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Abstract: Background: In hemodialysis patients, extracellular water (ECW) overload predicts
all-cause and cardiovascular mortality. The primary aim of the present study was to analyze changes
in post-dialysis (i.e., following removal of excess ECW) ECW, intracellular water (ICW), and the
overhydration (OH) parameter over time. Additionally, the association of these parameters with
mortality was explored. Patients and methods: Prospective study of prevalent hemodialysis patients
(n = 124) followed for a median of 20 (interquartile range (IQR) 8–31) months. In three visits,
inflammation (C-reactive protein) and post-dialysis fluid status (bioimpedance, BIS) were assessed.
Results: During follow-up, the overhydration (OH) parameter increased (−0.696± 1.6 vs. 0.268 ± 1.7 L;
p = 0.007) at the expense of a decrease in intracellular water (ICW) (19.90 ± 4.5 vs. 18.72 ± 4.1 24 L;
p = 0.006) with a non-significant numerical increase in ECW/ICW ratio (0.795 ± 0.129 vs. 0.850 ±
0.143; p = 0.055). Baseline ICW positively correlated with muscle mass and energy intake and
negatively with C-reactive protein and it was lower in those who died than in survivors (15.09 ± 2.36
vs. 18.87 ± 4.52 L; p = 0.004). In Kaplan–Meier analysis, patients with low baseline ICW (≤17 L) and
high ECW/ICW ratio (≥0.84) were at an increased risk of death. Baseline ICW was also associated
with the risk of death in adjusted Cox proportional hazards models (HR 0.62 (0.40–0.98) p = 0.04).
Conclusions: In hemodialysis patients, the post-dialysis OH parameter increased over time while
ICW decreased, without changes in ECW. Low baseline post-dialysis ICW correlated with muscle
wasting and inflammation and was an independent risk factor for mortality.
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1. Introduction

The prime function of the kidney is to maintain a stable milieu interieur by the selective retention
or elimination of water, electrolytes, and other solutes. Fluid overload has been independently related
to cardiovascular and all-mortality in hemodialysis patients [1–3]. Despite new dialysis techniques
allowing increased fluid removal, target weight may not always be reached due to increased intradialytic
symptoms and fluid overload still remains a mortality risk factor. As dialysis patients present changes
in both volume and distribution of fluid between different compartments, the fluid excess may be
difficult to estimate and to remove [4].

Most analyses showing associations between fluid overload and mortality have focused on the
excess extracellular water (ECW) assessed by bioelectrical Impedance Spectroscopy (BIS) prior to the
dialysis session [1–3,5]. Assessment of fluid status is key to dialysis prescription, as pre-dialysis fluid
overload is related to hypertension, left ventricular hypertrophy, high pulse wave velocity (PVW),
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N-terminal pro-brain natriuretic peptide (pro-BNP), and heart failure [6–9] while fluid depletion may
result in intradialytic hypotension, tissue ischemia, and loss of residual renal function [2]. Pre-dialysis
fluid overload was thought to result from increased ECW and to be associated with inflammation [10]
and malnutrition [11] without being able to clarify whether increased ECW was a cause or consequence
of those. The recent KDOQI clinical practice guideline for nutrition in CKD 2020 suggests the use of
multifrequency BIS to assess body composition. FM (fat mass) and FFM (fat free mass) measured using
multifrequency BIS had good agreement with DXA and had high correlations with several markers of
nutritional status.

We hypothesized that despite removing excess fluid during the hemodialysis session,
dialysis patients have changes in body composition, likely related to inflammation and muscle
wasting, that lead to “subclinical” overhydration driven by decreased ICW or to a pathological
post-dialysis ECW/ICW ratio driven by low ICW. The primary aim of the present study was to analyze
changes in post-dialysis ECW, intracellular water (ICW), and the overhydration (OH) parameter over
time. Additionally, the association of these variables with mortality was explored. This study highlights
the use of BIS in dialysis patients to quantify the ICW compartment and potentially correct subclinical
overhydration by increasing energy intake and avoid muscle wasting, for instance, by prescribing an
exercise program.

2. Patients and Methods

2.1. Patients

This is a secondary analysis of a prior cross-sectional study with prospective follow-up of prevalent
dialysis patients conducted at the Iñigo Alvarez de Toledo Kidney Foundation (FRIAT) hemodialysis
center of the Fundación Jiménez Díaz Hospital, Madrid, Spain [12]. The primary aim was to analyze
changes in post-dialysis (i.e., following removal of excess ECW) ECW, intracellular water (ICW),
and the overhydration (OH) parameter over time. For this, no formal sample size was calculated.
Next, we explored the variables associated with these changes. Finally, we explored the association of
these variables with mortality. All prevalent patients (n = 124) on maintenance hemodialysis at the
dialysis center were screened and the study ran from 1 January 2010 and survival was calculated until
1 October 2012 with a median follow-up of 461 days (240–931 days). The study consisted of three
visits in which clinical, biochemical, anthropometric, and body composition parameters were collected
along with dialysis characteristics and the presence of Protein Energy Wasting (PEW) was evaluated
annually (baseline, 12 and 24 months). The cohort has been described in more detail elsewhere [12].
Patients were clinically stable. The study was approved by the local Ethical Committee and signed
informed consent was obtained from all included patients. The ethical approval code: EO133-20_FJD.

Dialysis therapy was performed for at least 4 h thrice weekly, using ultrapure water. The dialysate
calcium concentration was 1.25 or 1.50 mmol/liter. Adequacy of dialysis was estimated by mid-week
single-pool Kt/Vurea using pre- and post-dialysis blood urea nitrogen (BUN) levels and pre- and
post-dialysis body weight [13]. Mean KTVurea was 1.42 (1.24 to 1.6). Membranes were high-flux
polysulfone (27%), low-flux polysulfone (41%), and high-flux polynephron (32%). No patient was lost
to follow-up.

2.2. Biochemistry

Blood samples were drawn under fasting conditions before the dialysis session between 8:00 a.m.
and 12:00 p.m., after 20–30 min of quiet resting in a semi-recumbent position. Serum creatinine,
calcium (Ca), phosphate (P), albumin, and C reactive protein (CRP) were analyzed using certified
methods at the Biochemistry Laboratory at Fundación Jiménez Díaz.
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2.3. Body Composition, Fluid Volume Parameters, and Nutritional Status

Anthropometric and body composition measurements were performed immediately after the
mid-week dialysis session by a single observer on the same day that blood samples were collected.

The body mass index (BMI) was expressed in kg/m2. Weight was calculated as dry weight,
defined as post-dialysis weight in which the patient was normotensive and with no signs of fluid
overload. Body surface area (BSA) was estimated in cm2 by the equation: BSA = 0.0003207 ×
(weight)0.7285−0.0188xlog(weight)

× (height)0.3. The triceps fold (TF) was measured in millimeters with a
plicometer in triplicate (lipocalibre Holtain, Crymych, United Kingdom) in the arm contralateral to the
vascular access. The brachial circumference (BC) was measured in centimeters in the middle third with
a flexible tape measure (Holtain Ltd., Crymych, United Kingdom). TF and BC were used to calculate the
mid-upper arm muscle circumference (MUAMC) using the formula MUAMC = BC − (0.314 × TF) [14].
Body composition analysis was performed post-dialysis, after a 30-min rest period, every six months by
Bioelectric Impedance Analysis (BIS) using the Fresenius Medical Care BCM body composition monitor,
multi-frequency Bio-impedance analysis technology. Electrodes were placed in the contralateral
side to the vascular access location. Three compartments (LTM (lean tissue, primarily muscle),
ATM (adipose tissue), and OH (overhydration)) were identified from weight, height, intracellular water
(ICW), and extracellular water (ECW) measurements [15]. Overhydration is calculated from the
difference between the measured ECW and the predicted values based on fixed hydration on lean
and adipose tissue mass. To avoid inter-observer variation, a single well-trained nephrologist
(CG-I) performed all BIS. The normalized protein catabolic rate (nPCR), expressed as g/kg per day,
was estimated from the Kt/Vurea, an index of urea removal during dialysis, and average BUN (midweek)
as follows: nPCR = (0.0136 × (Kt/Vurea × ((predialysis BUN + postdialysis BUN) − 2))) + 0.251 (13).
In addition, blood pressure, pulse pressure, rate of dialysis ultrafiltration, interdialysis body weight gain,
and symptoms associated with hypotension were also recorded. Malnutrition was defined according to
the classification of PEW (ISRNM 2008). The diagnosis of malnutrition, as defined by PEW, requires the
joint evaluation of the combination of clinical, anthropometric, and body composition parameters
using bioelectrical impedance (BIA multifrequency) and biochemical parameters. PEW was assigned
to patients meeting at least three criteria in the four different categories for malnutrition markers
at baseline: biochemical (albumin < 3.8 g/dL, prealbumin < 30 g/dL or cholesterol < 100 mg/dL);
body mass (BMI< 23 kg/m2, weight loss > 5% in three months or > 10% in six months or body fat < 10%);
muscle (muscle mass loss > 5% in three months or > 10% in six months or MUAMC reduction ≥ 10%
associated with the 50th percentile in the population); Protein intake (nPCR < 0.8 g/kg/day) [16].
A history of comorbidities was recorded for each patient and scored according to Charlson et al. [17].

The presence of fluid overload was defined as OH parameter > 1.1 L [18] and high ECW/ICW (>0.7).
At 12 months (visit 1) and at 24 months (visit 2), fluid status and changes in the three compartments
were assessed by BIS and inflammation by CRP.

2.4. Statistical Analyses

Statistical analyses were performed using R (version 3.0.1). Normally distributed variables are
expressed as mean ± SD and non-normally distributed variables as median and range (minimum
and maximum) or interquartile range (25th–75th percentile, IQR). Categorical values are expressed
as number and percentage. To analyze changes in body composition, the same variable at different
visits, we performed a Wilcoxon test for related samples. Two groups were compared using the
Mann–Whitney or χ2 tests or the Fisher’s Exact test when frequencies of occurrence were less than
five. Differences between more than two groups were analyzed by the Kruskal–Wallis test, as many
values were not normally distributed. Spearman’s rank correlation (ρ) was used to determine the
univariate correlation between ICW levels and selected parameters. Multivariate associations were
performed by multivariable regression analyses when studying the determinants of low ICW values.
To analyze mortality, survival curves were estimated using the Kaplan–Meier method and the log-rank
test was used for comparisons. Univariable Cox regression models for mortality were estimated, and a
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multivariable Cox regression model was constructed, taking as potential predictors those variables
with a p-value less than 0.2 in the univariable models. For maximum discrimination of survival by OH,
low ICW and ECW/ICW ratio cut off values were calculated by the maximally selected rank statistics
method, available in the R maxstat package. All comparisons were performed with bilateral tests and
a 0.05 level of significance.

3. Results

3.1. Patient Characteristics

Hemodialysis patients were clinically stable; their mean age was 64 ± 13 years, 49 (45%) were
women and dialysis vintage was 59 ± 79 months. The causes of ESRD were chronic glomerulonephritis
(n = 22; 20%), interstitial nephritis (n = 12; 11%), polycystic kidney disease (n = 12; 11%), vascular (n = 31;
28.4%), diabetic nephropathy (n = 16; 15%), unknown (n = 13; 12%), and other causes (n = 3;
2.8%). A total of 23 patients (21%) were diabetic and 44 (40%) presented a cardiovascular disease
(CVD). Vascular access was arteriovenous fistula (n = 100; 92%) or permanent catheter (n = 9; 8%).
The characteristics of the cohort at the time of inclusion are shown in Table 1.

Malnutrition defined as PEW was present in 44 of 108 (41%) patients. Of the total population,
49% had an albumin level < 3.8 g/dL, 35% had prealbumin levels < 30 mg/dL and only 2.7% had
cholesterol levels < 100 mg/dL. Among the body composition and anthropometric parameters,
41.6% had a BMI < 23 kg/m2, 42% had a MUAMC below the 50th percentile and 73% had an insufficient
protein intake, defined as nPCR < 0.8 g/kg/day.

3.2. Baseline Post-Dialysis Body Composition Parameters

Baseline post-dialysis body composition parameters are described in Table 1.

Table 1. Baseline characteristics of the 124 dialysis patients.

Variables Mean ± SD% (n) or
Median (IQR) Variables Mean ± SD% (n) or

Median (IQR)

Age (years) 64 ± 13 Serum C Reactive Protein (mg/dL) 1.3 ± 0.6

Women (% n) 45 (49) Serum albumin (g/dL) 3.8 ± 0.4

Diabetes (% n) 21 (23) nPCR (g/kg/day) 0.7 ± 0.3

Vintage (months) 59 ± 79 Plasma BNP (pg/mL) 6090 (2407–14900)

Cardiovascular disease (% n) 40 (44) Plasma total CO2 (mmol/L) 20 ± 3

Predialytic systolic blood pressure 132 ± 24 Total Body Water (L) 32.8 ± 6.8

Predialytic diastolic blood pressure 67 ± 14 Extracellular Water (ECW) (L) 14.4 ± 2.6

Protein Energy Wasting (% n) 44 (41%) Intracellular Water (ICW) (L) 18.5 ± 4.5

kTv 1.42 ± 0.18 ECW/ICW 0.79 ± 0.13

Hemoglobin (g/dL) 11.6 ± 1.4 Lean Tissue Mass (kg) 58 ± 16

Plasma iPTH (pg/mL) 250 (127–454) Adipose Tissue Mass (kg) 30 ± 11

Serum calcium (mg/dL) 8.8 ± 0.8 Overhydration (L) −0.70 ± 1.67

Serum phosphate (mg/dL) 4.8 ± 1.3 Interdialytic weigh gain (Kg) 2.6 ± 0.8 kg

pro-BNP pro-brain natriuretic peptide, PTH: parathyroid hormone; nPCR: normalized protein catabolic rate.

3.3. Changes in Body Composition Over Time

Over two years, changes in post-dialysis body composition were analyzed in 124 dialysis patients.
There were no significant changes in BMI (baseline vs. follow-up: 25.53± 4.92 vs. 25.63± 4.05, p = 0.077)
but OH indicator significantly increased (−0.696 ± 1.67 vs. 0.268 ± 1.74; p = 0.007). The increase in OH
indicator was paralleled by an increase in TBW (32.80 ± 6.85 vs. 35.91 ± 7.12; p < 0.001) at the expense
of a significant increase in ECW (14.35 ± 2.66 vs. 16.01 ± 3.10; p <0.001), while ICW significantly
decreased over time (19.90 ± 4.49 vs. 18.72 ± 4.12; p = 0.006) (Figure 1). There was a non-significant
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trend towards an increased ECW/ICW ratio (0.795 ± 0.129 vs. 0.850 ± 0.143; p = 0.055) over time but no
significant changes in LTM or ATM.

Figure 1. Progression of body composition in 124 hemodialysis patients over three years.
TBW: total body water; BMI body mass index; ICW intracellular water; ECW extracellular water;
ns no significance, * significance.

3.4. Variables Associated with Low Post-Dialysis ICW

Baseline post-dialysis ICW was significantly positively correlated with serum creatinine, MUAMC,
nPCR, 25 OH vitamin D, IDWG, LTM, and LTI; and negatively with age and CRP (Table 2). However,
there was no significant correlation with pro BNP.

Table 2. Univariate correlations of baseline post-dialysis ICF expressed as Spearman’s rank
correlation coefficient.

Variable r p

Serum creatinine (mg/dL) 0.32 0.004

Mid upper arm muscle circumference (MUAMC) 0.41 <0.0001

The normalized protein catabolic rate (nPCR) 0.42 <0.0001

25 OH vitamin D 0.39 0.001

Interdialytic weight gain (IDWG) 0.46 <0.0001

Lean tissue mass (LTM) 0.56 <0.0001

Lean tissue index (LTI) 0.86 <0.0001

Age −0.30 0.007

Serum C Reactive Protein (CRP) −0.28 0.014

pro-brain natriuretic peptide (pro BNP) −0.22 0.051

Additionally, baseline post-dialysis ICW was significantly lower in women than in men, in patients
with malnutrition and in patients who had hypotension and dizziness during the dialysis session
(Table 3).
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Table 3. Baseline post-dialysis ICF (L) in subgroups of patients.

Variable Subgroups p-Value

Sex Women (n = 33) Men (n = 44)
<0.0001Baseline post-dialysis ICF (L) 15.6 ± 3.0 20.8 ± 4.2

Malnutrition (presence PEW) Yes (n = 31) No (n = 45)
0.021Baseline post-dialysis ICF (L) 17.1 ± 4.7 19.6 ± 4.1

Hypotension during dialysis Yes (n = 24) No (n = 51)
<0.0001Baseline post-dialysis ICF (L) 15.7 ± 3.7 19.8 ± 4.4

Dizziness during dialysis Yes (n = 22) No (n = 53)
0.02Baseline post-dialysis ICF (L) 16.6 ± 4.3 19.3 ± 4.5

The multivariate regression model with ICW as the dependent variable (Table 4) showed that
male sex, MUAMC, and LTM were independently associated with higher ICW and inflammation,
assessed as CRP; with lower ICW after adjustment for age, nPCR, plasma creatinine, and the presence
of malnutrition (PEW).

Table 4. Multivariable linear regression analyses to test de independent relationship between ICW and
other clinical variables.

Model/Variables β Coefficient SE of the Estimate 95% CI p-Value

Model 1 (R2 = 0.834)
Lean tissue mass 0.162 0.014 0.132–0.189 <0.0001
Mid upper arm muscle circumference 0.74 0.067 0.606–0.875 <0.0001
Sex 3.001 0.465 2.072–3.930 <0.0001

Model 2 (R2 = 0.845)
Lean tissue mass 0.152 0.014 0.123–0.181 <0.0001
Mid upper arm muscle circumference 0.726 0.066 0.594–0.857 <0.0001
Sex 3.131 0.458 2.215–4.046 <0.0001
C-Reactive Protein −0.235 0.115 (−0.465)–(−0.004) 0.046

Model 2 suggests an independent association between C–reactive protein and ICW after the significant influence of
some confounders.

3.5. Overhydration and Mortality: Low ICW as an Independent Risk Factor

Survival was determined after a median follow-up of 620 (IQR 248–961) days. In this period,
15 fatal events occurred, due to cardiovascular causes (n = 5), infection (n = 3), chronic disease
deterioration (n = 4), neoplasia (n = 2), and unknown causes (n = 1). Baseline ICW levels of those
who died were significantly lower than for survivors (15.09 ± 2.357 vs. 18.87 ± 4.525 L; p = 0.004).
No other body fluid parameter displayed statistically significant differences, although there were
non-significant trends to higher ECW/ICW ratio (0.779 ± 0.133 vs. 0.881 ± 0.100; P = 0.054), higher OH
indicator (−0.85 ± 1.753 vs. 0.071± 1.186 L; p = 0.181), and lower TBW (33.08± 6.693 vs. 28.34 ± 4.108 L;
p = 0.073) in patients who died (Figure 2). Despite the low number of events, Kaplan–Meier analysis
showed that patients with lower ICW (p-value 0.018) and higher ECW/ICW ratio (p-value 0.021) were
at increased risk of death, the cut-off values for maximum discrimination of all-cause mortality being
ECW/ICW ratio 0.84 and ICW 17L (Figure 3).
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Figure 2. Comparison of baseline post-dialysis fluid status composition between patients who were
dead and alive at last follow-up. The only body fluid parameter that was statistically significantly
different was ICW.

Figure 3. Kaplan–Meier curves for the time to death according to (a) ECW/ICW ratio and (b) ICW
levels. Cut off for higher ECW/ICW ratio ≥0.84 and for lower ICW ≤ 17L.
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In multivariable Cox proportional hazards models (Table 5), patients with lower ICW were
at increased risk of dying even after adjustment for age, sex, comorbidity, CRP, and low albumin.
However, the relationship between the ECW/ICW ratio and mortality was not significant.

Table 5. Adjusted relative risk of all-cause mortality in 122 prevalent hemodialysis patients.

Variable HR p

Age 1.197 (1.051–1.364) 0.007
Male 0.977 (0.119–8.044) 0.983

Davies medium 11.4 (0.419–312.8) 0.149
Davies high 1.213 (0.060–24.58) 0.900

ICW 0.627 (0.401–0.979) 0.040
C-Reactive Protein 1.150(0.803–1.647) 0.446
Albumin ≤ 3.8 g/dL 0.037(0.003–0.438) 0.009

4. Discussion

The present observational study identifies a decrease in ICW as a key component of subclinical
overhydration. ICW was associated with muscle mass and male sex and negatively with inflammation.
A high ECW/ICW ratio, a good fluid overload marker, was mainly driven by low ICW. In this regard,
both low ICW and high ECW/ICW ratio were associated with mortality and patients with lower ICW
values were at increased risk of dying even after adjustment.

Fluid overload is usually thought to consist of increased TBW at the expense of an increased ECW
due to the loss of residual diuresis. Thus, there is a relationship between predialysis fluid overload and
cardiovascular and all-cause mortality [1–3]. However, these studies were more focused on pre-dialysis
BCM assessment to calculate ECW overload in order to adapt the dialysis prescription to achieve
dry weight. Our study describes for the first time that despite an adequate ultrafiltration, changes
in post-dialysis body composition over time consist of a significant increase in the OH parameter,
despite a decrease in ICW and without a significant increase in ECW.

The significant ICW decrease over time is in line with other studies that have described the loss
of lean tissue mass and its association with dialysis patient mortality [12,19]. We also observed that
ICW was positively associated with indicators of muscle mass such as serum creatinine, MUAMC,
and LTM [20], as well as a negative association between ICW and inflammation and malnutrition.
Indeed, body cell mass depletion and abnormalities of the Na-K ATPase pump are observed in severely
malnourished patients, eventually leading to decreased ICW and enhanced extravascular fluid shifts,
resulting in ECW overload [21–24]. ICW was also associated with low energy intake, low interdialytic
weight gain, and worse dialysis tolerance, with a higher prevalence of dizziness and hypotension.
This could explain the controversial results of other studies, in which the highest fluid overload and
the lowest interdialytic weight gain were associated with the highest mortality risk [25]. Patients with
less IDWG would have less tolerance to ultrafiltration as fluid would be likely primarily stored in the
interstitial and not in the intravascular space. Thus, cautious fluid removal strategy appears warranted.

The ECW/ICW ratio was a good marker of fluid overload in addition to being associated with
mortality in our population [26]. In our study, the high ECW/ICW ratio was driven by the low
ICW. In this regard, in other studies, a high ECW/ICW was associated with the presence of the MIA
(malnutrition inflammation atherosclerosis) syndrome [7]. There are different formulas to express fluid
overload such as the phase angle, ECW/TBW ratio, OH indicator (ECW/body weight), or the ECW/ICW
ratio. In our study, both the ECW/ICW ratio and OH significantly increased over time, although only
the ECW/ICW ratio was associated with mortality. Recently, the predialysis ECW/ICW ratio was shown
to be a better marker of fluid overload than the ECW/TBW ratio and was also associated with all-cause
mortality and CVD [26]. The OH indicator was developed by Chamney et al. [4], who proposed to
calculate fluid overload as the difference between measured and the expected ECW which is expected
in the sense of a normal renal function (ECW/body weight). We did not observe an association between
OH indicator and mortality, likely because OH was assessed post dialysis and values were within the
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normal range. However, the ECW/ICW ratio increased due to a decreased ICW, despite normal OH
indicator values. This does not detract from the value of predialysis OH, which is associated with
mortality, to estimate ultrafiltration needs [27].

Finally, even with our reduced sample size, both low ICW and high ECW/ICW ratio were
associated with mortality but only low ICW was independently associated with mortality in the
multivariate Cox analysis. ICW is placed mainly in muscle mass, so the lower ICW represents mainly
lower muscle mass, a well-known mortality predictive factor in dialysis patients and a criterion of
the PEW syndrome [20]. Besides, low ICW is correlated with factors associated with PEW such as
low energy intake and inflammation; all of which have been associated with mortality in previous
studies [28,29]. In our study, patients who died presented significantly lower ICW and a non-significant
trend towards higher ECW/ICW ratio. We postulate that solely low ICW better reflects the state of
protein wasting and its association with mortality than the ECW/ICW ratio.

Certain limitations should be considered in the interpretation of the present findings. It was an
observational study that precludes the assessment of causality. In addition, this study was performed at
a single dialysis center and includes a small number of subjects and events. Therefore, results should
be confirmed in larger prospective multicenter cohorts, ideally testing new approaches aimed at
improving energy intake and avoiding muscle loss to try to avoid the trend towards decreasing ICW.

In conclusion, in hemodialysis patients, the post-dialysis OH parameter increased over time while
ICW decreased, without changes in ECW. Low baseline post-dialysis ICW correlated with muscle
wasting and inflammation and was an independent risk factor for mortality. This should encourage
further research on the impact of implementing measures to increase energy intake or decrease protein
catabolism and their impact on overhydration, ICW, and outcomes.

Author Contributions: All the authors have contributed to this article: C.G.-I., and E.G.-P., nephrologists
responsible for dialysis patients, have contributed to the data collection, analysis of the results, and writing of the
manuscript. I.M. has performed the statistical analysis. A.O. has contributed to the writing and correction of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: Research support: FIS/Fondos FEDER (PI17/00257, PI18/01386, PI19/00588, PI19/00815,
DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC
REDinREN RD016/0009), Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina
B2017/BMD-3686 CIFRA2-CM.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zoccali, C.; Moissl, U.; Chazot, C.; Mallamaci, F.; Tripepi, G.; Arkossy, O.; Wabel, P.; Stuard, S. Chronic Fluid
Overload and Mortality in ESRD. J. Am. Soc. Nephrol. 2017, 28, 2491–2497. [CrossRef]

2. Dekker, M.J.; Kooman, J.P. Fluid status assessment in hemodialysis patients and the association with outcome.
Curr. Opin. Nephrol. Hypertens. 2018, 27, 188–193. [CrossRef]

3. Onofriescu, M.; Siriopol, D.; Voroneanu, L.; Hogas, S.; Nistor, I.; Apetrii, M.; Florea, L.; Veisa, G.; Mititiuc, I.;
Kanbay, M.; et al. Overhydration, Cardiac Function and Survival in Hemodialysis Patients. PLoS ONE
2015, 10, e0135691. [CrossRef]

4. Chamney, P.W.; Wabel, P.; Moissl, U.M.; Müller, M.J.; Bosy-Westphal, A.; Korth, O.; Fuller, N.J. A whole-body
model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007, 85, 80–89.
[CrossRef]

5. Van Der Sande, F.M.; Van De Wal-Visscher, E.R.; Stuard, S.; Moissl, U.; Kooman, J.P. Using Bioimpedance
Spectroscopy to Assess Volume Status in Dialysis Patients. Blood Purif. 2019, 49, 178–184. [CrossRef] [PubMed]

6. Hassan, K.; Hassan, D.; Shturman, A.; Rubinchik, I.; Fadi, H.; Shadi, H.; Atar, S. The impact of sub-clinical
over-hydration on left ventricular mass in peritoneal dialysis patients. Int. J. Clin. Exp. Med. 2015, 8, 5890–5896.
[PubMed]

7. Hung, S.-C.; Kuo, K.-L.; Peng, C.-H.; Wu, C.-H.; Lien, Y.-C.; Wang, Y.-C.; Tarng, D.-C. Volume overload correlates
with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int. 2014, 85, 703–709. [CrossRef]
[PubMed]

http://dx.doi.org/10.1681/ASN.2016121341
http://dx.doi.org/10.1097/MNH.0000000000000409
http://dx.doi.org/10.1371/journal.pone.0135691
http://dx.doi.org/10.1093/ajcn/85.1.80
http://dx.doi.org/10.1159/000504079
http://www.ncbi.nlm.nih.gov/pubmed/31851988
http://www.ncbi.nlm.nih.gov/pubmed/26131181
http://dx.doi.org/10.1038/ki.2013.336
http://www.ncbi.nlm.nih.gov/pubmed/24025647


J. Clin. Med. 2020, 9, 3616 10 of 11

8. Huang, J.-C.; Tsai, Y.-C.; Wu, P.-Y.; Lee, J.-J.; Chen, S.-C.; Chiu, Y.-W.; Hsu, Y.-L.; Chang, J.-M.; Chen, H.-C.
Independent Association of Overhydration with All-Cause and Cardiovascular Mortality Adjusted for
Global Left Ventricular Longitudinal Systolic Strain and E/E’ Ratio in Maintenance Hemodialysis Patients.
Kidney Blood Press. Res. 2018, 43, 1322–1332. [CrossRef] [PubMed]

9. Tsai, Y.-C.; Tsai, H.-J.; Lee, C.-S.; Chiu, Y.-W.; Kuo, H.-T.; Lee, S.-C.; Chen, T.-H.; Kuo, M.-C. The interaction
between N-terminal pro-brain natriuretic peptide and fluid status in adverse clinical outcomes of late stages
of chronic kidney disease. PLoS ONE 2018, 13, e0202733. [CrossRef]

10. Dekker, M.J.; Marcelli, D.; Canaud, B.J.; Carioni, P.; Wang, Y.; Grassmann, A.; Konings, C.J.; Kotanko, P.;
Leunissen, K.M.; Levin, N.W.; et al. Impact of fluid status and inflammation and their interaction on survival:
A study in an international hemodialysis patient cohort. Kidney Int. 2017, 91, 1214–1223. [CrossRef]

11. Kalantar-Zadeh, K.; Regidor, D.L.; Kovesdy, C.P.; Van Wyck, D.; Bunnapradist, S.; Horwich, T.B.; Fonarow, G.C.
Fluid Retention Is Associated With Cardiovascular Mortality in Patients Undergoing Long-Term Hemodialysis.
Circulation 2009, 119, 671–679. [CrossRef] [PubMed]

12. Gracia-Iguacel, C.; González-Parra, E.; Perez-Gomez, M.V.; Mahíllo-Fernández, I.; Egido, J.; Ortiz, A.;
Carrero, J.J. Prevalence of protein-energy wasting syndrome and its association with mortality in
haemodialysis patients in a centre in Spain. Nefrologia 2013, 33, 495–505. [PubMed]

13. Jindal, K.K.; Goldstein, M.B. Urea Kinetic Modelling in Chronic Hemodialysis: Benefits, Problems,
and Practical Solutions. Semin. Dial. 2007, 1, 82–85. [CrossRef]

14. K/DOQI, National Kidney Foundation. Clinical practice guidelines for nutrition in chronic renal failure.
Am. J. Kidney Dis. 2000, 35 (Suppl. 2), S1–S140.

15. Machek, P.; Jirka, T.; Moissl, U.; Chamney, P.; Wabel, P. Guided optimization of fluid status in haemodialysis
patients. Nephrol. Dial. Transplant. 2009, 25, 538–544. [CrossRef]

16. Fouque, D.; Kalantarzadeh, K.; Kopple, J.D.; Cano, N.; Chauveau, P.; Cuppari, L.; A Franch, H.; Guarnieri, G.L.;
Ikizler, T.; A Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting
in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [CrossRef]

17. Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C. A new method of classifying prognostic comorbidity
in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [CrossRef]

18. Wabel, P.; Chamney, P.; Moissl, U.; Jirka, T. Importance of Whole-Body Bioimpedance Spectroscopy for the
Management of Fluid Balance. Blood Purif. 2009, 27, 75–80. [CrossRef]
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