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Confidence Intervals for Recurrence Risk Ratios 

1. Theoretical Background 

The recurrence risk ratio λ derived as the ratio of prevalence of a condition in a group of family 

members (𝐾𝑟) divided by the prevalence in the population 𝐾 is a common measure for familial 

aggregation of a condition (disease). The measure 𝜆 and related generalizations have been reported 

in many scientific works in the past and recently [1,2]. The popularity of λ may likely be attributed 

to the simplicity of both its calculation and interpretation. Nevertheless, a potential drawback of 𝜆 is 

that the derivation of confidence intervals (CIs) is not straightforward. Therefore, this step is hence 

often omitted in practice, and the presented results consist only of point estimates [3–5]. The 

interpretability of these results is therefore limited, since the uncertainty of the point estimates is not 

taken into consideration. 

From a statistical perspective, it is noteworthy that the term “population” should not be 

interpreted in the statistical sense here, since this would mean that we possess all relevant 

information on the entire world population. Instead, we are dealing with two samples: the first 

represents the sample of probands, and the second one represents the general population. Thus, the 

number of affected relatives of affected probands can be interpreted as a random variable 𝑋𝑟 

generated by repeated, independent sampling with probability 𝑝𝑟. The parameter 𝑝𝑟 corresponds to 

the (unknown true) probability of a relative of an affected proband being affected by the condition. 

Thus, with 𝑛𝑟 denoting the sample size (the total number of relatives of affected probands), the total 

number of affected relatives follows a binomial distribution with parameters 𝑝𝑟 and 𝑛𝑟. That is, 

𝑋𝑟 = 𝑛𝑟𝐾𝑟~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑟 , 𝑛𝑟) (1) 

A similar argumentation logic applies to the quantity 𝐾. With 𝑝 (as well unknown) and 𝑛 

corresponding to probability of being affected by the condition in the general population and the 

population size, respectively, holds 

𝑋 = 𝑛𝐾~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝, 𝑛) (2) 

when considering the number of people with the condition as a random variable 𝑋. Consequently, in 

order to derive the properties of 𝜆, one may use that 
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Re-writing 𝜆 this way permits to apply the results of Katz et al. (1978) [6]. Assuming independence 

of the random variables 𝑋𝑟 and 𝑋, these authors showed that log(𝜆) approximately follows a normal 

distribution, i.e. 
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𝑝
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+
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Since these first results, other authors have followed and presented alternative ways for deriving 

confidence intervals for ratios of two binomial variables. To name only a few established results: a 

skewness correction was proposed [7,8], investigated confidence intervals based on Likelihood Scores 

[9] and employ the power divergence family for improved accuracy. Moreover, there is a rich 

literature on the properties CIs for recurrence risk in the context of logistic-type regression settings 

[10,11]. It should be noted, however, that these regression approaches usually assume the population 

prevalence to be constant, which allows to model the variability of the sample prevalence with 

complex modeling approaches. 

While many advancements have certainly been made during the past years, the applicability of 

the very large majority of results relies on certain distributional assumptions. These are often only 

fulfilled for sufficiently large samples, where the required size for each method needs to be 
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investigated in simulation settings. An alternative approach is a re-sampling technique known as 

bootstrapping, which we describe in the following. 

2. The Bootstrap 

The bootstrap (or: bootstrapping) corresponds to a collection of computing-intensive methods 

which can be used to examine the properties of statistics such as 𝜆 in cases where their theoretical 

and asymptotical behavior is unclear or difficult to derive. The basic idea behind all bootstrap 

techniques is to determine the sampling distribution of the statistic by repetitive re-sampling. The 

literature related to bootstrapping is large and has grown substantially in the past decades. For a 

short overview of bootstrap fundamentals [12–14].  

Re-sampling plays a core role for the bootstrap, and in the basic implementations one usually 

encounters either the “non-parametric” or the “parametric” bootstrapping. Both variations have the 

same goal: evaluating the properties a statistic by computing it for a high number of so-called 

“bootstrap samples”. For the non-parametric case, the re-sampling is carried out by drawing 

observations with replacement from the original sample. Parametric sampling works by first fitting 

some kind of parametric model (distribution) to the original sample, and then sampling from this 

fitted model (distribution). In order to determine properties of our quantity 𝜆, we need to carry out 

two sampling procedures, since the number of affected probands as well as the uncertainty in the 

population prevalence possess impact on the variability of 𝜆. As will be shown later, non-parametric 

and parametric bootstrapping both leads to identical results for 𝜆, which is usually not the case. 

3. Bootstrap Confidence Intervals and p-values 

A variety of approaches exists for deriving CIs via bootstrapping. Those most commonly used 

are basic, percentile, Studentized, bias-corrected, and accelerated bootstrap. We employ the 

percentile because of its appealing simplicity and ease of implementation, which permits us to set up 

this bootstrap variant straightforwardly in all common programming languages. However, one 

should keep in mind that more appropriate alternatives exist if the sampling distribution is highly 

skewed, or when sample sizes are very small. In order to carry out the percentile bootstrap, the 

following steps are carried out successively: 

1. Generate B bootstrap samples by either parametric or non-parametric bootstrapping. 

In our case, each bootstrap sample consists of two sub-samples: one for re-sampling the number 

of affected probands 𝑋𝑟, and one for re-sampling the prevalence in the general population via 

𝑋. 

2. For each bootstrap sample, calculate corresponding estimate of 𝜆 (given by �̂� =
𝑥𝑟

𝑛𝑟

𝑥

𝑛
⁄ ). 

These estimates are denoted by �̂�∗(𝑏), 𝑏 = 1,… , 𝐵. 

3. Derive the CI for �̂� by (�̂�𝛼/2
∗ , �̂�1−𝛼/2

∗ ). Here, �̂�𝛼/2
∗  and �̂�1−𝛼/2

∗  denote the 𝛼/2 and 1 −

𝛼/2 percentile, respectively, of the sample of bootstrapped values �̂�∗(𝑏), 𝑏 = 1,… , 𝐵. 

After carrying out the Steps 1. and 2. above, p-values can also directly calculated from the 

distribution of the �̂�∗(𝑏). To test the null hypothesis that 𝜆 is lambda is smaller or equal to one, one 

simply needs to count the number of bootstrap estimates which fall into this interval. Table 2 reports 

p-values from a one-sided hypothesis. 

4. Implementation of the Non-Parametric Bootstrap 

In the following we present the most relevant aspects for implementing the non-parametric 

bootstrap described above. Section 6 below contains R code for a toy example with detailed 

comments. The first step consists of setting up the necessary parameters. We chose the severe tinnitus 

group with both genders: 

# population 

n <- 92287 

x <- 2352 



Page 3 of 9 

 

p <- x / n 

# probands 

n.r <- 297 

x.r <- 55 

p.r <- x.r / n.r 

The quantities n, x, and p correspond to the population size, the number of cases, and 

prevalence, respectively. The quanties n.r, x.r, and p.r are defined analogously for the probands. 

In order to carry sample from the population and sample, we need to create these sets named pop 

and samp first. 

pop <- rep(c(0, 1), c(n - x, x)) 

samp <- rep(c(0, 1), c(n.r - x.r, x.r)) 

Then, the loop carrying out the bootstrap loop looks as follows: 

for (i in 1 : n.bs.samp) { 

   prop.pop.bs[i] <- sum(sample(pop, 

                         size = n, 

                         replace = TRUE)) / n 

   prop.samp.bs[i] <- sum(sample(samp, 

                                 size = n.r, 

                                 replace = TRUE)) / n.r 

   lambda.bs[i] <- prop.samp.bs[i] / prop.pop.bs[i] 

} 

The vectors prop.pop.bs, prop.samp.bs, and lambda.bs collect the bootstrapped values 

for the proportion of cases (i.e. prevalence) in the population, the proportion of cases in the sample, 

and values of 𝜆, respectively. The 95% CI for 𝜆 then results directly from the empirical quantiles 

calculated by 

quantile(lambda.bs, c(0.025, 0.975)) 

It is noteworthy that this this way of implementing the bootstrap is computationally inefficient, 

since the sampling procedure is carried out in a rather primitive way. For illustrative purposes we 

set the number of bootstrap samples to 103, which is in general a too low number for a percentile 

bootstrap. If one increases the value, it quickly becomes clear that there is room for improvement. 

5. Implementation of the Parametric Bootstrap 

Instead of sampling from the sets pop and samp, the parametric bootstrap uses the integrated R 

function rbinom to carry out an equivalent sampling procedure. The bootstrap loop then looks as 

follows. 

for (i in 1 : n.bs.samp) { 

   prop.pop.bs[i] <- rbinom(n = 1, 

                            size = n, 

                            prob = p) / n 

   prop.samp.bs[i] <- rbinom(n = 1, 

                             size = n.r, 

                             prob = p.r) / n.r 

   lambda.bs[i] <- prop.samp.bs[i] / prop.pop.bs[i] 

} 

This approach has the advantage that it is computationally much more efficient then the non-

parametric version. In our example script, we increase the number of bootstrap samples from 103 to 

105, but need much less computational time for executing the loop. Nevertheless, this sampling can 

again be further improved by directly sampling n = n.bs.samp observations with the rbinom 

function, thus avoiding the loop altogether. That is, the above part is replaced by 

prop.pop.bs <- rbinom(n = n.bs.samp, 

                      size = n, 
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                      prob = p) / n 

prop.samp.bs <- rbinom(n = n.bs.samp, 

                       size = n.r, 

                       prob = p.r) / n.r 

With this version, increasing the number of bootstrap samples from 105 to 107 results in a 

computational time between the non-parametric version and the first parametric bootstrap 

implementation. Since 107 bootstrap samples yield very stable and reproducible results, we chose this 

value for the calculation of all CIs. 

6. Toy Example 

The following lines demonstrate the implementation of a percentile bootstrap using the 

statistical software R. The code can either be copy-pasted to a separate .r-file or directly into the R 

console. 

################################################## 

# toy example for percentile bootstrap           # 

# to obtain ci's of lambda                       # 

################################################## 

 

library(Hmisc) 

 

# example used here: severe, both genders 

# define / calculate all quantities required for the 

different bootstraps 

# population 

n <- 92287 

x <- 2352 

p <- x / n # 2.55% 

# probands 

n.r <- 297 

x.r <- 55 

p.r <- x.r / n.r # ~18.5% 

# check: point estimate of lambda, population confidence 

interval 

p.r / p 

100 * binconf(x, n, alpha = 0.05, method = "wilson") 

 

# initializing the random number generator for 

reproducibility of results 

RNGversion("3.6.0") 

set.seed(533) 

 

 

 

# non-parametric bootstrap 

# ------------------------ 

 

# generate the samples to draw from 

pop <- rep(c(0, 1), c(n - x, x)) 

samp <- rep(c(0, 1), c(n.r - x.r, x.r)) 
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# number of bootstrap samples, proportions in the population 

/ sample of probands, and lambdas 

n.bs.samp <- 10 ^ 3 # increase if results are unstable 

prop.pop.bs <- rep(NA, n.bs.samp) 

prop.samp.bs <- rep(NA, n.bs.samp) 

lambda.bs <- rep(NA, n.bs.samp) 

 

# loop over number of bootstrap samples 

for (i in 1 : n.bs.samp) { 

   prop.pop.bs[i] <- sum(sample(pop, 

                         size = n, 

                         replace = TRUE)) / n 

   prop.samp.bs[i] <- sum(sample(samp, 

                                 size = n.r, 

                                 replace = TRUE)) / n.r 

   lambda.bs[i] <- prop.samp.bs[i] / prop.pop.bs[i] 

} 

 

# visual inspection of the results 

par(mfrow = c(3, 1), mgp = c(2, 0.5, 0)) 

t.breaks <- 20 

hist(prop.pop.bs, breaks = t.breaks, prob = TRUE, xlim = 

c(0.02, 0.03)) 

hist(prop.samp.bs, breaks = t.breaks, prob = TRUE, xlim = 

c(0, 0.4)) 

hist(lambda.bs, breaks = t.breaks, prob = TRUE, xlim = c(0, 

12)) 

abline(v = quantile(lambda.bs, c(0.025, 0.05, 0.5, 0.975)), 

col = "red") 

abline(v = 1, lty = 2, col = "blue") 

legend("topright", 

       legend = c("lambda = 1", "Q0.025, Q0.05, Q0.5, 

Q0.975"), 

       col = c("blue", "red"), 

       lty = c(2, 1)) 

 

# 2.5% and 97.5% quantiles for the 95% confidence interval, 

as well as the median and 5% quantile 

quantile(lambda.bs, c(0.025, 0.05, 0.5, 0.975)) 

 

# one-sided p-value 

sum(lambda.bs <= 1) / n.bs.samp 

 

 

 

# parametric bootstrap v1 

# ----------------------- 

 

# number of bootstrap samples, proportions in the population 

/ sample of probands, and lambdas 

n.bs.samp <- 10 ^ 5 # increase if results are unstable 



Page 6 of 9 

 

prop.pop.bs <- rep(NA, n.bs.samp) 

prop.samp.bs <- rep(NA, n.bs.samp) 

lambda.bs <- rep(NA, n.bs.samp) 

 

# loop over number of bootstrap samples 

for (i in 1 : n.bs.samp) { 

   prop.pop.bs[i] <- rbinom(n = 1, 

                            size = n, 

                            prob = p) / n 

   prop.samp.bs[i] <- rbinom(n = 1, 

                             size = n.r, 

                             prob = p.r) / n.r 

   lambda.bs[i] <- prop.samp.bs[i] / prop.pop.bs[i] 

} 

 

# inspection of the results 

mean(lambda.bs) 

par(mfrow = c(3, 1), mgp = c(2, 0.5, 0)) 

t.breaks <- 20 

hist(prop.pop.bs, breaks = t.breaks, prob = TRUE, xlim = 

c(0.02, 0.03)) 

hist(prop.samp.bs, breaks = t.breaks, prob = TRUE, xlim = 

c(0, 0.4)) 

hist(lambda.bs, breaks = t.breaks, prob = TRUE, xlim = c(0, 

12)) 

quantile(lambda.bs, c(0.025, 0.05, 0.5, 0.975)) 

abline(v = quantile(lambda.bs, c(0.025, 0.05, 0.5, 0.975)), 

col = "red") 

abline(v = 1, lty = 2, col = "blue") 

legend("topright", 

       legend = c("lambda = 1", "Q0.025, Q0.05, Q0.5, 

Q0.975"), 

       col = c("blue", "red"), 

       lty = c(2, 1)) 

 

 

 

# parametric bootstrap v2 

# ----------------------- 

 

# number of bootstrap samples, proportions in the population 

/ sample of probands, and lambdas 

n.bs.samp <- 10 ^ 7 # increase if results are unstable 

prop.pop.bs <- rep(NA, n.bs.samp) 

prop.samp.bs <- rep(NA, n.bs.samp) 

lambda.bs <- rep(NA, n.bs.samp) 

 

# vectorized operation instead of loop 

prop.pop.bs <- rbinom(n = n.bs.samp, 

                      size = n, 

                      prob = p) / n 
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prop.samp.bs <- rbinom(n = n.bs.samp, 

                       size = n.r, 

                       prob = p.r) / n.r 

lambda.bs <- prop.samp.bs / prop.pop.bs 

 

# inspection of the results 

mean(lambda.bs) 

par(mfrow = c(3, 1), mgp = c(2, 0.5, 0)) 

t.breaks <- 30 

hist(prop.pop.bs, breaks = t.breaks, prob = TRUE, xlim = 

c(0.02, 0.03)) 

hist(prop.samp.bs, breaks = t.breaks, prob = TRUE, xlim = 

c(0, 0.4)) 

hist(lambda.bs, breaks = t.breaks, prob = TRUE, xlim = c(0, 

12)) 

quantile(lambda.bs, c(0.025, 0.05, 0.5, 0.975)) 

abline(v = quantile(lambda.bs, c(0.025, 0.05, 0.5, 0.975)), 

col = "red") 

abline(v = 1, lty = 2, col = "blue") 

legend("topright", 

       legend = c("lambda = 1", "Q0.025, Q0.05, Q0.5, 

Q0.975"), 

       col = c("blue", "red"), 

       lty = c(2, 1)) 

7. Robustness of Recurrence Risk Ratio Estimates Towards Population Age and Age of Family 

Members 

The estimation of λ implicitly requires that family members should be representative for the 

population considered. In the best case, the family members are the result of a (stratified) random 

sampling procedure. This is, , however, not the case for our data. Since tinnitus is suject to a higher 

prevalence among older persons, it is of particular importance that the age distribution of the family 

members and the population, respectively, are relatively similar or in the best case identical. 

Otherwise, the estimate of λ could be biased: for example, one woud most likely over-estimate λ if 

the family members were consistently older than the population. 

In our setting, the age of the family members (i.e. siblings) is unknown. Therefore, we assume 

that the siblings are of the same age as the probands. This leads to the average age shown in the first 

two columns of Table 1. 
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Table 1. Average age of the participants, all individuals belonging to the full population, and 

members of the artificially aged population. T = tinnitus. 

 Average age (years) 

Respondents Siblings Full population Aged population 

Both genders 

Bilateral T (1480) 49.659 49.861  

Unilateral T (413) 53.336 49.861 53.293 

Constant T (1751) 51.672 42.466 54.546 

Severe T (361) 49.659 53.331  

Male 

Bilateral T (756) 49.678 49.934  

Unilateral T (168) 51.732 49.934 53.195 

Constant T (923) 50.908 43.362 54.719 

Severe T (171) 49.678 53.932  

Female 

Bilateral T (724) 49.640 49.800  

Unilateral T (245) 54.380 49.800 53.376 

Constant T (828) 52.514 41.875 54.424 

Severe T (190) 49.640 52.859  

 

It is visible that the average age of the siblings and of the general population roughly correspond 

to each other for bilateral, and severe tinnitus. Nevertheless, the members of our familial sample are 

about nine years younger than the population for constant tinnitus. This results from the comparably 

high proportion of young subjects in the LifeGene cohort. In addition, siblings with unilateral tinnitus 

are almost four years younger than the population. Hence, relying our analysis on the full population 

would very likely lead to an overestimation of λ. 

In order to avoid such a bias, we chose to “artificially age” our population for the cases of 

constant and unilateral tinnitus. To achieve this, we exclude all individuals younger than 40 from the 

population with constant tinnitus, and individuals younger than 30 from the population with 

unilateral tinnitus. This comparably pragmatic approach is necessary because age information of 

parts of our population is only available in 10-year blocks. Furthermore, the inclusion of age as 

covariate is not possible in our model, since we cannot apply the above-mentioned logistic-type 

regression approaches. 

The last column of Table 1 displays the average age of our modified population, which serves 

for deriving the estimates of λ. For unilateral tinnitus, sample and population age roughly correspond 

to each other. The siblings for the constant tinnitus sample are a bit younger than the population, 

resulting in a rather conservative λ estimate. It may be noted that the population size reduces from 

51832 to 26696 in the constant tinnitus case (male: 20594 to 11,051; female: 31238 to 15,645). The impact 

of this reduction on the estimate of λ is limited, because all these numbers are still comparably large. 

For unilateral tinnitus, the reduction is even less important (all: 67615 to 59507; male: 30748 to 27233; 

female: 36867 to 32274). 

Table 2 shows the estimation results for the original as well as the aged population for constant 

and unilateral tinnitus. As anticipated, all lambda estimates decrease, which underlines the necessity 

of basing the calculus on an appropriate population. However, all conclusions remain the same. 
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Table 2. Recurrence risk ratio (s) for participants with unilateral or constant tinnitus bases on the 

full and aged, respectively, population. T = tinnitus. Estimates in bold are statistically significant at 

0.05 level. 

 Full population Aged population 

Respondents s (95% CI) p value s (95% CI) p value 

Both genders  

Unilateral T (413) 2.14 (1.56 - 2.75) <0.0001 1.99 (1.45 – 2.56)   0.0001 

Constant T (1751) 3.61 (3.18 – 4.06) <0.0001 2.29 (2.01 – 2.58) <0.0001 

Male  

Unilateral T (168) 1.52 (0.81 – 2.36) 0.0972 1.42 (0.75 – 2.20) 0.1344 

Constant T (923) 2.46 (2.04 – 2.89) <0.0001 1.58 (1.31 – 1.86) <0.0001 

Female  

Unilateral T (245) 2.64 (1.80 – 3.55) <0.0001 2.44 (1.66 – 3.29) <0.0001 

Constant T (828) 5.16 (4.29 – 6.08) <0.0001 3.32 (2.75 – 3.92) <0.0001 
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