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Abstract: Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality globally.
Given the limited therapeutic efficacy in advanced HCC, prevention of HCC carcinogenesis could
serve as an effective strategy. Patients with chronic fibrosis due to viral or metabolic etiologies are
at a high risk of developing HCC. Primary prevention seeks to eliminate cancer predisposing risk
factors while tertiary prevention aims to prevent HCC recurrence. Secondary prevention targets
patients with baseline chronic liver disease. Various epidemiological and experimental studies
have identified candidates for secondary prevention—both etiology-specific and generic prevention
strategies—including statins, aspirin, and anti-diabetic drugs. The introduction of multi-cell based
omics analysis along with better characterization of the hepatic microenvironment will further facilitate
the identification of targets for prevention. In this review, we will summarize HCC risk factors,
pathogenesis, and discuss strategies of HCC prevention. We will focus on secondary prevention and
also discuss current challenges in translating experimental work into clinical practice.
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1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the fourth leading
cause of cancer-associated mortality worldwide [1,2]. In 2015, there were 854,000 cases of HCC globally,
with a male-to-female ratio of 2.4:1 [3]. Sub-Saharan Africa and East Asia have the highest incidence
rate of HCC (more than 20 per 100,000 individuals), while North America and Europe have lower
incidence levels (less than 5 per 100,000 individuals) [4–6]. Between 1996 and 2006, the HCC incidence
rate in the US surveillance, epidemiology and end results (SEER) registries increased from 3.1 to 5.1 per
100,000 individuals, while the US liver cancer mortality rose from 3.3 to 4.0 per 100,000 individuals [7].
From 2006 to 2017, the rate of HCC has increased by 2–3% annually, largely due to the high prevalence
of hepatitis C virus (HCV) cirrhosis and nonalcoholic steatohepatitis (NASH) [8,9].

J. Clin. Med. 2020, 9, 3817; doi:10.3390/jcm9123817 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0001-9430-1426
https://orcid.org/0000-0002-2149-3081
https://orcid.org/0000-0002-8864-2168
http://dx.doi.org/10.3390/jcm9123817
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/9/12/3817?type=check_update&version=2


J. Clin. Med. 2020, 9, 3817 2 of 31

Early HCC diagnosis occurs in 30–60% of cases, enabling curative treatments such as surgical
resection and liver transplantation. Even with curative approaches, HCC recurrence is observed in up
to 80% of patients within 5 years [10]. In advanced disease, surgical and systemic therapies have largely
failed to yield survival benefits [11]. Until recently, Sorafenib was the only FDA-approved agent for
advanced HCC. Since 2017, other multi-kinase inhibitors have been approved for second-line treatments,
such as Cabozantinib and Ramucirumab [12–14]. Checkpoint inhibitors such as Nivolumab [15] and
Pembrolizumab [16] have been either FDA approved or under investigation. Importantly, systemic
therapies have substantial adverse effects that are difficult to manage in cirrhotic patients [17]. Finally,
the high costs of approved therapies limit their use in low-resource countries [18]. Given the potential
to identify high risk individuals and low survival rate once diagnosed, HCC prevention in at-risk
patients can be a successful and alternative approach for HCC management. Here, we will review
HCC risk factors, pathogenesis and current strategies for prevention, specifically secondary prevention
and its clinical challenges.

2. Risk Factors and Carcinogenesis

2.1. Hepatitis B Virus (HBV)

Globally, 2 billion people have been exposed to HBV along with 250–350 million chronic carriers [19].
In high endemic areas, the HBV carrier rate is nearly 8% [20]. In areas of high incidence, 80% of patients
with HCC are seropositive for the hepatitis B surface antigen (HBsAg) [21]. In East Asia, the HCC
incidence rate in chronic HBV carriers ranges from 0.6 per 100 individuals without cirrhosis to 3.7 per
100 individuals with compensated cirrhosis. In Europe and the United states, the incidence rate ranges
from 0.3 per 100 individuals without cirrhosis to 2.2 per 100 individuals in subjects with cirrhosis [22,23].
In addition, 10–20% of patients with HBV can develop HCC in the absence of cirrhosis [24]. Other
factors that have been reported to increase the risk of HCC include duration of infection, viral load,
environmental exposures (aflatoxin, alcohol, or tobacco), demographic features such as male sex, older
age, family history of HCC, and co-infections with HCV, HDV, and HIV [25,26].

Two major mechanisms of HBV-induced HCC carcinogenesis have been proposed. First,
chronic HBV can induce cirrhosis through the activation of HBV-specific T-cells, chemokine-mediated
neutrophils, macrophages, and natural-killers [27,28]. These inflammatory cells promote carcinogenesis
by stimulating hepatocyte regeneration, reactive oxygen species (ROSs) production, and DNA damage.
Second, HBV DNA can be integrated into the host genome, prompting insertional activation of
proto-oncogenes [29], induction of chromosomal instability [30], and the transcription of pro-carcinogenic
HBV genes such as truncated envelope proteins [31], hepatitis B X gene (HBx) [32], and hepatitis B
spliced proteins [33].

2.2. Hepatitis C Virus (HCV)

HCC induced by HCV has the highest HCC mortality rates per 100,000 individuals in the United
States [34,35]. Chronic HCV is most prevalent in the “baby boomer” generation, defined as adults born
between 1945 and 1965 who were exposed to blood transfusions, clotting factors, and hemodialysis
prior to 1992 [36]. Moreover, the current opioid epidemic further contributes to the spread of HCV [37].
Between 2010 and 2017, a three-fold increase in acute HCV infections was reported by the CDC
resulting from the opioid epidemic [38]. The annual incidence of HCV related HCC in patients with
cirrhosis is extremely high, ranging from 1 to 12% per year [39,40]. In a large cohort of US patients
with HCV, patients with genotype 3 are more likely to develop cirrhosis and HCC than other HCV
genotypes [41].

HCC development in HCV is primarily associated with fibrosis and the viral copy number [42].
HCV associated HCC development occurs in a stepwise fashion, typically spanning over decades.
All cases of HCV HCC arise from mutations in hepatocytes within a cirrhotic background. HCV
proteins have also been shown to promote cellular proliferation, transformation, and tumor growth.
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Over-expression of HCV core proteins, NS3 and NS5A, inhibit tumor suppressor genes TP53, TP73,
and RB1, as well as negative cell cycle regulators such as CDKN1A. E2 and NS5B activate the
RAF/mitogen-activated protein kinase (MAPK)/ERK kinase pathways [43]. NS5A activates the
PI3K/AKT and beta-catenin/WNT pathways, and evades apoptosis by caspase-3 inhibition [44]. It is
important to note that the interaction between nonstructural protein NS5A and HCV is dependent on
Rab18-positive lipid droplets [45].

2.3. Nonalcoholic Fatty Liver Disease (NAFLD)/Nonalcoholic Steatohepatitis (NASH)

NAFLD/NASH has emerged as a leading cause of end-stage liver disease as well as HCC. Studies
have demonstrated that the incidence of HCC in patients with NASH ranges from 2.4% over 7 years to
12.8% over 3 years [46]. Recent studies in the US have shown that NAFLD/NASH-related mortality
has dramatically increased in the last 10 years together with NAFLD/NASH-related liver cirrhosis [47].
HCC in NAFLD/NASH is often diagnosed in patients without cirrhosis and is associated with late
onset diagnosis and a higher tumor burden [48]. Moreover, patients with NASH receive sub-optimal
HCC surveillance in comparison to patients with HCV cirrhosis [49].

The mechanism of HCC carcinogenesis as a result of NAFLD is not completely clear. Steatosis
alone is not a driver of HCC as chronic inflammation is necessary for carcinogenesis [50]. Fat-
tissue-derived free fatty acids (FFAs) lead to steatosis and lobular inflammation through the activation
of intrahepatic lymphocytes and infiltrating macrophages. Hepatocyte cell death and compensatory
proliferation together with increasing levels of tissue necrosis factor (TNF) superfamily members,
transforming growth factor β (TGF-β), activation of hepatic stellate/liver sinusoidal endothelial cells,
and hepatocyte chromosomal aberrations all contribute to HCC development [51]. The increased
hepatocyte metabolism and oxidation of fatty acid induce overproduction of ROSs [52]. The excess of
triglycerides and FFAs impair the initiation of autophagy through the activation of mammalian target
of rapamycin (mTOR). When the antioxidant capacity of the hepatocytes is exceeded, DNA damage
and oxidation occurs, eventually resulting in cell death [53,54].

It has also been suggested that the inflammatory responses seen in patients with NASH might
be caused by an increase in gut permeability. Even though it is unclear whether a leaky gut is the
consequence or the cause of NASH, it is evident that the translocation of lipopolysaccharide from
gram-negative bacteria is an important aggravating factor for liver inflammation and fibrosis [55].

2.4. Lifestyle Risk Factors

Alcoholic liver disease (ALD) alters hepatic metabolism, causing progressive steatosis,
fibrosis/cirrhosis, and HCC [56,57]. The risk of HCC increases with alcohol consumption as low
as 10 g/day [58]. Perrsen et al. found that consuming more than three drinks daily was associated with
an increase in HCC incidence and liver disease-related mortality [59]. There is a synergistic relationship
between alcohol use of >60 g per day and viral hepatitis, with an approximately two-fold increase in
the odds-ratio of developing HCC [60]. Alcohol use at least four times per week annually along with
obesity (BMI > 30) increases the incidence of HCC [61]. Kimura et al. found that mild alcohol use
(<20 g/day) in patients with NASH and advanced fibrosis was associated with a significant increase
in the risk of HCC [62], while Ochiai et al. showed that ethanol intake ≥ 40 g was associated with a
significant increase in multinodular HCCs [63].

The mechanism of ALD induced HCC is partially understood. Alcohol consumption can alter
metabolic pathways including fatty acid oxidation and lipogenesis. Chronic alcohol consumption
leads to an abnormal accumulation of acetaldehyde, which can exert carcinogenic effects through the
formation of DNA-protein adduct [64]. Acetaldehyde has been shown in vitro to interfere with the
transcriptional activities of peroxisome proliferator activated receptors (PPARs) and sterol regulatory
element binding protein 1 (SREBP-1) [65,66]. Alcohol consumption can also reduce the level of 5′

AMP-activated protein kinase (AMPK), an important regulator of lipogenesis [67]. It is important
to note that the severity of ALD is associated with genetic susceptibility. Genome-wide association
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studies (GWASs) have identified genetic risk loci for ALD, including PNPLA3 [68] and MBOAT7/TMC4
being related to a higher risk of cirrhosis in alcohol abusers [69].

Smoking is another important lifestyle risk factor for HCC. Tobacco smoking contributes to 13%
of all HCC cases globally [70]. Current smokers have higher risks of HCC (hazard ratio 1.86, 95% CI:
1.57–2.20) [71], while those who quit for over 30 years have similar risks to non-smokers [72]. Tobacco
contains multiple carcinogenic agents, including aromatic hydrocarbons [73], diethylnitrosamine
(DEN) [74], and 4-aminobiphenyl [75]. Tobacco use is associated with an increase in inflammatory
cytokines and ROS [76]. Tobacco also has been shown in rodent models to exacerbate the severity of
NAFLD through the increasing of oxidative stress and hepatocellular apoptosis [77].

2.5. Environmental Carcinogens

A number of environmental chemicals have been implicated in HCC carcinogenesis. The best
documented are aflatoxins. Other factors include vinyl chloride, arsenic compounds, polychlorinated
biphenyls, and radioactive compounds [78]. Aflatoxins, mycotoxins produced by Aspergillus flavus and
Aspergillus parasiticus, are frequently found in contaminated grain products such as maize and ground
nuts in farming communities in sub-Saharan Africa, South America, and parts of Eastern Asia [79,80].
Aflatoxin B1 has been shown to form DNA adducts with hepatic DNA, leading to carcinogenesis in
both humans and animal models [81]. In regions with high aflatoxin exposure, a 70-fold increase in the
risk of HCC development has been observed [82].

2.6. Genetic Predisposition

Alpha 1-antitrypsin (AAT) deficiency is an autosomal recessive disease that results from mutations
in the SERPINA1 gene. This gene encodes a serine protease inhibitor, which functions to inhibit
neutrophil elastase. A retrospective study in Sweden found an odds ratio of 20 for the development of
HCC in patients with AAT deficiency [83]. Glycogen storage disease I, or Von Gierke’s disease, leads
to the impairment of glucose-6-phosphatase activity with excess glycogen storage in the liver [84].
Patients with glycogen storage disease I can develop hepatocellular adenomas by their second or third
decade of life. A number of these patients go on to develop HCC [85]. The risk of HCC in patients
with hemochromatosis is approximately 20 times higher than the general population [86]. Lastly,
hereditary tyrosinemia type I is an autosomal recessive disease caused by an enzymatic deficiency in
the catabolic pathway of tyrosine [87]. This disease can lead to acute hepatic failure or cirrhosis in
infancy. In addition, 40% of patients who survive beyond the age of 2 develop HCCs [88].

GWAS have identified single-nucleotide polymorphisms (SNPs) that are associated with HCC
carcinogenesis. A SNP in the epidermal growth factor (EGF) gene (rs4444903) was associated with an
elevated risk of HCC in patients with cirrhosis [89]. A SNP (rs17401966) in Kinesin family member 1B
(KIF1B) was associated with HBV-related HCC. Other SNPs in the Ubiquitination factor E4B (UBE4B)
and Phosphogluconate dehydrogenase (PDG) genes were also shown to be associated with HCC
amongst HBV positive patients [90]. Two SNPs (rs2596542 and rs1012068) discovered in a GWAS
conducted in two large Japanese cohorts were significantly related with HCV-induced HCC [91,92].

2.7. Endocrine Risk Factors

Thyroid hormones are essential for lipid metabolism and have been shown to play a role in the
pathogenesis of NAFLD/NASH [93]. Hypothyroidism has been demonstrated to be more common in
patients with HCV, with a higher prevalence in those with cirrhosis [94]. Studies have also shown that
patients with hypothyroidism have a two-fold higher risk of HCC than those with no prior history of
thyroid cancer [95,96]. High thyroid stimulating hormone levels in HCC patients were found to be
associated with larger tumor sizes [97]. Huang et al. demonstrated that 3,3′5-tri-iodo-l-thyronine (T3)
suppressed HCC cell proliferation through the inhibition of serine/threonine-protein kinase, PIM-1, via
miRNA (miR-214-3p) [98]. T3 supplementation in rats resulted in fewer tumor nodules as well as a shift
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in global transcriptomic expression profile. T3 was shown to exert anti-carcinogenic effects through
the maintaining of genes responsible for hepatocyte differentiation, such as KLF9 and HNF4a [99].

Epidemiologically, HCC predominately occurs in males, with a male-to-female ratio ranging
from 1.5:1 to 11:1. HCC prognosis, survival, and disease free survival after surgery are significantly
better in females than males [100]. The predominance of HCC in males has been thought to be related
to the effects of androgen/androgen receptors (ARs). ARs have been shown to promote HBV viral
replication and HBV induced HCC [101], while AR knockout mice have fewer tumor nodules [102].
AR signaling has been demonstrated to promote key regulators of HCC carcinogenesis, including the
MAPK/STAT/AKT pathway [103].

Estrogen/estrogen receptors (ERs) have been found to have protective effects against HCC while
postmenopausal females have higher incidences of HCC [104,105]. Estrogen administration has been
shown to reduce proinflammatory cytokines such as IL-6, a critical cytokine in HCC carcinogenesis [106].
Naugler et al. reported that estrogen treatment could reduce HCC carcinogenesis in DEN-injured rats
by attenuating MyD88-dependent NF- κB signaling and inhibiting IL-6 signaling [107]. ER activation
has also been shown to reduce STAT3 activation [108], a key regulator of the inflammatory tumor
microenvironment [109].

3. Pathogenesis of HCC

A large body of research has been performed to address HCC pathogenesis. Large-scale
genomic quantitative comparisons of HCC tumors have revealed the occurrence of chromosomal and
microsatellite instability [110]. Loss of heterozygosity and SNP arrays have shown loss or mutations
in tumor suppressor genes such as TP53 (P53) [111], retinoblastoma RB1 (RB1) [112], CDKN2A
(P16INK4A) [113], and insulin-like growth factor-2 receptor (IGF-2R) [114]. Gain of function mutations
such as CTNNBI (β-catenin) can upregulate the transcription of MYC, cyclin D1, and COX2 [115]. There
is a strong association between HBV encoded viral protein HBx and the suppression of P53 induced
apoptosis [116]. HCV core protein can also have direct carcinogenic effects by inducing ROSs [117].

Dysregulations of miRNAs, a class of small non-coding RNAs, can lead to HCC carcinogenesis [118].
Gene expression profiling has revealed that miR-181 upregulation is associated with the Wnt/B-catenin
pathway [119]. MiR-26 downregulation has been shown to be associated with poor prognosis and a
higher risk for metastasis [120]. Silencing of miR-122 was associated with increased cancer invasion,
elevated alpha-fetoprotein expression, as well as higher HCC grades [121].

Genome-wide gene expression profiling has been used to capture dysregulated gene-expression
signatures [122]. Numerous genome-wide expression studies have identified molecular sub-classes of
HCC [123,124]. Aggressive HCC tumors are characterized by increased genetic instability, cellular
proliferation, and impairment of tumor suppressor genes [125]. Hoshida et al. categorized HCC into
three classes. S1 tumors are the most aggressive and are characterized by higher activation of TGF-β.
S2 tumors overexpress EPCAM, AFP, and IGF-2 [126], while S3 tumors have matured hepatocyte-like
phenotypes [127]. Zucman-Rossi et al. characterized proliferative vs. non-proliferative sub-classes
of HCC. The main traits of the proliferative subclass are related to tumor proliferation and survival,
while non-proliferative HCCs resemble normal hepatocytes [128].

It is also important to recognize that the hepatic microenvironment significantly promotes
tumor progression [129] and concomitantly limits therapeutic interventions [130]. The normal liver
stroma maintains tissue integrity and acts as a barrier against tumor formation [131]. During chronic
inflammation, a modified stroma is formed, enriched in carcinoma-associated fibroblasts [132,133]
and tumor-associated immune cells [134,135]. In such a pro-carcinogenic environment, cancer cells
are potentiated to grow and proliferate such that responses to conventional treatments are altered
(Figure 1).
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upregulation of pro-carcinogenic genes and pathways (text for details). 
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(PLS) containing 186 genes [137]. The poor-prognosis signature was found to be associated with an 
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a small molecule EGF pathway inhibitor, in multiple rodent models [140], and also led to the initiation 
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Figure 1. Mechanisms of hepatocellular carcinoma. Molecular pathways of HCC carcinogenesis are
summarized. Risk factors include viral hepatitis, NAFLD, alcohol and toxins. HCC tumors develop
as dysplastic nodules through the gaining of molecular aberrations and mutations. The cirrhotic
microenvironment in the liver promotes HCC carcinogenesis through the activation of hepatic stellate
cells into myofibroblasts. The cirrhotic background also promotes inflammation leading to the
upregulation of pro-carcinogenic genes and pathways (text for details).

4. Molecular Biomarkers of HCC—The Prognostic Liver Signature

The major challenge in managing HCC is the complex and elusive mechanism of HCC
carcinogenesis, leading to a scarcity of cancer biomarkers for targeted prevention trials. To circumvent
this obstacle, a reverse engineering approach was developed to identify carcinogenic targets using
long-term clinical follow-up patient cohorts, subsequently verified using in silico, in vitro, and in vivo
models (Figure 2). It is hypothesized that cirrhosis leads to field cancerization, whereby cirrhotic
liver tissue can harbor gene-expression signatures associated with carcinogenesis or recurrence after
resection [136].

To verify this hypothesis, Hoshida et al. analyzed liver tissues surrounding resected HCV HCC
tumors in 106 formalin-fixed, paraffin embedded blocks and identified a prognostic liver signature
(PLS) containing 186 genes [137]. The poor-prognosis signature was found to be associated with an
increase in liver-related deaths, progression of the Child–Pugh class, as well as HCC development.
The 10-year HCC development rates were 42% and 18% for patients with poor and good prognostic
signatures, respectively [138]. Though initially verified in HCV patients, the PLS also demonstrated
significant concordance in liver tissues from HBV, alcohol, and NAFLD/NASH patients followed for
23 years [139]. This prognostic signature successfully verified the chemopreventive effect of erlotinib,
a small molecule EGF pathway inhibitor, in multiple rodent models [140], and also led to the initiation
of a cancer chemoprevention clinical trial (NCT02273362).
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Figure 2. Reverse engineering for HCC chemoprevention. Traditionally, chemoprevention targets
are verified in both in vitro and experimental animal models and then introduced into clinical trials
(top panel). The reverse-engineering identifies targets for chemoprevention in human cohorts already
followed for decades. Samples are genetically profiled into molecular signatures and then experimentally
evaluated for mechanisms and therapeutic strategies (bottom panel).

Besides the EGF pathway, other inflammatory and fibrotic pathways have been identified as
valuable cancer targets for prevention. Top enriched regulator genes were AKT1, SLC35A1, DDX42, ILK,
and LPAR1. AKT-activated mTOR inhibitors, including everolimus and sirolimus, are currently being
investigated for chemoprevention after transplantation [141]. Lysophosphatidic acid receptor 1 (LPAR1)
is the receptor for the bioactive lipid lysophosphatidic acid (LPA) produced from lysophosphatidyl
choline (LPC) through the actions of a secrete lysophospholipase D named autotaxin (ATX). LPAR1
overexpression has been shown to promote fibrosis [142], inflammation and HCC carcinogenesis via
upregulation of its downstream effectors, including RhoA/ROCK, RAS/MAPK/ERK, and AKT/PI3K
(Figure 3) [143]. In a DEN model of cirrhosis, LPAR1 upregulation coincided with the development of
cirrhosis. Furthermore, LPAR1 inhibition with ATX inhibitors attenuated liver fibrosis, reduced the
number of HCC nodules, and reversed the PLS risk gene signature [137,144].

The reverse-engineering technique along with the transcriptomic analysis of cancer-prone markers
can be used to not only unearth key biomarkers of cancer prevention, but also be used for the
proof-of-concept of other experimental compounds. Inhibition of chromatin reader Bromodomain 4—a
target identified by reverse-engineering—by use of a small molecule, JQ1, reduced HCC carcinogenesis
in experimental rodent models by reverting the epigenetic as well as the poor prognostic signature [145].
Villa et al. found a five-gene signature that predicted tumor doubling time as well as overall survival.
In this study, ultrasound surveillance was used to identify newly diagnosed HCCs in cirrhotic patients.
Patients then underwent two CT scans 6 weeks apart in order to determine tumor doubling time.
In this study, five genes (ANGPT2, NETO2, ESM1, NR4A1, and DLL4) that regulated angiogenesis



J. Clin. Med. 2020, 9, 3817 8 of 31

and endothelial cell migration were significantly upregulated and predicted tumor doubling time and
survival [146].
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(MAPK)/extracellular-signal-regulated kinase (ERK), and Akt/PI3K. LPA activation has been observed
in human and rodent cirrhotic livers at risk for HCC.

5. Prevention Strategies

Understanding the risk factors and pathogenesis of HCC provides an opportunity for prevention
strategies. Prevention can be sub-divided into primary, secondary, and tertiary prevention. Primary
prevention focuses on eliminating cancer-predisposing factors through early vaccination, lifestyle
modifications, as well as environmental interventions. Globally, a significant reduction in the incidence
of HCC was observed after the implementation of hepatitis B vaccination [147–149]. Preventive actions
against HCV can be taken through changes in social/cultural/medical practices such as the prevention
of IV drug use and efficient screening of blood products and medical instruments [150]. In Australia,
a substantial decline in the estimated intravenous drug use resulted in a decline in the number of
new HCV infections from 14,000 per year in 2000 to 10,000 per year in 2005 [151]. Regulations of
environmental carcinogens, such as Aflatoxin through information dissemination, have significantly
reduced the Aflatoxin level in endemic areas [152].

Secondary prevention aims to delay the progression of chronic liver disease. This approach strives
to eradicate the etiological agents (HBV and HCV) or inhibit the various steps in the carcinogenic
progression. In general, chemoprevention agents should be inexpensive, well tolerated for long-term
treatment, and available to the general population.
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Tertiary prevention targets cancer recurrence or de-novo carcinogenesis within 1–2 years after
curative treatment [153]. Ikeda et al. demonstrated in a randomized control trial that interferon-based
immunotherapy after HCC resection resulted in a significant reduction in HCC recurrence [154].
Mazzaferro et al. demonstrated that adjuvant interferon therapy may reduce late recurrence of
HCC [155]. Post-operative interferon-alpha is currently being investigated in patients with low miR-26
expression after HCC resection (NCT01681446). Immunosuppression with mTOR inhibitors has also
been shown to reduce HCC recurrence [156,157] (Figure 4).
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Figure 4. HCC-prevention strategies through the progression of HCC development. HCC prevention
strategies, primary, secondary, and tertiary prevention, target various stages of liver disease progression
(text for details).

6. Early Diagnosis and Surveillance

Compliance to HCC surveillance is associated with early diagnosis, allocation of curative treatment,
and longer adjusted overall survival [158]. Practice guidelines from The American Association for
the Study of Liver Diseases (AASLD) and The European Association for the Study of the Liver
(EASL) recommend HCC surveillance for high risk patients by abdominal ultrasound performed by
experienced personnel every 6 months [159,160]. Surveillance is indicated for all patients with cirrhosis.
For patients with less advanced liver diseases, risk stratification using regression analysis is used to
determine surveillance interval.

Models predicting the need for HCC surveillance in HCV patients use factors such as age, alcohol
intake, platelet count, gamma-glutamyltransferase, and non-sustained virological response [161,162].
The ADRESS-HCC study, performed in 34,932 patients with decompensated cirrhosis from the US
national liver transplant waiting list, identified six predictors of HCC (age, diabetes, race, etiology, sex,
and severity of disease according to the Child–Turcotte–Pugh score) [163]. A retrospective analysis
of the HALT-C trial demonstrated that the addition of the EGF SNP to clinical parameters (age,
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gender, smoking status, ALK-p level, and platelet count) could improve HCC risk stratification [164].
Furthermore, Ioannou et al. developed a risk stratification model for both NAFLD and ALD cirrhosis
using seven predictors (age, gender, diabetes, BMI, platelet count, serum albumin, and AST/ALT
ratio) [165].

HCC surveillance is often underutilized. Real-life worldwide retrospective cohorts reported
screening adherence ranging from 5.7% to 78.8%, with higher rates occurring in countries with national
screening programs [166]. A study from the US including 13,002 patients showed that only 42% of
patients with HCV-cirrhosis received one or two surveillance tests during the first year and only 12%
of them received surveillance two to four years after the diagnosis of cirrhosis [167].

Although ultrasound surveillance is currently the gold standard for HCC surveillance, there are
downsides including sensitivities ranging from 47% to 84% depending on the operator’s experience [168].
Magnetic resonance imaging (MRI) has high sensitivity and specificity for diagnosis of HCC and has the
potential to improve HCC surveillance outcomes. In high-risk patients with cirrhosis, surveillance by
MRI using liver-specific contrast increased early HCC detection compared to ultrasound but survival
benefits and cost-effectiveness have not been demonstrated [169].

7. Etiology-Specific Secondary Chemoprevention

7.1. Hepatitis B

Antiviral treatments for HBV consist mainly of interferon therapies and nucleoside/nucleotide
analogs [170]. Interferon alpha (IFN-α) therapy has shown inconsistent effects on HCC prevention due
to its moderate effects on HBV viral replication [171]. The beneficial effects of nucleoside/nucleotide
analogs are well established. In a randomized control trial, Liaw et al. demonstrated that continuous
treatment with lamivudine significantly reduced the incidence of hepatic decompensation and the risk
of HCC (3.9 percent vs. 7.4 percent) in patients with advanced liver disease [172]. In a retrospective
study of 872 patients versus 699 historical controls, the annual incidence of HCC was reduced from
4.1% to 0.95% in patients with sustained response to lamivudine [173]. In one systemic review of
21 studies, the incidence of HCC was significantly lowered in HBV positive patients treated with
lamivudine (2.8% vs. 6.4%; p < 0.01) [174].

7.2. Hepatitis C

Direct-acting anti-virals (DAAs) targeting viral protease, polymerase, and non-structural proteins
have enabled improved sustained viral response compared to interferon-based therapies [175]. DAAs
are better tolerated in cirrhotic patients in comparison to interferon-based therapies [176]. HCV-related
cirrhosis mortality reached a plateau in 2014 and markedly declined from 2014 to 2016 after the
introduction of DAAs [177]. After treatment, the sustained virologic response (SVR) is the best
indication for successful HCV treatment [178]. Janjua et al. demonstrated that among DAA-treated
patients, the HCC incidence rate was 6.9% in the SVR group vs. 38.2% in the non-SVR group [179].
Ioannou et al. found that DAA-induced SVR was associated with a 71% HCC risk reduction [180].
However, patients with pre-SVR fibrosis scores ≥ 3.25 have a higher annual incidence of HCC
(3.66%/year) than those with <3.25 (1.16%/year) [181]. The persistence of HCC risk after HCV treatment
can be partially explained by HCV-induced epigenetic modifications [182].

HCC surveillance should be continued in high-risk patients after DAA therapy. Despite the
ongoing developments in HCV treatment options, the increasing rate of infection in young adults
(age < 30) and the lack of screening are significant obstacles [183]. Barriers to HCV screening include
lack of awareness, mental illness, lack of access to health care, and substance misuse [184]. The US
Preventive Services Task Force recommends screening for adults at high risk, as well as one-time
hepatitis C screening to all individuals born between 1945 and 1965. In high risk communities, the use
of non-invasive fibroscanning can potentially identify individuals with chronic HCV [185].
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Lifestyle intervention can be effective in patients with NAFLD and NASH. Weight loss > 10% has
been shown to induce complete regression of NASH and partial regression of fibrosis [186]. Obese,
sedentary individuals have increased risks of NAFLD in comparison to weight-matched physically
active individuals [187]. EASL guidelines recommend moderate-intense aerobic physical activities in
3–5 sessions for a total of 150 min per week [188]. AASLD guidelines suggest the beneficial effects of
physical activity but does not specify the exercise regimen [189]. There are currently no longitudinal
studies demonstrating the effects of exercise on HCC risk reduction. Various pre-clinical rodent studies
have demonstrated the efficacy of exercise in delaying HCC. In a hepatocyte-specific PTEN-deficient
mouse model that developed steatohepatitis and spontaneous HCC, animals randomized to exercising
developed fewer HCC nodules compared to sedentary animals (71% vs. 100%, respectively) [190].

Bariatric surgery is an effective option for weight loss in patients who are refractory to conservative
treatment options. It has also been shown that bariatric surgery is a potential therapy for NASH.
Lassailly et al. demonstrated that NASH resolved in 85% of patients after bariatric surgery while
fibrosis was reduced in 33.8% of patients [191]. A meta-analysis demonstrated that bariatric surgery
was associated with improvements in steatosis (91.6%), NASH (81.3%), as well as fibrosis (65.5%) [192].
Kwak et al. found that bariatric surgery was associated with a lower risk of HCC among matched
cohorts of morbidly obese patients [193].

Diabetes mellitus (DM) has been shown to be an independent risk factor for HCC
development [194]. Hyperinsulinemia can stimulate liver cell proliferation via the upregulation
of IGF-1 [195] as well as hepatic stellate cell activation [196]. Insulin resistance is also an independent
risk factor for liver fibrosis [197]. Given that NAFLD/NASH and DM commonly exist together,
it is a reasonable hypothesis that anti-diabetic drugs have potential chemopreventive effects against
NAFLD/NASH induced HCC. Metformin has been shown in several non-randomized studies to have
HCC preventative effects in type-2 diabetic males [198]. In pre-clinical studies, the anti-carcinogenic
effects of metformin have been shown to be mediated through the upregulation of AMPK, and the
subsequent inactivation of mTOR via the upstream regulator of AMPK, LKB1 [199,200]. When exposed
to DEN, male rats treated with metformin developed less fibrosis, cirrhosis, and overall fewer tumor
nodules [201]. Metformin has been shown to improve liver histology and ALT levels in 30% of patients
with NASH (NCT00063232). However, there are no completed clinical trials to date examining the
effects of metformin administration on HCC prevention. The only trial to date (NCT02319200) was
terminated early due to the lack of participants.

Long-term pioglitazone treatment can improve hepatic triglyceride content and fibrosis in patients
with diabetes and NASH [202]. In a standard model, mice receiving a single injection of DEN, followed
by the administration of a choline deficient L-amino acid diet, developed hepatic fibrosis and HCC
nodules. In this model, pioglitazone administration at the initial onset of fibrosis resulted in a reduction
in fibrosis and tumor nodules [203]. Pioglitazone targets downstream nuclear hormone PPARγ by
binding to retinoid X receptor and subsequently regulating insulin sensitivity, glucose metabolism, and
hepatic inflammation [204]. However, there are non-negligible side effects associated with pioglitazione,
such as heart failure, weight gain, and bone loss.

Vitamin E is a lipid-soluble nutrient that acts as an antioxidant to prevent free radical damage in
membranes and plasma lipoproteins [205]. Treatment with vitamin E has been shown to improve liver
functions and fibrosis [206,207]. However, the effects of vitamin E on inflammation are controversial.
A number of studies demonstrated no improvement in inflammation, while other studies concluded that
vitamin E was associated with a significant improvement in steatosis, fibrosis, and inflammation [208–210].
No clinical data is available on vitamin E’s HCC prevention effects.

7.3. Alcohol

Alcohol abstinence remains to be the most important treatment for alcohol-related hepatic disease.
Alcohol cessation has been shown to decrease the risk of HCC by 6–10% per year. After two decades,
the risk becomes equal to the general population [211]. Among former versus current drinkers,
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the odds-ratio of men developing HCC was significantly higher in those who stopped drinking for less
than 10 years [212].

However, targeting sobriety is both complex and difficult to maintain. The current gold standard
for alcohol use disorder is achieving total abstinence and preventing relapse [213]. Both inpatient and
outpatient rehabilitation programs have shown efficacy in helping patients maintain abstinence [214].
It has also been shown that participation and communication with an alcohol addiction specialist
in Alcoholic Anonymous can help to maintain abstinence [215]. Cognitive-behavioral coping skills
therapy (CBT) is a psychotherapeutic approach that helps patients recognize risks for relapse and
develop strategies to mitigate the risks. Patients are also encouraged to keep a diary to document the
risk events [216].

Disulfiram, the most common and oldest pharmaceutical intervention for alcohol use disorder,
works by inhibiting aldehyde dehydrogenase, resulting in an accumulation of aldehyde that usually
results in a disulfiram–alcohol reaction, consisting primarily of tachycardia, flushing, nausea, and
vomiting [217]. Studies have shown that disulfiram is effective in promoting short-term abstinence [218].
Naltrexone is an agent that blocks opioid receptors, which in turn leads to a reduction in dopamine
levels and a reduction in alcohol intake [219]. The Combined Pharmacotherapies and Behavioral
Interventions (COMBINE) study (NCT00006206) demonstrated that naltrexone, when given with
medical counseling, resulted in an increase in the days of abstinence [220].

8. Etiology-Independent Secondary Chemoprevention Strategies

8.1. Statins

Statins, 3-hydroxy-3-methylgutaryl coenzyme A reductase inhibitors, are cholesterol-lowering
agents that have cardiovascular protective effects [221]. Several randomized-controlled trials have
demonstrated that statins have preventative effects in colorectal [222], breast [223], and prostate
cancer [224]. Atorvastatin (10 mg/day) use in biopsy proven NASH patients demonstrated a 74%
improvement in liver function tests as well as a rise in serum protein and adiponectin, a key regulator
of lipid metabolism [225,226]. Statin use has been shown to correlate with a decreased risk of HCC
carcinogenesis and recurrence after resection [227–229].

The anti-neoplastic effects of statins have been attributed to the inhibition of MYC [230], AKT [231,232],
NF-κB, and IL6 production [233]. Statin use also reduces hepatic stellate cell activation via the
induction of sterol regulatory element-binding protein 1 and PPAR [234], as well as reduction in portal
hypertension via non-canonical hedgehog signaling [235]. Secondary prevention effects of simvastatin
in patients with cirrhosis are being tested in a phase II clinical trial (NCT02968810). Currently,
a multi-center double-blinded randomized clinical trial of tertiary prevention is being conducted with
atorvastatin vs. placebo for HCC recurrence after completion ablation or hepatic resection (SHOT trial;
NCT03024684).

8.2. Aspirin, COX2 Inhibitors and Anti-Platelet Agents

The major risk factor for HCC carcinogenesis is the non-resolving inflammation resulting in
dysregulated production of cytokines, chemokines, growth factors, prostaglandins, and ROSs [236].
It is well established that TNF-α activated NF-κB is a critical mediator for HCC carcinogenesis [237].
In a large prospective study, the use of nonsteroidal anti-inflammatory drugs (NSAIDs) among men
and women between the ages of 50 and 71 years was associated with a 37% reduced risk of HCC as
well as a 51% reduced risk of mortality from chronic liver disease [238]. Cyclooxygenease-2 (COX2)
controlled prostaglandins are upregulated in chronic liver disease [239]. Leng et al. demonstrated that
COX2 overexpression in vitro resulted in cell growth and overexpression of AKT, while treatment with
COX-2 inhibitor, celecoxib, resulted in a significant reduction in AKT activation and upregulation of
apoptosis [240].
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In two prospective cohorts of U.S. men and women, regular use of aspirin was associated with a
significant reduction in the risk of developing HCC compared to non-regular use (2.1 vs. 5.2 cases
per 100,000 person-years). However, prevention effects were not observed with other NSAIDs [241].
Aspirin has also been shown to inhibit platelet thromboxane, subsequently leading to the inhibition of
spingosine-1-phosphate S1P, a lipid molecule that has been shown to promote HCC proliferation [242].
A study demonstrated that the combination of aspirin and clopidogrel reduced intrahepatic immune
cell infiltration, NASH, and HCC [243]. However, increased risk of bleeding may limit the use of
these drugs for long-term prevention, particularly in cirrhotic patients. Besides its anti-inflammatory
properties, aspirin has also been shown to have anti-fibrotic properties. Wang et al. showed that
aspirin targets P4HA2, an enzyme involved in collagen synthesis [244]. Aspirin administration to mice
that were subcutaneously engrafted with HepG2 cells resulted in a reduction in collagen deposition
and tumor growth [245]. Daily aspirin use was also shown to significantly lower the odds-ratio of
NASH and fibrosis in 361 adults with biopsy-proven NAFLD [246].

8.3. Anti-Fibrosis Therapy

Fibrosis has been shown to be a key risk factor for HCC [247]. However, anti-fibrotic therapies for
HCC prevention have not been established. Most clinical trials are designed to study the anti-fibrosis
or anti-cancer effects of drugs, but rarely both. Though promising, therapies such as ASK-1 inhibitor,
selonsertib (NCT02466516) and dual PPARα/δ agonist, elafibranor (NCT02704403), have demonstrated
efficacy in reducing fibrosis but have not been tested for HCC prevention [248,249].

8.4. Nutritional Agents

Food-derived agents, nutritional supplements, and certain phytochemicals, plant-derived bioactive
chemicals, have been recognized as potential prevention options for HCC. Glycyrrhizin, an extract of
licorice root, has been shown to lower serum aminotransferases, improve liver histology, and delay
HCC carcinogenesis in humans and animal models [250–253]. Sho-saiko-to, a Chinese herbal medicine
that contains glycyrrhizin, was shown to increase survival in cirrhotic HBV patients as well as decrease
the incidence of HCC [254]. Beta-carotene derived from fruits and vegetables reduced the number
and size of hepatic nodules in rats injured by DEN and phenobarbital [255]. Epigallocatechin gallate
(EGCG), the most abundant green tea catechin polyphenol, has been shown to inhibit tumor growth
and induce apoptosis in vitro [256]. In a rodent HCC model of DEN and aflatoxin, EGCG treatment
reduced the number of placental glutathione S-transferase positive pre-neoplastic nodules [257]. In a
phase 2 clinical trial, consumption of green tea polyphenols led to a significant reduction in oxidative
DNA damage in HBV positive patients exposed to aflatoxin [258]. EGCG was also shown to reverse
the poor prognostic gene signature described by Hoshida et al. [137,259]. The mechanisms of HCC risk
reduction with coffee consumption have yet to be determined. However, coffee has been shown to
contain numerous anti-carcinogenic chemical compounds. Diterpenes have been shown to upregulate
detoxifying enzymes and reduce the formation of aflatoxin–DNA adducts [260].

Higher vitamin D, 25(OH)D, levels have been associated with a reduced risk of HCC, while
low levels are associated with increased risk of HBV-related HCC [261,262]. In DEN-injured
mice, vitamin D3 up-regulated protein 1 (VDUP1) has been shown to suppress TNF and NF-κB
activation [263]. Oral vitamin D3 is currently under investigation for the prevention of HCC in
HBV patients (NCT02779465). Branched-chain amino acids (BCAA) have been shown to reduce
hepatic fibrosis and HCC carcinogenesis in DEN-injured rats [264]. In an observational study of
cirrhotic patients in Japan, BCAA supplementation was associated with a lower incidence of HCC
development [265].

Fish is a rich source for n-3 polyunsaturated fatty acids and has been shown to reduce the risk of
HCC by 35% [266] irrespective of the viral hepatitis status [267]. In a NAFLD HCC rodent model, mice
fed with an n-3 polyunsaturated fatty acid supplemented diet have significant reductions in fibrosis



J. Clin. Med. 2020, 9, 3817 14 of 31

and tumor nodules [268]. However, processed red meat has been shown to actually increase the risk of
HCC [269] (Figure 5).
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9. Challenges and Obstacles in Prevention

A major obstacle in HCC chemoprevention is the lack of accurate pre-clinical models that closely
mimic HCC carcinogenesis in humans. Many drugs that enter phase I clinical trials are able to progress
to phase II [270]. However, 95% of drugs that enter clinical trials do not enter the market [271].
Many drugs are initially tested in the pre-clinical setting using in vitro systems. Cancer cell lines
are invaluable in vitro models that are widely used for cancer research and novel drug discovery.
The major concern is that they do not accurately reflect their tissues of origin due to genetic mutations
and passage cycle-derived transcriptomic alterations. Many human HCC cell lines are strikingly
different to their tumors of origin [272]. This is likely why compounds that show promise in in vitro
models are ineffective clinically [273]. There lacks an in vitro system in cancer prevention research that
captures cancer initiation, promotion, and progression. Most commonly established human HCC cell
lines such as HepG3 and HuH7 can be used to investigate cancer treatment, but not prevention.

An ideal in vivo animal model should capture the key biological features of HCC and recapitulate
the tumor microenvironment. Major etiologies for failure include the complex molecular heterogeneity
as well as the limited understanding of HCC carcinogenesis. HCC genetically engineered mouse
models (GEEMs) activate oncogenes such as HRAS or MYC [274] or disrupt tumor suppressor genes
such as PTEN or TP53 [275]. However, most GEMMs have failed in addressing the complex interaction
between HCC and the representative microenvironment.
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Chemical carcinogens such as carbon tetrachloride [276], DEN [277] and thioacetamide [278]
induce fibrosis, cirrhosis and HCC sequentially. The repeated, low dose DEN cirrhosis-driven rat
model [279] demonstrated an induction of the HCC prognostic gene signature similar to that of the
human signature [139]. Chemical carcinogens such as DEN are an excellent model for chemoprevention
research given the accurate recapitulation of all steps in the HCC carcinogenesis pathway.

Prior to the omics era, there were limited HCC prevention targets. Transcriptomic analysis
of clinical specimens and reverse-engineering prevention targets may ultimately overcome this
challenge. Cirrhotic patients expressing the poor prognostic signature would benefit the most from
chemoprevention. HCC chemoprevention clinical trials are difficult to conduct and expensive given
the requirement for a large sample size and long observation periods. Even if an agent demonstrates
efficacy with a low toxicity profile, it still takes 5–10 years for a drug to move through phase III clinical
trial [280]. Prevention trials focused on lifestyle modification, such as weight control, diet, and physical
activity, can be challenging because these activities are typically clustered, thus identifying the change
of a single behavior can be difficult if not impossible [281].

Another major challenge in HCC prevention is the lack of understanding of the long term
tolerability and impact on quality of life of many drugs. To be acceptable for HCC prevention, a drug
needs to be well tolerated for an extended period of time with minimal—if any—side effects. It is
also important for physicians to be comfortable in prescribing these medications. Even minor side
effects can be enough to affect quality of life and compliance with a cancer prevention medication,
thus limiting its efficacy. This is especially of importance in HCC prevention, where a majority of this
patient population have some form of chronic cirrhosis. Metformin is generally well tolerated with
a good safety profile. However, lactic acidosis, one of its most notorious side effects, is more likely
to occur in patients with hepatic insufficiency [282]. Aspirin is also commonly prescribed and well
tolerated, but physicians may not be comfortable prescribing aspirin to cirrhotic patients who are at
high risk of gastrointestinal bleeds.

10. Conclusions

Integration of HCC prevention research to the clinical setting is an extremely important strategy.
Prevention clinical trials are very challenging to conduct because of the need for large sample sizes and
long observation times. In addition, establishing the optimal dose and duration for chemopreventive
drugs remains a challenge. Although there has been notable success in primary and secondary
prevention for viral hepatitis such as the HBV vaccine or HCV cure by DAAs, similar successes for
prevention of metabolic HCC are largely absent given the challenges associated with strategies of
improved diet and regular exercise. Furthermore, there is no approved strategy to prevent HCC in
advanced fibrosis or post HCC resection. Advances in the field of HCC chemoprevention will be aided
by a more complete characterization of HCC carcinogenesis as well as a better understanding of the
liver microenvironment. The main challenge in HCC prevention research will always be translating
pre-clinical research into successful clinical trials but there is a promise for success as we develop more
individualized therapies.
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Abbreviations

AR Androgen receptor
ALD Alcoholic liver disease
AMPK AMP-activated protein kinase
COX2 Cyclooxygenease-2
DAA Direct-acting antivirals
DEN N-diethylnitrosamine
DM Diabetes mellitus
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
GWAS Genome wide associated studies
HBV Hepatitis B virus
HCV Hepatitis C virus
HCC Hepatocellular carcinoma
IFN-α Interferon alpha
LAR Lysophosphatidic acid receptor
LPAR1 Lysophosphatidic Acid Receptor 1
mTOR Mammalian target of rapamycin
NAFLD Nonalcoholic fatty liver disease
NF-κB Nuclear factor κB
NASH Nonalcoholic steatohepatitis
NSAIDS Nonsteroidal anti-inflammatory drugs
PPAR Peroxisome proliferator activated receptors
PLS Prognostic liver signature
ROS Reactive oxygen species
SNP Single nucleotide polymorphism
SVR Sustained virologic response
TNF-a Tumor-Necrosis-Factor alpha
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