0.059. Education: HPSZ: 12.93 ± 2.82 vs. LPSZ:
13.16 ± 2.98, p = 0.536; HNSZ: 12.81 ± 2.77 vs. LNSZ: 13.25 ± 3.00, p = 0.582; HCSZ: 12.73 ± 2.88 vs.
LCSZ: 13.35 ± 2.89, p = 0.898.

Figure 1. The positive and negative syndrome scale (PANSS) subscale scores of all schizophrenia (SZ)
patients. LP: low positive; LN: low negative; LC: low cognitive/disorganization; HP: high positive; HN:
high negative; HC: high cognitive/disorganization.
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2.3. EEG Data Acquisition and Analysis

Participants sat on a chair in a room where the ambient noise was blocked. The resting-state
quantitative EEG was recorded with participants’ eyes closed for four minutes. EEG signals were
recorded using a Quick Cap with 62 Ag-AgCl electrodes, which were placed according to the
extended 10–20 system, and NeuroScan SynAmps (Compumedics USA, El Paso, TX, USA). The vertical
electrooculogram (EOG) was recorded with the electrodes attached above and below the left eye,
while the horizontal EOG was recorded with the electrodes attached to the outer canthus of each eye.
We recorded EEG data with a 0.1–100 Hz band-pass filter at a sampling rate of 1000 Hz and removed
60 Hz noise using a notch filter. We analyzed the resting EEG data during the eyes closed session using
CURRY 7 (Compumedics USA, Charlotte, NC, USA), a commonly used neuroimaging and analysis
tool for EEG pre-processing. A trained inspector identified and manually removed the gross artifacts.
The removal of the artifacts caused by eye movement and blinks was conducted using the covariance
analysis of CURRY 7 [39]. The pre-processed EEG data were divided into two-second long epochs.
Any epochs containing artifacts with the amplitude exceeding ±100 µV at any site, overall 62 electrodes,
or a theta power/alpha power ratio > 1 were excluded from the analysis. In the power spectral
analysis, we employed the periodogram function in MATLAB R2017b (MathWorks, Natick, MA, USA)
to estimate the power spectral density of each epoch. After artifact rejection, 30 epochs were randomly
selected for the following analysis.

2.4. Feature Extraction

In the study, the source-level cortical functional connectivity network was obtained. We estimated
the time series of source activity using minimum norm estimation (MNE), and the synchronization
between each pair of cortical sources measuring the phase-locking value (PLV). Values of the clustering
coefficient (CC) and path length were evaluated for individual cortical functional networks during the
resting-state with eyes closed.

Source localization was performed using Brainstorm [40], an open-source brain imaging
tool (http://neuroimage.usc.edu/brainstorm). A three-layer boundary element method (BEM) model
expressed in anatomical MNI template Colin 27 was used to compute the lead field matrix. We obtained
cortical current density values at 15,002 cortical vertices for all time points of each epoch and extracted
148 dipole sources as evenly as possible from the original cortical surface model based on the Destrieux
atlas [41]. The 148 sub-regions of the Destrieux atlas could be categorized into seven regions: the frontal
lobe, insula, temporal lobe, occipital lobe, tempo-occipital lobe, parietal lobe, and the limbic lobe.
The time series data at each of the 148 cortical locations were band-pass filtered and grouped into eleven
frequency bands (delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), alpha1 (8–10 Hz), alpha2 (10–12 Hz),
beta (12–30 Hz), beta1 (12–18 Hz), beta2 (18–22 Hz), beta3 (22–30 Hz), beta4 (18–30 Hz) and gamma
(30–55 Hz)) [42,43].

A network is essentially several nodes connected at their edges. The nodes are the brain sub-regions,
and the PLV quantifies the edges among the potential pairs of cortical regions of interest [44]. The PLV
measures phase synchronization between two different electrode locations but were recorded during
the same time interval and the same frequency band [44]. Even when their amplitudes are not
correlated, these phases can be synchronized [45]. Stationarity-independent, the PLV focuses purely
on phase and ranges from 0 to 1. Values close to 1 mean the two signals are synchronized and show a
constant time lag. Signals with values close to zero are temporally independent. The PLV was chosen
as the measure of synchronization, since it ranges from 0 to 1 and consequently requires no additional
modifications to reflect connection strength in weighted network analysis.

In this study, we applied graph theory to perform weighted network analysis. As aforementioned,
a network is composed of several nodes, which are connected by edges. The CC indicates the degree
to which a node is clustered with its neighboring nodes. The CC was calculated for the entire network.
The path length indicates the overall connectedness of the whole network, and is calculated as the sum
of the lengths between two nodes in the entire network. The weighted CC indicates the functional

http://neuroimage.usc.edu/brainstorm


J. Clin. Med. 2020, 9, 3934 6 of 13

segregation of a network, while the path length refers to the functional integration [46]. For the
respective nodes, the CC was first calculated (described as local level results), and then an average was
created for all of the cortical regions concerned (i.e., global level). Given that it is defined purely at the
global level, no values of path length at the local level were available [47].

2.5. Feature Selection and Classification

The objective of the study was to distinguish not only between the SZ group and NC, but also
among the subtypes of SZ: HPSZ, LPSZ, HNSZ, LNSZ, HCSZ, and LCSZ. Hence, we set four different
classification pairs: (1) SZ-NC; (2) HPSZ-LPSZ; (3) HNSZ-LNSZ; and (4) HCSZ-LCSZ. In discrimination
analysis, a source-level feature set (1650 features) was tested. To select features for classification,
a wrapped feature selection technique named sequential forward selection (SFS) was applied. SFS is a
bottom-up searching technique. It first selects the best feature according to a cost function. When it
is combined with every remaining feature, it selects the best pair with the greatest value evaluation
as the new starting set. Subsequently, this chosen pair is combined with each of the remaining
variables, forming triads. Then, the triad that offers a greater value in the evaluation criteria is
selected. The process continues until it meets the criterion. The search stops when a set of variables
does not improve the results of the cost function. The number of selected features ranged from 1
to 30. The classification accuracy was evaluated using 10 by 10-fold cross-validation, which repeats
a 10-fold cross validation 10 times to obtain more generalized classification accuracies, with the
linear discriminant analysis (LDA) classifier [48,49], for each feature set. In addition, we computed
the statistically significant threshold of classification accuracies by using the MATLAB (Mathworks
Inc., Natick, MA, USA) function binoinv: St(α) = binoinv(1− α, n, 1/c) × 100/n (n: sample size,
c: the number of classes, α: significance level) [50]. Figure 2 illustrates the overall analysis procedures
in this study.

Figure 2. The flow process of the overall analysis procedures. SFS: sequential forward selection.

3. Results

The highest classification accuracy for each classification pair was as follows: (1) SZ vs. NC: 80.66%;
(2) HPSZ vs. LPSZ: 88.10%; (3) HNSZ vs. LNSZ: 75.25%; and (4) HCSZ vs. LCSZ: 77.78%. As the
theoretical chance level (100/2 = 50%) is defined for an infinite number of data, we used the binomial
cumulative distribution [50] to calculate statistical significance thresholds for decoding accuracy,
the results of which were 55.46% (n = 238, two classes and p < 0.05) and 57.14% (n = 119, two classes
and p < 0.05). Table 2 summarized the best mean classification accuracy, specificity, and sensitivity in
each pair of classifications, and receiver operating characteristic (ROC) curves are shown in Figure 3.
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Table 2. The best mean classification accuracy, specificity, and sensitivity in each classification
pair. The brain region and frequency band ranking of selected features in each classification
pair. SZ: schizophrenia, NC: normal control, HPSZ: high positive SZ, LPSZ: low positive SZ,
HNSZ: high negative SZ, LNSZ: low negative SZ, HCSZ: high cognitive/disorganization SZ, LCSZ:
low cognitive/disorganization SZ.

Two-Classes
Classification Accuracy (%) Sensitivity (%) Specificity (%) # of Features

SZ (n = 119) vs.
NC (n = 119) 80.66 78.83 82.48 27

HPSZ (n = 57) vs.
LPSZ (n = 62) 88.10 88.40 87.77 19

HNSZ (n = 55) vs.
LNSZ (n = 64) 75.25 80.76 68.50 7

HCSZ (n = 59) vs.
LCSZ (n = 60) 77.78 77.83 77.80 27

Selected features
ranking
(brain region)

1st 2nd 3rd 4th 5th

SZ vs. NC Frontal > Occipital > Limbic > Temporal = Parietal
HPSZ vs. LPSZ Frontal > Tempo-Occipital > Temporal = Occipital = Parietal
HNSZ vs. LNSZ Frontal = Tempo-Occipital = Parietal > Insula
HCSZ vs. LCSZ Parietal > Frontal > Temporal = Limbic

Selected features
ranking
(frequency band)

1st 2nd 3rd 4th 5th 6th

SZ vs. NC Theta = Beta3 > Delta > Alpha > Beta2
HPSZ vs. LPSZ Alpha > Delta > Theta = Alpha1 = Beta4 = gamma
HNSZ vs. LNSZ Alpha2 > Delta = Theta = Beta1 = Beta4 = gamma
HCSZ vs. LCSZ Beta2 > Delta = Alpha = Beta > Gamma

Figure 3. Receiver operating characteristic (ROC) curves in each pair of classifications. Solid, dashed, dotted,
and dash-dotted lines respectively mean ROC curves at SZ vs. NC, HPSZ vs. LPSZ, HNSZ vs. LNSZ,
and HCSZ vs. LCSZ. Lines represent the average of the ROC curves in 10 by 10-fold cross-validation,
and areas represent standard deviation values. SZ: schizophrenia, NC: normal control, HPSZ:
high positive SZ, LPSZ: low positive SZ, HNSZ: high negative SZ, LNSE: low negative SZ, HCSZ:
high cognitive/disorganization SZ, LCSZ: low cognitive/disorganization SZ, AUC: area under the curve.

Among the seven brain regions, features of the frontal and parietal lobes were frequently selected
with the best classification accuracies. When classifying the SZ vs. NC, the most frequently selected
were features of the frontal lobe, followed by the features of the occipital > limbic > temporal = parietal
lobe. When classifying the HPSZ vs. LPSZ, the features of the frontal lobe were the most frequently
selected, followed by the features of the tempo-occipital > temporal = occipital = parietal lobe.
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When classifying the HNSZ vs. LNSZ, the features of the frontal, tempo-occipital, and parietal lobes
were the most frequently selected, followed by the features of the insula. When classifying the HCSZ
vs. LCSZ, the features of the parietal lobe were the most selected, followed by the features of the frontal
lobe > temporal lobe = limbic. The selected features of the brain regions in each classification pair are
summarized in Table 2.

Among 11 frequency bands, when classifying the SZ vs. NC, the features of the theta and
beta3 bands were the most frequently selected, followed by the features of the delta > alpha > beta2
band. When classifying the HPSZ vs. LPSZ, the features of the alpha band were the most frequently
selected, followed by the features of the delta > theta = alpha1 = beta4 = gamma. When classifying
the HNSZ vs. LNSZ, the features of the alpha2 band were the most frequently selected, followed
by the features of the delta = theta = beta1 = beta4 = gamma band. When classifying the HCSZ vs.
LCSZ, the features of the beta2 band were the most frequently selected, followed by the features of the
delta = alpha = beta > gamma band. Table 2 shows a summary of the selected features of frequency
bands in each classification pair.

Interestingly, the least number of features were selected to classify HNSZ vs. LNSZ groups.
The best classification accuracy was 75.25% when using the seven features (CC of the right supramarginal
gyrus, left anterior transverse collateral sulcus, right precuneus, left inferior segment of the circular
sulcus of the insula, left posterior transverse collateral sulcus, left triangular part of the inferior frontal
gyrus, and the marginal branch of the cingulate sulcus). The best classification accuracy, specificity,
sensitivity, and selected features in each step of the classification of the HNSZ vs. LNSZ groups are
summarized in Table 3.

Table 3. The best classification accuracy, specificity, sensitivity, and selected features in each step of the
classification of the negative symptom (HNSZ vs. LNSZ). HNSZ: high negative schizophrenia (SZ),
LNSZ: low negative SZ, R: right, L: left.

# Accuracy (%) Sensitivity (%) Specificity (%) Frequency Band Brain Region

1 63.69 70.52 56.03 Delta Supramarginal gyrus R
2 69.83 75.98 62.60 Alpha2 Anterior transverse collateral sulcus L
3 71.99 76.38 66.90 Gamma Precuneus (medial part of P1) R
4 73.90 80.05 67.10 Beta1 Inferior segment of the circular sulcus of the insula L
5 74.67 80.81 67.33 Theta Posterior transverse collateral sulcus L
6 75.13 80.33 68.93 Alpha2 Triangular part of the inferior frontal gyrus L
7 75.25 80.76 68.50 Beta4 Marginal branch (or part) of the cingulate sulcus R

4. Discussion

In this study, we aimed to diagnose SZ compared to NC and classify the subtypes of SZ according
to symptom severity. Source-level brain network analysis of resting-state EEG was used as the feature
in the machine learning classification. Classification of SZ and NC and symptom-based SZ subgroups
of SZ classification showed sufficiently high classification accuracies. Features from the frontoparietal
regions were frequently selected for the best classification of SZ patients compared to NC.

Classification of SZ and NC and symptom-based SZ subgroups of SZ classification were completed
with sufficiently high classification accuracies. A growing number of studies has sought to differentiate
SZ patients and NC by using machine learning approaches with brain signal biomarkers during a
resting-state. Some fMRI and EEG studies used functional alterations in resting-state brain signals as
features for classification [51–54]. The classification accuracies of SZ were about 92.86% (n = 28) with
resting-state fMRI [53], 91.0% (n = 18) with fMRI [52], 97.1% (n = 26) with fMRI [51], and 92.0% (n = 45)
with EEG [54]. However, larger sample-based diagnostic models tend to demonstrate classification
accuracies that fall below 80% [55–58]. Many have observed the phenomenon that “smaller-n studies
reach higher prediction accuracy of SZ with neuroimaging data” [59]. The higher cross-validated
accuracy obtained from smaller samples may fail to detect the existing heterogeneity of the disorder.

Among the symptomatic classifications, positive symptoms showed the highest classification
accuracy (88.10%). The brain network connectivity features in the frontal lobe were selected as the best
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features. It has already been well-known that positive symptoms are the major symptoms of SZ and
are easier to recognize than other symptoms [60]. SZ presents a range of functional changes in the
frontal lobe. Within the SZ group, the gray matter volume in the bilateral frontal lobe shows a negative
correlation with hallucination [61]. SZ groups also tend to show a deficient dopamine release capacity
in the dorsolateral prefrontal cortex [62]. Therefore, obvious pathological symptoms and their robust
underlying brain network abnormality may contribute to the highest classification accuracy of positive
symptoms compared to other symptoms of SZ.

Negative symptom severity showed the lowest classification accuracy (75.25%). However,
the number of selected features was the lowest at seven when the highest classification accuracy was
achieved. The selected features were mainly located in the frontal (triangular part of the inferior frontal
gyrus and marginal branch of the cingulate sulcus), tempo-occipital (the anterior transverse collateral
sulcus and posterior transverse collateral sulcus), parietal (the supramarginal gyrus and precuneus),
and insula (the inferior segment of the circular sulcus of the insula) regions. Negative symptoms are
usually considered as stable traits in the pathology of SZ [63–69], and respond poorly to medication [70].
It may be difficult for novice physicians with a limited number of sessions with the patient to recognize
negative symptoms. The smallest number of features (n = 7) were used to classify negative symptoms
(high vs. low). This supports that negative symptoms could be a trait and core pathology of SZ.

Features in the frontoparietal regions were frequently selected for the best classification of patients
with SZ compared to NC. Altered functional neural circuits, rather than the dysfunction of a single
brain structure, are involved in SZ [71]. The frontal and parietal regions are known as important
pathological regions related to SZ [72–75]. The frontal lobe is critical for social-emotional and insight
processing. Furthermore, there is greater hypofrontality in SZ than in NC [76], and changes in
oxygenated hemoglobin in the frontal cortex are positively correlated to the severity of psychotic
symptoms in SZ patients [76–79]. The parietal lobe is associated with a wide range of cognitive
functions [80].

Our study has some limitations that need to be addressed. Most of the SZ patients involved
were taking medications. We could not control for the possible effects of all psychotropic medications.
Participants in our study were mostly chronic patients. First onset schizophrenia patients may show
characteristics of brain EEG networks that differ from chronic SZ patients. Lastly, there is a lack of
specific negative symptomatology analysis, and we did not use a specific neurocognitive screening
tool for cognitive measurement when creating SZ subgroups.

Our research is the first attempt to diagnose SZ compared to NC and classify the subtypes of
SZ according to symptom severity. We achieved acceptable classification accuracies by simply using
resting-state EEG. Our method could be a promising approach in the computer-assisted diagnosis
of SZ.
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