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Abstract: Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this
disease the leading cause of cancer death among both men and women. The most important
determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective
screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade,
and based on the results of large clinical trials, lung cancer screening programs using low-dose
computer tomography (LDCT) in high-risk individuals have been implemented in some clinical
settings, however, this method has various limitations, especially a high false-positive rate which
eventually results in a number of unnecessary diagnostic and therapeutic interventions among the
screened subjects. By using complex algorithms and software, artificial intelligence (Al) is capable to
emulate human cognition in the analysis, interpretation, and comprehension of complicated data
and currently, it is being successfully applied in various healthcare settings. Taking advantage of the
ability of Al to quantify information from images, and its superior capability in recognizing complex
patterns in images compared to humans, Al has the potential to aid clinicians in the interpretation
of LDCT images obtained in the setting of lung cancer screening. In the last decade, several Al
models aimed to improve lung cancer detection have been reported. Some algorithms performed
equal or even outperformed experienced radiologists in distinguishing benign from malign lung
nodules and some of those models improved diagnostic accuracy and decreased the false-positive
rate. Here, we discuss recent publications in which Al algorithms are utilized to assess chest computer
tomography (CT) scans imaging obtaining in the setting of lung cancer screening.

Keywords: lung cancer screening; early cancer diagnosis; lung cancer imaging; artificial intelligence
and lung cancer; computers assisted diagnosis

1. Introduction

Lung cancer was first recognized as a distinct clinical entity in 1810 [1], and by the beginning
of the 20th century, it remained a relatively unknown disease, with only 374 documented cases in
the world [2]. However, the incidence of this disease increased dramatically following the broad
introduction of cigarette smoking habits in human populations [3], and at present, lung cancer is the
most frequent and deadly cancer worldwide with over two million new cases diagnosed per year,
causing more cancer-related deaths than other common cancers including colon, breast, and prostate
cancers combined [4].

Etiologically, more than 85% of lung cancers are caused by long-term tobacco smoking and the
remaining cases, diagnosed in never-smoked individuals, are attributed to a combination of factors,
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including genetics and exposure to other carcinogens such as radon gas, asbestos, second-hand smoke,
and other forms of air pollution [4].

Despite the fact that significant advances in the diagnosis and treatment of lung cancer have
been made, the disease is still associated with poor clinical outcomes [5,6] and survival is strongly
determined by the stage of disease at diagnosis and thus, whereas the five-year survival rate for patients
with the early-stage disease is 56%, in those with advanced disease the 5-year survival rate is less
than 5% [2]. Considering that only 16% of lung cancers are diagnosed in the early stage and that most
patients present with advanced disease [7,8], developing screening tests capable of detecting the disease
in the early stages has been a long-term goal in lung cancer care. Several screening methods have
been tested so far, including sputum cytology, chest radiographs (CXR) [9], and low-dose computer
tomography (LDCT), and recently the analysis of various biomarkers, however, data from clinical
trials indicate that only the use of low-dose computer tomography scans (LDCT) in heavy smoker
individuals has been associated with a significant reduction in lung-cancer-related mortality [10,11].

Although the introduction of targeted therapies and immunotherapeutic agents, especially immune
checkpoint inhibitors (utilized alone or in combination with standard chemotherapeutic regimens),
have resulted in a longer duration of overall survival compared with standard chemotherapy [12],
these novel therapies are not effective in all patients; thus, early detection remains the most important
intervention window for improving patient survival.

Despite the fact that screening lung cancer with LDCT has demonstrated a clear benefit for reducing
all-cause mortality, the high rate of false-positives and the cost of unnecessary diagnostic procedures
needed to confirm or rule out those false-positives are important limitations of this approach [11].
The emergence of artificial intelligence (Al) as a new tool for assessing medical data implies new
opportunities for improving the diagnosis and treatment of various human diseases [13-16]. In the
case of lung cancer diagnosis, coupling Al algorithms with available clinical and biomedical data has
the potential to improve lung cancer screening methods [17]. For example, Al has the potential to
improve the analysis and interpretation of lung images obtained by magnetic resonance images (MRI
)Jor computer tomography (CT) scans and could be helpful to better decipher the clinical significance
of data derived from tissue or fluid biomarkers, electronic medical record (EMR), and metagenomic
data leading to improved diagnosis of lung diseases [18,19] and recent studies have utilized various
Al algorithms to better interpret LDCT images in an attempt to refine lung cancer screening. In this
article, we aimed to review publications in which artificial intelligence tools were utilized in the setting
of lung cancer screening. For that purpose, we assessed studies that developed or validated machine
learning or deep learning models for the early diagnosis of lung cancer from chest CT scans obtained
in the setting of lung cancer screening. We searched Pubmed and the Cochrane Database for studies
published from 1 January 2012, to 30 September 2020. A manual search of citations of included studies
was also performed to identify any additional relevant articles that might have been missed by the
searches. Articles reporting AI models to analyze CXR and MRI were not the focus of this review since
these imaging modalities are not the main diagnostic tool utilized in lung cancer screening programs.
Although there have been previous reviews on the utility of Al tools for cancer diagnosis, including
lung cancer, this is the first in-depth review of the applications of Al algorithms for the analysis of
chest CT scan images obtained in the setting of lung cancer screening.

2. Lung Cancer: Epidemiological and Clinical Considerations

Lung cancer typically occurs in older patients with a history of tobacco use (median age at
diagnosis of 70 years) [20]. Non-smoking associated lung cancer appears to be a distinct entity that has
been linked with specific genetic mutations, is relatively more frequent in women and Asians [21,22],
and is also associated with exposure to certain environmental factors such as radon, asbestos, and
other contaminants [4,6,23].

By the time of diagnosis, more than 50% of patients with lung cancer already have a metastatic
disease, which is mainly due to the relative absence of specific symptoms during the early stages of the
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disease [3]. Indeed, lung cancer may be found incidentally on chest imaging in some patients. The most
common symptoms at presentation are persistent cough or chest pain. Other symptoms include
weight loss, hemoptysis, malaise, dyspnea, and hoarseness. In some patients, the disease presents
with manifestations caused by distant metastases, such as compression involving the esophagus
causing dysphagia, compression involving the laryngeal nerves causing hoarseness, or compression
involving the superior vena cava causing facial edema and distension of the superficial veins of the head
and neck. Infrequently, patients may present with a paraneoplastic syndrome such as hypertrophic
osteoarthropathy with digital clubbing or hypercalcemia from parathyroid hormone-related protein.

Based on histological and clinical features, two groups of lung cancers are clearly distinguishable:
non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). NSCLC accounts for over 80%
of all lung cancers, being the major cause of lung cancer-related death worldwide and is classified as
adenocarcinoma, squamous cell carcinoma, and large-cell lung cancer. Adenocarcinoma often occurs
in the more peripheral regions of the lung and is mainly associated with tobacco smoking, although it
can occur in nonsmokers. Squamous cell carcinoma tends to arise in the more central regions of the
lungs and is also associated with tobacco smoking. Large cell carcinoma is often a rapidly growing
tumor type that usually originates from neuroendocrine cells of the lungs and is the less common type
among NSCLC.

SCLC accounts for about 10 to 15% of all lung cancers and like NSCLC, it is also linked to tobacco
smoking. Compared to NSCLC, these tumors are more aggressive and tend to metastasize early,
often presenting with brain metastases [24], thus in general, surgery has limited application in SCLC,
although lobectomy is recommended in patients with stage I without the involvement of mediastinal
and supraclavicular regions [25]. Moreover, although some clinical response can be observed after
first-line treatment, the majority of patients ultimately die of disease relapse [25,26].

The discovery of genetic mutations such as c-Myc, c-Met, Bcl-2, p53, Rb, and other DNA molecular
changes associated with lung cancer led to the development of targeted therapies with the potential to
improve anti-tumor efficacy while decreasing toxicity [27], however, for most patients with lung cancer
these agents did not meet the clinical expectations [28], illustrating the molecular complexity of the
disease and the need of a more personalized approach to further optimize treatment [29]. Nevertheless,
the development of immune checkpoint inhibitors, including anti-PD-1 and anti-PD-L1 monoclonal
antibodies has revolutionized the treatment of lung cancer [30,31], and patients treated with these
agents, either as monotherapy or in combination with chemotherapy or radiotherapy, exhibit better
clinical outcomes including a superior progression-free survival (PFS), and improved overall survival,
as well as lower adverse effects compared with patients treated with standard chemotherapy [32-35].

3. Lung Cancer Screening

Cancer screening refers to the presumptive identification of undiagnosed cancer in asymptomatic
individuals by performing tests, examinations, or other detection procedures that can be readily
applied to the target population [36]. The goal of cancer screening is early disease detection, which can
be translated into the design of more effective therapeutic interventions and ultimately a reduction
in mortality. Examples of cancer screening methods with probed clinical utility include the use of
mammograms and Papanicolaou cytology for the early diagnosis of breast cancer and cervical cancer
respectively [37].

In the case of lung cancer, attempts to develop an effective screening method date back to the
1960s when the utility of CXR was investigated in clinical trials involving asymptomatic individuals in
high-risk populations. These studies found that CXR did not significantly reduce the mortality from
lung cancer in the populations at risk [38]. Similarly, the use of sputum cytology with or without CXR
failed to show benefits in subsequent randomized trials conducted in the USA and Europe throughout
the 1970s and the 1990s [39,40].

The introduction of CT technology in the clinical practice attracted the interest of clinicians
for utilizing this imaging modality in early lung cancer diagnosis, however, due to the relatively
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high radiation exposure (7 millisieverts (mSv)) and the prolonged scanning time associated with
conventional CT scans limited its application. The discovery that LDCT (radiation exposure of 1.6 mSv)
could generate high-resolution images with similar sensitivity and specificity to conventional CT scans
for lung nodule detection opened the way for the use of this technology in lung cancer screening.
Early studies conducted in Japan suggested the feasibility of LDCT as a tool for early lung cancer
detection [41,42]. This was further confirmed by the Early Lung Cancer Action Project (ELCAP) trial
conducted in the United States, which showed that LDCT was superior to CXR to detect malignant
and benign nodules (2.7% vs. 0.7% and 20.6% vs. 6.1%, respectively) [43]. An expanded version,
the International-ELCAP (I-ELCAP), that included 38 centers in five countries with 31,567 screened
patients, showed a 13% positivity in the initial LDCT scans and 5% in the subsequent annual scans.
Lung cancer was detected in 484 patients (85% in stage I), and the estimated 10-year survival rate of
patients with stage I lung cancer who underwent surgery was 92% [44]. Similarly, the Mayo Clinic
LDCT study that prospectively enrolled 1520 asymptomatic current or former smokers who underwent
baseline LDCT scans followed by annual LDCT screening found that among the 68 lung cancers
detected 61% were stage 1. Notably, the vast majority of nodules detected (95%) were found to be
benign on follow-up [45].

The National Lung Screening Trial (NLST) was a large trial that began in 2002 and compared the
effectiveness of LDCT scan versus CXR for lung cancer screening. A total of 3454 current (more than
30-pack-year history) or previous heavy smokers (less than 15 years since cessation) were randomized
to receive either an LDCT scan or CXR annually for 3 years and were then followed for an additional
3.5 years with no screening. The study concluded that LDCT was associated with a significant 20%
reduction in overall mortality among high-risk current and former smokers [46].

In the Danish Lung Cancer Screening Trial (DLCST), 4104 healthy heavy smokers/former smokers
were randomized to five annual LDCT screenings or no screening. Lung cancer was more frequently
diagnosed in the screening group (69 vs. 24) with more low stage tumors in the screening group than
in controls (48 vs. 21). The authors concluded that CT screening for lung cancer detects more cancers
and early disease, but does not significantly reduce mortality due to lung cancer [47]. Negative results
in terms of reduction of lung cancer mortality were also reported in the Randomized Study on Lung
Cancer Screening with Low-Dose Spiral Computed Tomography (DANTE) trial conducted in Italy,
which the authors attributed to the limited statistical power of the study [48].

The ITALUNG study from Italy in which 3206 participants were randomized to LDCT (1613
subjects) versus no screening published their 4-year results. At the end of the follow-up period 67 lung
cancer cases were diagnosed in the screening arm and 71 in the control arm with non-significant
reductions of 17% (risk ratio (RR) = 0.83; 95% confidence interval (CI) 0.67 to 1.03) for overall mortality
and 30% (RR = 0.70; 95% CI 0.47 to 1.03) for lung cancer-specific mortality. The authors concluded that
despite the lack of statistical significance, outcomes of this trial suggest that LDCT screening could
reduce lung cancer and overall mortality [49].

The German Lung cancer Screening Intervention (LUSI) is a randomized study that in investigated
the role of LDCT screening in reducing lung cancer mortality in high-risk individuals and 8.8 years
after randomization confirmed a lower hazard ratio for lung cancer mortality among those receiving
LDCT screening compared with controls (0.74 95% CI: 0.46-1.19), with a stronger reduction of lung
cancer mortality among women as compared to men [50].

More recently, the Multicentric Italian Lung Detection (MILD) trial evaluated the benefit of
prolonged LDCT screening beyond 5 years, and its impact on overall and LC specific mortality at
10 years. A total of 4099 participants were prospectively randomized to a control arm (n = 1723)
without intervention and a screening arm (n = 2376), which was further divided into annual (n = 1190)
or biennial (n = 1186) LDCT for a median period of 6 years. The LDCT arm showed a 39% reduced risk
of LC mortality at 10 years, compared with the control arm, and a 20% reduction of overall mortality
indicating that prolonged LDCT screening (beyond five years) with biennial LDCT can achieve a
reduction in lung cancer mortality that is comparable to that of annual LDCT [51,52]. In line with these
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observations, the Dutch Belgian Randomized Lung Cancer Screening trial (NELSON) randomized
a total of 15,600 participants to undergo CT screening at baseline, year 1, year 3, and year 5.5 or no
screening. At 10 years of follow-up, lung-cancer mortality was 2.50 deaths per 1000 person-years in the
screening group and 3.30 deaths per 1000 person-years in the control group, which is an even bigger
reduction in deaths from lung cancer than was seen in NLST [53].

As illustrated by the above studies, lung cancer screening with LDSCT has been extensively
studied in the past decade, and some of these studies have shown promising results and has provided
a rationale for the use of LDCT for lung cancer screening in high-risk ever-smokers. Indeed, the U.S.
Preventive Services Task Force (USPSTF), in December 2013, endorsed the annual screening for lung
cancer with LDCT as a preventive health service for the high-risk population (adults aged 55 to 80 years
who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years) [54].
As more countries adopt this strategy for early lung cancer detection, it is worth it mentioning that this
screening method is associated with various limitations, especially a high percentage of false-positives,
which may result in unneeded treatment. Indeed, in the NLST, the vast majority of the pulmonary
nodules identified in LDCT screens (96.4%) were not malignant [55]. In this regard, current criteria for
distinguishing benign nodules from malignant ones are not well-established, thus, despite several
efforts to address the limitations in lung cancer screening with LDCT, this technique frequently
identifies a high proportion of pulmonary nodules that is not malignant. On the other hand, clinical and
epidemiological studies have shown that a considerable proportion of newly diagnosed lung cancers
were not covered by the NLST selection criteria [8,56], thus, there is a need for further complementary
tests both to reduce the number of false-positives and to detect aggressive cancers early.

Although public biomedical image benchmark databases have contributed to the development of
image analysis algorithms, providing resources to evaluate, compare, and reproduce prior models,
some datasets are distributed across multiple repositories or are indexed using different terminologies
making it difficult to perform reliable comparisons and to promote reproducibility [57]. Bonafide
benchmark of biomedical datasets with ground truth, such as the Lung Image Database Consortium
image collection (LIDC-IDRI) have become available [58,59], which serve not only as a primary source
for research purposes but also for the organization of image analysis challenges, where several teams
compete to develop the best model for solving a given problem. In successful challenges relevant
to lung cancer screening, such as the Lung Nodule Analysis 2016 (LUNA16) challenge and the Data
Science Bowl 2017 prize, where the winning teams reported a high performance, teams utilized Al
algorithms using annotated CT images from large public datasets to automatically and accurately
diagnose lung lesions [60]. Although image analysis challenges play an important role in benchmarking
algorithms for biomedical image analysis, they are associated with various deficiencies, including,
heterogeneous design, lack of standards for challenge reporting, and inadequate interpretation and
reproducibility of results [61]. To overcome these limitations, the BIAS statement (Biomedical Image
Analysis Challenges) was recently proposed, which includes a checklist which authors of biomedical
image analysis challenges are encouraged to include in their submission in an attempt to standardize
and facilitate the review process and raise interpretability and reproducibility of challenges [62].

4. Al and CT Scan Images

LDCT is increasingly being adopted as a lung cancer screening method in various clinical settings,
however, the accurate definition of a positive result and the management of lung nodules detected
on LDCT scans are difficult challenges for the broad implementation of this method for lung cancer
screening. Some of these issues could be addressed with the PanCan model, which estimates with
high accuracy (area under the curve, AUCs of 0.94 in an external validation cohort) the malignancy
probability of a pulmonary nodule detected in a baseline scan based on clinical data and nodule
characteristics [63]; and in line with the PanCan model postulates, the Lung CT Reporting and Data
System (Lung-RADS) was proposed by the American College of Radiology to estimate the malignancy
probability of pulmonary nodules detected in baseline scans and based on risk assessment and imaging
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characteristics such as nodule type, size, solidity, and growth, to determine the appropriate patient
follow-up strategy. Indeed, using Lung-RADS guidelines, various studies have shown a reduction of
false-positive rates with the assessment of both baseline and subsequent scans [64,65].

Taking advantage of the unlimited capacity of computers for analyzing data and images, several
studies have utilized Al tools, including machine learning, deep learning, and others, in an attempt to
develop algorithms capable of identifying imaging features from LDCT images that may be specific to
lung cancer, to more accurately differentiate between benign and cancerous nodules, which ultimately
could help to improve lung cancer screening. Summarized clinical information of select studies is
shown in Table 1 and relevant details of the reported algorithms are shown in Supplementary Table S1.

Table 1. Summary of articles in which artificial intelligence (AI) was used to analyze low-dose computer
tomography (LDCT) images for lung cancer diagnosis.

First Author/Year

Algorithm

Source of Data

No of Cases

Type of Validation

Main Finding

Ciompi F. [66], 2017

CNN: Support
vector machines

Data from the MILD
trial and DLCST trial

943 patients (1352
nodules) from
MILD trial.

468 patients
(639 nodules) from
DLCST trial.
Accuracy: comparing
with experienced
radiologists (assessing
162 nodules from the
test set)

The model outperformed
classical patch classification
approaches classifying lung
nodules and its performance

was comparable to that of

experienced radiologists

DBNs.
Including three
expert-driven DBNs

Retrospective clinical

Trained 10 times.
Each time, 400 NLST

Internal validation using

High discrimination and
predictive power with the
majority of cancer and
non-cancer cases.

Petousi P [67] and two DBNs trial data from the cases (200 cancer and thifc?}:x; I:I’\lle]f;]]: dD:gsZ:m Average AUC of the ROC was
derived from NLST Trial. 200 non-cancer cases) (N = 25,486) >0.75 for all DBN models
structure randomly selected. B outperforming logistic
learning methods. regression and naive Bayes
comparison models.
CT images from three Performance of the model:
888 CT images from university hospitals Sensitivity 84.4% and
e LUNAL? dataat in China. specificity 83.0%.
Chest CT images X 25 experts graded Subgroup analysis of smaller
Zhang C [68] CNN and 1397 CT images R
from 3 sets of data. from the prospectively collected nodules (<10 mm) showed
Kagele dataset CT images and high sensitivity and specificity,
88 compared with the similar to that of larger
CNN model nodules (10-30 mm).
The model lowered the
5402 cases from the -A five-fold stratified falseip051F1ve rate for mos't
NLST LDCT trial cross validation screenings in the NLST, while
. Machine learning NLST . , . maintaining true positive
Petousi P [69] arm with single -Model's decisions . .
and DBN data . . . detection rates; and improved
indeterminate further compared with

pulmonary nodules

experts’ decisions

early prediction of cancer
cases with indeterminate
pulmonary nodules

Huang [70]

Deep learning

Retrospective clinical
trial data from the
NLST Trial and from
PanCan study.

The training cohort:
25,097 NLST cases

Double-blinded
validation with 2294
PanCan cases

Compared with Lung-RADS,
the model identified a
high-risk group that was
smaller and had a higher
proportion of cancers,
and more accurately identified
people at very low-risk of lung
cancer within 2 years.

Ardila [71], 2019

Deep learning
(Three-dimensional
deep convolutional

neural networks)

Retrospective clinical
trial data from the
NLST Trial.

6716 NLST cases,

Independent
1139 cases.

AUC, 0.94
Better than radiologists when
prior CT was not available.
Equal as radiologists when
prior CT was available

Cui [72], 2020

Deep learning

Retrospective
analysis of lung
cancer screening data
from three hospitals
in China

Training test: 39,014
chest LDCT
screening cases

Validation set (600 cases).
External validation: the
LUNA public database

(888 studies)

Higher sensitivity than all
radiologists.
Low FPR.

Better ROC-AUC and higher
specificity than radiologists for
classifying true positive cases.

Good for differentiating
nodule dimensions and
nodule sub-types.

CNN: convolutional neural network; NR: not reported; AUC: area under the curve; ROC: receiver operating
characteristic; DBN: Dynamic Bayesian networks; AUROC: area under the receiver operator characteristic curve;
LUNA: Lung Nodule Analysis dataset; LDCT: low-dose computer tomography; MILD: Multicentric Italian Lung
Detection; DLCST: Danish Lung Cancer Screening Trial; NLST: National Lung Screening Trial; CT: computer
tomography; Lung-RADS: Lung CT Reporting and Data System.
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One of the first studies to illustrate the potential of Al algorithms to assist radiologists in the
diagnosis of pulmonary nodules in the lung cancer screening setting utilized a deep learning system
to analyze lung nodules with multi-stream convolutional network architecture and classifies nodule
types relevant for patient management according to the Lung-RADS assessment categories and the
PanCan malignancy postulates. The model was trained using data from the MILD trial (943 patients;
1352 nodules) and was independently validated using data from 468 patients (639 nodules) from the
DLCST trial. Nodule segmentation was not required and the model was superior to patch classification
of machine learning approaches and its performance was comparable, in terms of inter-observer
variability, to four experienced radiologists [66].

Another study used a set of dynamic Bayesian networks to evaluate the utility of combining
longitudinal data obtained during lung cancer screening programs to improve diagnostic accuracy.
To train the models, the authors used LDCT screening outcome data, along with demographic
information, smoking status, cancer history, family lung cancer history, exposure risk factors,
comorbidities related to lung cancer from the LDCT arm of the NLST dataset, and further validated
the models on the complete LDCT arm of the NLST dataset where it demonstrated satisfactory
generalization, outperforming classical comparison models such as logistic regression and naive
Bayes [67], thus indicating that coupling LDCT imaging data with demographic and patients’ clinical
characteristics may contribute to improving the accuracy of lung cancer screening programs.

A three-dimensional convolutional neural network was employed to classify pulmonary nodules
derived from clinical CT images. The model was first trained using LDCT images available in public
databases obtained from lung cancer screenings and was validated using clinical LDCT images obtained
from four different hospitals and was further evaluated, on a 50-image set where the patients underwent
surgical dissection and had preoperative CT images prospectively collected where the performance
of the algorithm was compared with that of 25 licensed physicians. The deep learning algorithm
showed significantly better performance than manual assessment by trained physicians in detecting
and classifying pulmonary nodules [68]. It must be noted that the validation data was derived from a
multicenter dataset with variable image quality and the inclusion of a limited number of ground-glass
nodules representing early-stage disease, which may have affected the nodule classification in this
study, however, the fact that the model overperformed physicians assessing clinical images was an
encouraging finding of this study further illustrating the feasibility of using deep learning algorithms
for lung cancer screening in clinical practice.

Multiple machine learning-based methods were also employed to establish a framework for
learning a partially-observable Markov decision process that simultaneously optimizes lung cancer
detection while enhancing test specificity. The model was trained and tested using a dataset of 5402
single nodule unique trajectories of lung cancer screening patients from the NLST LDCT trial and used
inverse reinforcement learning to discover a rewards function based on experts’ decisions. The model
achieved a high accuracy with a true positive rate comparable to human experts while decreasing the
false-positive rate [69].

Another study proposed a deep learning algorithm to predict the presence of lung cancer within a
3-year period evaluating all relevant nodule and non-nodule features on screening chest CT scans.
The model was trained using data from the NLST trial, including participants who had received at
least two CT screening scans up to 2 years apart, and was validated using data from participants in
the PanCan study. This double validation was carried out by two groups of skilled chest radiologists
in large academic centers assessing each LDCT image. The accuracy of the deep learning algorithm
scores to predict lung cancer incidence at 1 year, 2 years, and 3 years was compared with that of the
Lung-RADS system and volume doubling time, using the time-dependent area under the receiver
operating characteristic curve (AUC) analysis. Compared with Lung-RADS, this model more accurately
identified individuals at high risk and very low risk of developing lung cancer within 2 years [70].
The authors concluded this model could be used to accurately guide clinical management after the
next scheduled repeat screening CT scan providing the framework to prospectively assess different
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screening intervals and more urgent diagnostic approaches for suspicious lung nodules based on
malignancy risk.

Ardila and coworkers developed a three-dimensional deep convolutional neural network model
using patients’ current and prior CT volumes from LDCT scans to predict the risk of lung cancer in
individuals at high risk. When the model was tested against 6716 NLST cases it achieved a performance
of 94.4% area under the curve (AUC) and when tested against an independent clinical validation set
of 1139 cases, it performed similarly. Notably, when previous CT images were available, the model
performed with similar accuracy with six expert radiologists, however, when prior CT images were not
available, the model outperformed all six radiologists with absolute reductions of 11% in false-positives
and 5% in false negatives [71]. It must be noted, however, that the radiologist-comparisons performed
in this study were limited to retrospective data from the NLST dataset and clinical comparison metrics
were limited to a small number of general radiologists. In addition, despite that the model appears to
display consistent indicators of generalizability, the authors used only two datasets during testing, thus,
although the model is promising, it needs to be further validated in other datasets and populations.

A recent study assessed the performance and effectiveness of deep neural networks for lung
nodule detection by comparing the diagnostic efficacy of the model with that of radiologists evaluating
real-world LDCT images. The model was trained with a large dataset of real-world clinical data
(39,014 chest LDCT screening cases) and validated with a set of 600 cases and with CT images from
the LUNA public dataset, demonstrated excellent performance in differentiating nodule dimensions
and nodule sub-types. The model showed good agreement with radiology experts for detecting large
and small lung nodules and was superior to expert radiologists in terms of identification sensitivity,
showing also better receiver operating characteristic and area under the curve (ROC-AUC )performance
and higher specificity than the average specificity of radiologists for classifying true positive cases [72].
Although certain baseline information, such as smoking history, lung diseases, and comorbidities were
not available for this study, the fact that the model was trained with a large multi-center clinical database,
is an important strength of this study and indicates the generalizability of applying this algorithm.

Radiomics is an emerging field that extracts multiple features from medical images and translates
them into mineable data, which can be further used for the creation of statistical models and predictive
analytics [73]. Radiomics can include several features of the objects to analyze including size, shape,
texture, and can thus quantitatively and objectively define tumors and nodules. Because radiomics is
applied to clinically available images, it can be also integrated with genomics, plasma biomarkers,
biopsy staining patterns, and other patient-derived data. In addition, radiomics can be coupled with
Al to take advantage of the superior capability of Al in handling a massive amount of data [74]. Indeed,
both radiomics and Al are being utilized in the setting of radiological diagnosis of various diseases,
including lung cancer [73].

For example, using public data from the NLST, one study extracted radiomic features of malignant
nodules (196 patients) and benign pulmonary nodules (404 patients) to predict the subsequent
emergence of cancer and based on 23 stable features in a random forests classifier the model could
predict nodules that would become malignant one or two years with an accuracy of 80% [75]. Similar
performance metrics (0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for
the area under the ROC curve) were reported in another study that localized thin-section CT images
of 122 nodules and 374 radiomic features and integrated them with machine learning classification.
Radiomic features, including CT density, sigma, uniformity, and entropy were useful in differentiating
between benign and malignant nodules [76]. Various machine learning classifiers were also used to
accurately predict lung cancer nodule status while also considering the associated false-positive rate
by analyzing radiomic quantitative biomarkers taken from imaging data of lung nodules identified
by LDCT scans. Imaging biomarkers (416 in total) were created from both nodule and parenchymal
tissue from 200 patients and linear, nonlinear, and ensemble predictive classifying models were used
to classify malignant or benign nodules. This model achieved a false-positive rate of 30%, which is
significantly lower than that reported in the NLST, thus indicating that radiomics coupled with machine
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learning algorithms have the potential to provide good classification and simultaneously reduce the
false-positive rate [77]. Finally, using data from two independent cohorts of patients with lung cancer
(262 from North America and 89 from Europe) another study identified associations between radiomic
imaging features, molecular pathways (immune response and inflammation), and clinical factors [78].
Importantly, in this model, prognostic biomarkers performed better when combining radiomic, genetic,
and clinical information, thus indicating the complementary value of radiomics to integrate different
characteristics of tumors. Therefore, radiomics, in combination with Al, may potentially enable
practical use of precision medicine for the development of clinical biomarkers for diagnosis, prognosis,
and prediction of outcomes and toxicity for individual patients of response to specific treatments.

5. Concluding Remarks and Future Directions

Lung cancer is a largely preventable disease, with the majority of cases linked to tobacco smoking.
Since most cases are diagnosed in an advanced stage, most patients have a poor prognosis after
diagnosis. Failure of early diagnosis due to the lack of an effective screening test is therefore one
of the major determinants for this dismal survival rate in lung cancer and constitutes an unmet
clinical need in lung cancer care. Although the introduction of immunotherapy in recent years has
dramatically improved survival rates in some patients with lung cancer compared with standard
chemotherapy, even among patients with advanced disease, the high cost of these agents makes them
almost prohibitive outside the developed countries.

Large clinical trials have shown that lung cancer screening with LDCT results in better survival
in high-risk populations compared with CXR but it associates with some drawbacks, particularly a
high rate of false-positives as detailed above. With the transition from conventional biostatics to more
sophisticated approaches like machine learning or deep learning for imaging analysis, it has become
evident that Al could emerge as a formidable tool to refine the diagnosis of lung cancer. Al has the
potential to increase the efficiency, reproducibility, and accuracy of tumor identification, not only via
automated segmentation but also with the rapid expansion of computing speed and the increased
efficiency of Al algorithms, it is likely that a separate segmentation analysis of suspicious images will
be unnecessary making possible to evaluate whole-body imaging data with the help of Al algorithms.
In this regard, whole-body approaches will also allow a more accurate analysis of organ features that
may be distorted by the pathological processes but that are not apparent to human vision. This implies
that Al algorithms could be applicable in several aspects of early lung cancer diagnosis, including
the development of risk prediction tools for the accurate identification of high-risk individuals, the
precise discrimination between malignant and nonmalignant nodules, and the integration of data from
imaging studies with information derived from serological and tissue biomarkers studies.

As mentioned above, several clinical trials conducted in the past showed the lack of utility of
CXR as a tool for lung cancer screening, however, given the relatively broad accessibility and low
cost of this imaging technique, several clinicians still consider that CXR may have some utility in
early lung cancer detection. Indeed, over the last 10 years, various Al algorithms have been reported
to improve the diagnostic precision of CXR in several chest conditions [79]. For example, the use
of computer-aided detection (CAD) systems improved radiologists” performance in several settings
with a significant reduction in false-positive detection of lung nodules on CXRs [80-82]. In addition,
deep convolutional neural network models outperformed physicians, including thoracic radiologists,
in CXRs classification and nodule detection performance for malignant pulmonary nodules [83] and
were superior to the average of human readers in terms of sensitivity, false-positive detection for
detecting operable lung cancer with CXRs [84], which suggest that CXR coupled with Al may have
some value in lung cancer screening.

Positron emission tomography (PET scans) is a promising tool for reliable assessing malignant
diseases, including lung cancer. In particular, PET with F-18 deoxyglucose coupled to CT scan (18F-FDG
PET/CT) imaging is being used for accurately identifying lung nodules, although variable results
have been reported with some studies showing higher sensitivity than conventional CT scans for
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lung cancer detection [47,48,50,51]. A recent mathematical model retrospectively assessing 18F-FDG
PET/CT images identified several clinical and image features for the accurate identification of malignant
pulmonary nodules and the diagnosis of lung cancer [85]. Although promising, these results require
validation studies before considering the incorporation of PET imaging into large-scale screening
programs. Further, the high cost and the restricted availability of FDG-PET are also important
limitations. In addition, the accuracy of 18F-FDG PET/CT in diagnosing malignancy is impaired in
populations with endemic infectious lung disease compared with nonendemic regions [86]. Of note,
a study conducted in Switzerland developed an artificial neural network that achieved a sensitivity of
95.9% and 91.5% and a specificity of 98.1% and 94.2%, at standard dose and ultralow-dose PET 3.3%,
respectively [87]. These results suggest that machine learning algorithms may aid fully automated lung
cancer detection even at very low effective radiation doses of 0.11 mSv. Besides, further development
of low-dose FDG-PET might improve the specificity of lung cancer screening and also open doors to
other applications.

MRI has superior soft-tissue definition compared with other clinically available imaging modalities
and the introduction of imaging optimization sequences with the use of high-performance gradient
systems, have contributed to improving the quality of MRI of the lungs, allowing the detection of
nodules (>4 mm) with reasonable spatial resolution. Indeed, it is expected that MRI will reach a
similar sensitivity and likely better specificity than LDCT in early cancer detection, which warrant its
potential utility in lung cancer screening [88], as shown by two recent studies in which MRI performed
similarly to LDCT in lung cancer screening with comparable life expectancy benefit and superior
cost-effectiveness [89,90]. It is expected that recent MRI developments, such as the high field MR
scanners and ultrashort echo time MR images, will contribute to improving image quality and the
suitability of MRI in lung cancer screening programs [88]. In this regard, a recent study successfully
developed machine learning methods, particularly recursive feature elimination and support vector
machine, to accurately distinguish benign and malignant pulmonary lesions based on quantitative
radiomic features of multiparametric MRI [91], thus indicating that Al-based integration of MRI
imaging has tremendous potential for refining the role of MRI in lung cancer screening.

Histopathological diagnosis is a key component of modern medicine and represents the definitive
method for confirming the presence or absence of disease, being also essential in assessing disease
grading and progression. Routine assessment of histopathological specimens is performed under
light microscopy with several limitations inherent to the manual processing of images and the
subjective visual assessment from pathologists, however, the introduction of supportive computational
image analysis, including Al tools for image analysis, facilitated by the use of whole slide images
(the digitalized counterparts of glass slides obtained via specialized scanning devices), has permitted
the incorporation of additional quantitative assessments in histopathological studies, thus increasing
diagnostic throughput [92]. For example, deep learning-based pathological image analysis can integrate
multiple measurements and image analysis tasks, including segmentation, counting, and tissue
classification, with practical applications in the diagnosis, subtyping, and staging of various tumor
types, including lung cancer [93,94]. Deep learning algorithms have the potential to integrate multiple
features from pathological images with those obtained from CT or MRI images and could have practical
applications in the setting of lung cancer screening.

Potential biomarkers derived from body fluid and tissues including, whole blood, plasma, sputum,
bronchial lavage, urine, and biopsy specimens have been explored in the search for surrogate markers
of lung cancer and various studies have shown that circulating tumor cells [95], autoantibodies [96],
microRNAs [97], blood proteomic profiling [98], and exhaled breath biomarkers [99] are promising
molecular candidates for early detection of lung cancer.

Finally, high-throughput technologies such as metabolomics, transcriptomics, and epigenomics
have been also tested as potential indicators of early lung cancer [100] and the integration of multiple
“omics” together with information from medical images and clinical data will provide insightful
information for the understanding of human diseases, including lung cancer (Figure 1). In line
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with this notion, machine learning and deep learning algorithms have been successfully applied to
integrate multiple omics, imaging, and clinical data in various research settings [101,102]. Integrating
imaging and omics data with the help of deep learning models may help to improve early lung
cancer diagnosis. Indeed, recent findings have demonstrated the feasibility of using high-dimensional
features derived from CT images of lung cancer that are associated with the presence of specific
mutations in tumor tissues by using “radiogenomics”, which refers to the correlation between imaging
features and the genomic data obtained from tissue analysis (and other clinical data) to generate
imaging surrogates of genetic testing [103]. For example, specific CT scan imaging features have been
associated with the presence of tumor driving mutations in lung cancer, including anaplastic lymphoma
kinase (ALK), epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog
(KRAS), rearranged during transfection proto-oncogene (RET) and c-ros oncogene 1 (ROS1) [103-105].
Consequently, cancer screening programs will benefit from the Al-based integration, extraction,
and interpretation of the vast amount of information generated from these technologies.

tissue el
ood/serum EBA

‘ Blood and tissue data ‘

smoking 9enes
age

Risk factors
assessment

Figure 1. By integrating multiple data, AI algorithms have the potential to improve the early diagnosis
of lung cancer. The utility of Al tools interpreting medical images has been demonstrated in several
settings and in several diseases, including lung cancer. However, the usefulness of Al in contributing to
the early diagnosis of lung cancer may extend beyond the interpretation of lung images. For example,
blood samples are currently interrogated for the presence of circulating autoantibodies (CAAD),
microRNAs, and various serum biomarkers, and some of these factors appear to be associated with
lung cancer, thus Al could aid in the identification of specific patterns or signatures typical of lung
cancer. Similarly, the presence of distinct patterns in exhaled breath analysis (EBA) are currently being
studied for its utility in lung cancer diagnosis, and data from Electronic medical records (EMR), which
constitutes a formidable source of clinical, demographic, and biometric data, coupled with Al algorithms
could be a powerful diagnostic tool. Finally, high-throughput technologies such as metabolomics,
transcriptomics, epigenomics, and the integration of multiple “omics” together with information from
medical images and clinical data will provide insightful information for the understanding of human
diseases, including lung cancer.
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