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Abstract: Penile cancer is an extremely rare malignancy that accounts for approximately 1% of cancer
deaths in the United States every year. While primary penile cancer can be managed surgically,
advanced and metastatic forms of the disease require more aggressive management plans with
systemic chemotherapy and/or radiotherapy. Despite the meaningful response to systemic treatments,
the 2-year progression-free survival and disease-specific survival have shown disappointing results.
Therefore, there is a crucial need for alternative treatment options with more favorable outcomes and
a lower toxicity profile. There are currently extensive studies of tumor molecular biology and clinical
trials with targeted molecular therapies, such as PD-1, PD-L1, and CTLA-4. In this review, we will
describe the penile cancer microenvironment, and summarize the rationale for immunotherapy in
penile cancer patients.

Keywords: penile cancer; tumor microenvironment (TME); immune infiltration patterns; Programmed
Death-1 Ligand (PD-L1); tumor mutational burden (TMB)

1. Introduction

Penile cancer (PeCa) is an exceedingly rare malignancy. In 2020, it is estimated that penile
cancer will comprise 0.25% of male cancer incidence and account for 440 deaths in the United
States [1]. Geographic disparities are pronounced between Western countries and the developing
world, where incidence may run as high as 2.8–3.7 per 100 000 [2]. Globally, penile cancer accounts for
34,475 new cancer cases and 15,138 cancer deaths every year [3]. The vast majority (~95%) of penile
cancers is represented by squamous cell carcinoma (SCC) [4,5]. Known risk factors for penile SCC
include phimosis, smoking, chronic inflammatory states, a high number of sexual partners, lack of
circumcision, and human papillomavirus (HPV) infection [6–9]. While penile SCC has a separate
entity of SCCs and treated differently, there are recent reports describing extensive similarities and
commonalities in the genetic and pathogenesis regulators of SCCs of various sites, including both
the general determinants in the cancer process, such as P53 and cyclin D1, or the specific regulators,
such as NOTCH, SOX2, and TP63 genes [10].

Though penile SCC is an active area of research, therapeutic options are limited, with 5-year
overall survival rates of 63% and 70% in the United States and Europe, respectively [11,12]. The extent
of lymph node metastases at inguinal node dissection most strongly predicts prognosis as there are few
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effective therapies when the regional disease is present. Stratified by lymph node status, 5-year overall
survival is >85% for patients with negative nodes and 29%–40% for patients with positive nodes [13].
Even for patients with clinically negative groins (cN0), the likelihood of metastasis approaches 25% [14].
Surgery remains the cornerstone of penile cancer treatment for both primary tumors and lymph
node metastasis (LNM) with multimodal treatment, in the form of neoadjuvant chemotherapy or
adjuvant radiation, reserved for advanced stages [15]. In regards to systemic therapy, while 50% of the
patients achieve an objective response to taxane-ifosphamide-platinum regimens, the majority have
demonstrated disappointing 2-year progression-free survival (PFS) and disease-specific survival (DSS)
probability of 12% and 28%, respectively [16–18]. Furthermore, Wang et al. reported poor survival
outcomes of salvage treatment for disease recurrence after first-line chemotherapy, with a median
overall survival of fewer than six months [19]. Thus, there is much interest in developing novel
strategies with higher efficacy and low toxicity profile.

The discovery of Immune checkpoint inhibitors (PD1 / PD-L1 and CTLA-4) and the use of
monoclonal antibody represent a revolutionary step in the management of many cancers. In an
open-label phase 3 trial, treatment with pembrolizumab versus methotrexate, docetaxel, or cetuximab
for recurrent or metastatic head-and-neck squamous cell carcinoma showed a favorable safety profile
and prolonged overall survival [20]. The current advances in immunotherapy, along with the reported
spectacular therapeutic outcomes, have inspired physicians to investigate the feasibility of its use
in many cancers, including penile cancer. In this article, we review the microenvironment of penile
carcinoma and provide a justification for immunotherapy use in these cases.

2. Immune Infiltration Patterns (CD8, FOXP3 T regs)

Tumor-infiltrating lymphocytes (TILs) have been frequently studied for their roles in triggering
the host immune response to many forms of cancer, as well as in the processes of cancer immunoediting
and immune escape [21]. Immunologically, tumors can be divided into three subgroups according to
the number of intraepithelial and stromal cytotoxic T lymphocyte: (1) “Immune desert”; (2) “immune
excluded”; and (3) inflamed [22–24]. The populations of lymphocytes compromising these infiltration
patterns further stratify with ongoing investigations into CD3+/CD4+ T cells, CD3+/CD8+ T cells, and
CD3+/CD4+/FOXP3+ Treg cells (Figure 1) [25,26]. In pancreatic cancer, the ratio of Tregs to CD4+ T
(%Treg) has demonstrated a significant association with shorter survival, while tumor-infiltrating CD4+

Thigh/CD8+ Thigh/%Treg
low independently predicted longer overall survival [26]. The IMvigor210

study provided evidence associating CD8+ density within the tumor with favorable atezolizumab
response in metastatic urothelial cancer [27]. Thus, higher levels of CD8+ T cells is correlated with
better prognosis in many cancers, including squamous cell carcinomas and urologic malignancies,
however, there is growing evidence that sub-set populations of these CD8+ T cells are exhausted and
lack their cytolytic activity, as well as the production of effector cytokines leading to impaired the
antitumor activity [28,29].

Specifically, in penile SCC, the immune infiltration patterns have generated considerable interest
in further dissecting out this complexity. A recent study characterized the immune microenvironment
in 54 patients with penile SCC using IHC with the immune markers: CD3, CD8, CD68, PD-1, PD-L1,
Pancytokeratin, and DAPI. Notably, this cohort was analyzed for the effect of the exhausted, cytotoxic
T cell population sub-type (CD3+/CD8+/PD-1+), demonstrating that high densities of stromal cytotoxic,
antigen-experienced T cells, suggestive of an immune excluded type, were significantly associated with
worse median OS (27 vs. 102 months p = 0.05) [30]. Another study by Ottenhof et al. in 2018 offered
evidence that low stromal CD8+ T cell was associated with LNM [23]. In a 2015 study by Vassallo et al.,
penile SCC with high levels of tumor-infiltrating FOXP3+ Treg cells bore a worse disease-free survival
probability (HR 2.50, p = 0.02) [31].
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Figure 1. Illustrates tumor microenvironment in penile cancer (Reprinted with permission for 
Elsevier from “Defining the Tumor Microenvironment of Penile Cancer by Means of the Cancer 
Immunogram”, by Hielke-Martijn de Vries et al., European Urology Focus, September 2019). 
Abbreviations: Treg = regulatory T cells, HPV = human papillomavirus; TMB = tumor mutational 
burden; NLR = neutrophil-to-lymphocyte ratio; CRP = C-reactive protein, PD-L1 = programmed 
death-ligand 1 [25]. 

3. PD-L1 Expression 

Programmed death-ligand 1 (PD-L1) has been detected in 40-60% of penile SCC and mainly 
high-risk HPV negative tumors [32]. In many cancers, increased PD-L1 expression by either the 
tumor cells or the host immune cells, especially tumor-associated macrophages (TAMs), has 
correlated with poor prognosis and lower numbers of TILs [33]. Nearly two-thirds of primary penile 
SCC tumors are PD-L1-positive, with PD-L1 positivity defined by >5% tumor expression [32]. In an 
immune histochemical study of 37 penile SCC, Udageret al. reported that PD-L1 expression in the 
primary tumor showed a significant association with regional lymph node metastasis (LNM, p = 
0.024), as well as shorter cancer-specific survival (CSS, p = 0.011) [32] Additionally, In a multivariable 
analysis of 213 penile SCC patients, Ottenhof et al. reported that only diffuse PD-L1 expression in 
tumor cells was a significant predictor of lymph node metastases with OR of 2.81 (p-value = 0.05). 
Furthermore, high-risk human papilloma virus-negative status (hrHPV) and diffuse PD-L1 
expression in the tumor field demonstrated significant correlation with poor disease-specific 
survival with an HR of 9.73 (p-value < 0.01), and HR of 2.81 (p-value=0.03), respectively [23]. 
Moreover, in a recent case study, Trafalis et al. reported a partial response to nivolumab, an 
anti-PD-1 monoclonal antibody, in a patient with advanced hrHPV negative penile SCC refractory to 
chemoradiation therapies [34]. The authors reported a >80% reduction in tumor volume after eight 
cycles of nivolumab. Of note, the patient pre-treatment histology showed >5% expression of PD-L1, 
while post-treatment histology on residual tumor cells revealed attenuation of PD-L1 expression 
with significant augmentation of PD-L1 expression on immune cellular elements surrounding tumor 
cells, suggesting the use of combination therapy with an anti-PD-1/PD-L1 agent.  

Figure 1. Illustrates tumor microenvironment in penile cancer (Reprinted with permission for Elsevier
from “Defining the Tumor Microenvironment of Penile Cancer by Means of the Cancer Immunogram”,
by Hielke-Martijn de Vries et al., European Urology Focus, September 2019). Abbreviations: Treg
= regulatory T cells, HPV = human papillomavirus; TMB = tumor mutational burden; NLR =

neutrophil-to-lymphocyte ratio; CRP = C-reactive protein, PD-L1 = programmed death-ligand 1 [25].

3. PD-L1 Expression

Programmed death-ligand 1 (PD-L1) has been detected in 40-60% of penile SCC and mainly
high-risk HPV negative tumors [32]. In many cancers, increased PD-L1 expression by either the tumor
cells or the host immune cells, especially tumor-associated macrophages (TAMs), has correlated with
poor prognosis and lower numbers of TILs [33]. Nearly two-thirds of primary penile SCC tumors
are PD-L1-positive, with PD-L1 positivity defined by >5% tumor expression [32]. In an immune
histochemical study of 37 penile SCC, Udageret al. reported that PD-L1 expression in the primary
tumor showed a significant association with regional lymph node metastasis (LNM, p = 0.024), as well
as shorter cancer-specific survival (CSS, p = 0.011) [32] Additionally, In a multivariable analysis of
213 penile SCC patients, Ottenhof et al. reported that only diffuse PD-L1 expression in tumor cells
was a significant predictor of lymph node metastases with OR of 2.81 (p-value = 0.05). Furthermore,
high-risk human papilloma virus-negative status (hrHPV) and diffuse PD-L1 expression in the tumor
field demonstrated significant correlation with poor disease-specific survival with an HR of 9.73
(p-value < 0.01), and HR of 2.81 (p-value=0.03), respectively [23]. Moreover, in a recent case study,
Trafalis et al. reported a partial response to nivolumab, an anti-PD-1 monoclonal antibody, in a patient
with advanced hrHPV negative penile SCC refractory to chemoradiation therapies [34]. The authors
reported a >80% reduction in tumor volume after eight cycles of nivolumab. Of note, the patient
pre-treatment histology showed >5% expression of PD-L1, while post-treatment histology on residual
tumor cells revealed attenuation of PD-L1 expression with significant augmentation of PD-L1 expression
on immune cellular elements surrounding tumor cells, suggesting the use of combination therapy with
an anti-PD-1/PD-L1 agent.

Ongoing penile SCC-related phase 2 clinical trials, targeting PD-L1/PD-1, include NCT02834013,
NCT03333616, NCT03074513, and NCT02721732 [35–38]. NCT02834013 employs both nivolumab
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and ipilumumab in patients with rare tumors. NCT03333616 studying the combination of nivolumab
and ipilumumab for advanced rare genitourinary tumors. NCT03333616 hopes to study how well
atezolizumab and bevacizumab work in treating patients with rare solid tumors. NCT02721732 is
evaluating the efficacy of pembolizumab in patients with rare tumors [38]. Table 1 summarized the
most recent and ongoing clinical trials in penile cancer patients, as per 2020 updates.



J. Clin. Med. 2020, 9, 3334 5 of 17

Table 1. Recent and ongoing immunotherapy clinical trials in penile cancers.

Study Title Registration
Number

Trial Start Date Trial Status Agent Condition or
Disease

Study Outcomes

Primary Outcomes Secondary Outcomes

Phase II Trial of
Pembrolizumab for

Advanced Penile Squamous
Cell Carcinoma Following
Previous Chemotherapy

NCT02837042 October 2016 Terminated Pembrolizumab

Advanced penile
squamous cell

carcinoma
following prior
chemotherapy

Objective response rate

- Duration of response
- Progression-free

survival
- Overall survival

- Number of adverse
events

A Phase 2, Multi-centre,
Open-label Study of

Avelumab (MSB0010718C)
in Locally Advanced or

Metastatic Penile Cancer
Patients Unfit for
Platinum-based

Chemotherapy or
Progressed on or after

Platinum-based
Chemotherapy

NCT03391479 15 August 2018 Recruiting Avelumab

Locally advanced
or metastatic

penile cancer who
are unfit for or
progressed on

platinum-based
chemotherapy

Objective Response Rate
- Progression-free

Survival Rate
- Overall Survival Rate

A Phase 1 Study of
Cabozantinib Plus

Nivolumab (CaboNivo)
Alone or in Combination

with Ipilimumab
(CaboNivoIpi) in Patients
with Advanced/Metastatic
Urothelial Carcinoma and

Other Genitourinary
Tumors

NCT02496208 9 July 2015 Recruiting

Cabozantinib
S-malate plus
Nivolumab,
plus/minus
Ipilimumab

Advanced/Metastatic
Genitourinary

Tumors

- Recommended dose
- Incidence of adverse

events

- Clinical response rate
- Fraction of alive and

progression-free patients
at two months

- PDL-1 and MET
expression

A Phase II Study of
Nivolumab Combined with

Ipilimumab for Patients
with Advanced Rare

Genitourinary Tumors

NCT03333616 28 December
2017 Recruiting Ipilimumab plus

Nivolumab

Advanced Rare
Genitourinary

Tumors

- Objective Response
Rate

- Duration of Response
- Immune-related

objective response rate
- Progression-Free

Survival
- Overall Survival

- Safety and tolerability
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Table 1. Cont.

Study Title Registration
Number

Trial Start Date Trial Status Agent Condition or
Disease

Study Outcomes

Primary Outcomes Secondary Outcomes

Phase II Study for the
Evaluation of Efficacy of

Pembrolizumab (MK-3475)
in Patients with Rare

Tumors

NCT02721732 15 August 2016 Recruiting Pembrolizumab

Rare tumors,
including

metastatic and
stage 4 penile

cancer

- Non-progression rate
- Incidence of adverse

events

- Objective response
(CR/PR) rates

- Duration of response
- Progression-free

survival
- Overall survival

- Safety and tolerability

DART: Dual Anti-CTLA-4
and Anti-PD-1 Blockade in

Rare Tumors
NCT02834013 13 January 2017 Recruiting Nivolumab plus

Ipilimumab

Rare tumors,
including

squamous cell
carcinoma of the

penis

- Overall response rate
(ORR)

- Safety and toxicities
- Clinical benefit rates
- Overall Survival (OS)

- Progression-Free
Survival (PFS)

PERICLES (Penile Cancer
Radio- and Immunotherapy

Clinical Exploration
Study)-a Phase 2 Study of

Atezolizumab With or
Without Radiotherapy in

Penile Cancer

NCT03686332 25 September
2018 Recruiting

Atezolizumab
plus/minus

Radiotherapy

Advanced penile
cancer

- Progression-free
survival at 1 year

- 2-year overall survival
rate of the complete

study population

The LATENT Trial: Lytic
Activation to Enhance
Neoantigen-directed
Therapy A Study to

Evaluate the Feasibility and
Efficacy of the Combined

Use of Avelumab with
Valproic Acid for the

Treatment of
Virus-associated Cancer

NCT03357757 7 February 2018 Recruiting
Avelumab plus
Valproic Acid

(VPA)

Human papilloma
virus-associated

cancers

- 1 year treatment
Efficacy

- Proportion of patients
who complete four doses
of Avelumab plus VPA

- Overall survival
- Progression-free

survival
- Adverse events

- Identify virus-related
cancers for future studies

A Phase II, Single-Arm
Open-Label Study of the

Combination of
Atezolizumab and

Bevacizumab in Rare Solid
Tumors

NCT03074513 3 March 2017 Active, not
recruiting

Atezolizumab,
plus Bevacizumab

(atezo bev)

Rare solid tumors,
including penile
squamous cell

carcinoma

- Objective response rate
(ORR)

- ORR (iRECIST)
- Duration of response

(RECIST, iRECIST)
- PFS (RECIST, iRECIST)

- Overall survival
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Table 1. Cont.

Study Title Registration
Number

Trial Start Date Trial Status Agent Condition or
Disease

Study Outcomes

Primary Outcomes Secondary Outcomes

A Phase 2, Open-Label
Study to Evaluate Efficacy
of Combination Treatment
with MEDI0457 (INO-3112)

and Durvalumab
(MEDI4736) in Patients with

Recurrent/Metastatic
Human Papilloma

Virus-Associated Cancers

NCT03439085 14 November
2018 Recruiting

MEDI0457
(INO-3112), plus

Durvalumab
(MEDI4736)

Human papilloma
virus-associated

cancers

- Overall Response Rate
(ORR); measured by

RECIST

- ORR (iRECIST)
- PFS (RECIST)

- Disease control rate
- Overall survival
- Adverse events

Phase II Trial of M7824 in
Subjects with HPV

Associated Malignancies
NCT03427411 27 February 2018 Recruiting M7824

Human papilloma
virus-associated

cancers

- Overall Response Rate
(ORR); measured by

RECIST

- Duration of response
- PFS
- OS

- Safety and tolerability

Abbreviations: CR = complete response, PR = partial response, ORR = objective response rate, PFS = progression-free survival, RECIST = Response evaluation criteria in solid tumors,
iRECIST = immune-based response evaluation criteria in solid tumors, OS = overall survival.
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4. Macrophage/MDSC Infiltration Patterns

Tumor-associated macrophages (TAMs) perform a major role in the tumor microenvironment by
increasing angiogenesis, enhancing tumor cell mobility, and modulating immunotolerance. Both TAMs
and TGF-B are found to be associated with VEGF, the expression of which has been demonstrated to
be an independent prognostic factor for metastatic progression in penile carcinoma [39]. Moreover,
TAMs have been implicated in establishing pre-metastatic niches, which may have a role as a tumor
survival mechanism against systemic chemotherapy [35,40].

The continuously evolving paradigm divides TAMs into M1 (classical) macrophages
CD68+/CD86+/HLA-DR+ and M2 (alternative) macrophages CD163+/CD206+/HLA-DR+ [41,42].
Studies in cancer patients have associated cancer progression and worse overall survival with the M2
phenotype [26]. In cervical SCC, M2-polarized TAMs have been identified to express PD-L1 [43]. In the
context that PD-1 is found on most infiltrating CD8 + T cells and the evidence supporting PD-1/PD-L1
interactions as a driving factor behind cancer immune tolerance, these findings suggest that M2 TAMs
may contribute to cancer immune escape [44]. In cervical SCC, M2 macrophage differentiation has been
significantly linked to cancer-derived IL-6 and prostaglandin E2 [41]. Remarkably, M2 macrophages
might be stimulated to classical tumor-rejecting M1 macrophages via CD40 interactions in the presence
of IFN-gamma [41]. Additionally, IL6/JAK/STAT3 signaling pathway has been proposed as one of
the mechanisms that can affect tumor microenvironment and immune response to tumor cells [45].
IL-6 activation induces JAK/STAT3 pathway in both tumor cells and tumor-infiltrating immune cells.
Subsequently, myelomonocytic infiltrating tumor cells differentiate into impaired dendritic immune
cells producing protumorigenic matrix-metalloproteinase (MMP-9) or M2 macrophages expressing
PD-L1 that, in turn, suppresses cytotoxic T cell response [45,46]. Therefore, recent data suggests that
IL-6/JAK/STAT3 signaling pathway may represent a therapeutic target to suppress tumor growth and
activate the antitumor immune response [47,48]. However, in phase 2 clinical trials, the use of an
anti-IL-6 monoclonal antibody in metastatic castration-resistant prostate cancer and in advanced solid
tumors didn’t show clinical benefits [49,50].

In penile SCC, high densities of CD68+ TAMs were associated with significantly improved
cancer-specific survival (CSS) (p = 0.04), overall survival (OS) (p = 0.02), and lower risk of regional
recurrence (p = 0.04) [30]. Another penile SCC group detected high intra-tumoral CD163+ corresponding
with LNM [23].

In addition to that, Myeloid-derived suppressor cells (MDSC), believed to be immature bone
marrow-derived hematopoietic progenitor cells failing, identified by CD11b+/CD33+/HLA-DR−,
and expressing several functional markers, such as arginase, represent a complex constituency
of the TME with the ability to suppress T cell responses [51–53]. Monocytic MDSC (M-MDSC)
[CD11b+/CD33+/HLA-DR−/Lys6C+/CD14+], and polymorphonuclear neutrophils MDSC (PMN-MDSC)
[CD11b+/CD33+/HLA-DR−/Lys6G+/CD15+] represent the major constitutes of MDSCs [54,55]. MDSCs
are induced in both inflammatory and cancerous conditions. Factors induced MDSC to include PGE2,
IL-1β, IL-6, VEGF, and C5a.complement component [56]. This could explain the relationship between
chronic inflammation and progression to cancer. In a genetically engineered mouse model of penile
SCC, huang et al. described changes in tumor microenvironment with a marked reduction in CD-8+

T cells, NK cells, B cells, and tumor-associated macrophages, while there was a marked increase in
CD-11b + with its ability to suppress the proliferation of the cytotoxic T cells [57].

Several studies have reported that tumor-infiltrating-MDSCs suppress the immune system
by producing arginase, resulting in depletion of L-arginine in the tumor microenvironment and
suppression of T-cell response [58,59]. Of note, the arginase enzyme has many isoforms; the cytosolic
arginase-1 and the mitochondrial arginase-2 enzyme. Arginase expression by MDSC is induced
by several factors, including immunosuppressive cytokines (TGF-β, IL-4, IL-10, and IL-13), tissue
hypoxia, and acidosis [60]. Recently, there is increasing evidence linking the expression of arginase-1/2
with poor prognosis in several cancers, including head and neck cancer, pancreatic cancer, and acute
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myeloid leukemia [61–63]. However, expression of arginase in genitourinary cancers has not yet been
described—particularly prostate cancer and renal cell carcinoma [64–66].

The presence of MDSCs in the TME contributes to tumor-mediated immune escape and bear a
negative correlation to OS [53].

The expansion of MDSCs may be suppressed in many instances. In HNSCC, tadalafil, in its
function as a phosphodiesterase-5 (PDE5) inhibitor, has demonstrated significant immunomodulation
of the TME by lowering MDSCs and Tregs, while increasing tumor-infiltrating CD8+ T cells in a
dose-dependent fashion [55,67]. In RCC and prostate cancer, sunitinib, as a VEGF, PDGFR, and receptor
tyrosine kinase inhibitor, has demonstrated promise in the reduction of MDSCs [68,69]. Additionally,
in a genetically engineered mouse (GEM) model of pSCC, the use of cabozantinib or celecoxib has
exhibited a synergistic effect with immune checkpoints inhibitors (ICB) by lowering MDSCs positive
for CD-11b+ and Ly6G+ [57].

Moreover, cabozantinib is a small molecular inhibitor of the Tyrosine kinases c-Met and VEGFR2
that has been shown to increase MDSC CD40+ expression compared to baseline in metastatic urothelial
carcinoma (p = 0.0005) [70]. CD40 activation of dendritic cells in the TME has, in turn, been linked to
increased T cell-mediated immunity [71].

Currently, there are ongoing trials to test the efficacy of combination immunotherapies in advanced
genitourinary cancers, including penile SCC. Examples include aphase 1

2 clinical trial (NCT03866382) to
investigate the efficacy of the combination of nivolumab and ipilimumab in addition to cabozantinib in
rare genitourinary tumors [56]. Additionally, there is a phase 1 clinical trial (NCT02496208) investigating
cabozantinib and nivolumab with or without ipilimumab in metastatic genitourinary tumors [69].

5. HPV Role in Tumor Immune Microenvironment

The relationship of HPV to the penile SCC TME represents an area of active interest for
immunotherapy augmentation. Though there are variations in the prevalence of HPV that are
primarily attributed to differences in sampling, viral molecular testing, and population studied,
a systematic review of 1266 invasive penile SCC patients reported that in North America, up to
48.7% of penile SCC harbor HPV DNA. The vast majority of HPV-positive cases were represented
by the high-risk HPV (hrHPV) 16 and 18 subtypes, 30.8% and 6.6%, respectively [5]. Stratified by
HPV status, hrHPV negativity in 213 penile SCC correlated significantly with poor disease-specific
survival (HR 9.7, p < 0.01) [23]. Viral positivity in penile SCC has repeatedly demonstrated favorable
outcomes in survival, which may be linked to a theoretical increased production of neo-antigens [72].
However, the detection of HPV infection is not enough evidence of HPV-induced cancer. Therefore,
there has been a growing interest in discovering new markers that can prove transcriptionally active
infections [73]. Zargar-Shoshtari et al. investigated the potential clinical utility of two common tumor
proteins, p16 and p53, in the HPV pathway [74]. The authors reported that patients with negative
p16 and positive p53 are at increased risk of nodal metastases (OR: 4.4, 95% CI: 1.04–18.6). Also, they
reported that positive p16 status was associated with longer cancer-specific survival (HR: 0.36, 95%
CI: 0.13–0.99), with the worst CSS was seen in patients with lymph node-positive disease, as well as
double negative of p16 and p53 [74]. Moreover, Aziz et al. investigated the prognostic value of the
upregulation of PI3K-AKT-mTOR signaling pathway in penile SCC [75]. The authors reported that
increased expression of PI3K-AKT-mTOR was associated with a lower risk of recurrence and overall
mortality. They suggested that the use of mTOR pathway biomarkers with HPV infection status may
demonstrate a prognostic value that can help in the risk stratification of patients with penile SCC [75].

In an IHC study, HPV+ cases contained significantly higher stromal cytotoxic (CD8+) T cells than
HPV− cases (p = 0.04), representing a significant effect of HPV on the penile SCC TME [30]. Moreover,
Lyford-Pike et al. reported that 70% of HPV-associated head and neck SCC demonstrated positive
expression of the immunosuppressive molecule PD-L1 on both tumor cells and CD-68+ TAMs [76].
It has been reported that the majority of CD-8+ Tumor-infiltrating lymphocyte in HPV- associated
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head and neck SCC express PD-1, suggesting the benefits of using immune checkpoint blockades in
these patients [76,77].

In light of the increasing relevance of HPV to penile SCC management, the European Association
of Urology penile cancer 2018 update now recommends that the pathological evaluation of penile
carcinoma specimens must include: (1) An assessment of the HPV status; (2) a diagnosis of the SCC
subtype; and (3) an assessment of surgical margins including the width of the surgical margin [15].

There are several promising clinical trials investigating combinatorial immunotherapy augmented
with HPV-targeted vaccines in HPV-associated malignancies. The phase 1

2 trial NCT04432597 is testing
an HPV vaccine in combination with an anti-PDL1/TGF-Beta Trap drug. The phase 2 trial NCT03439085
is testing an HPV vaccine with durvulumab, a human immunoglobulin G1 kappa monoclonal antibody
targeting PD-L1. The phase 2 trial NCT03427411 is studying the efficacy of M7824, a bifunctional fusion
protein targeting TGF-β and PD-L1, for which phase 1 data has already demonstrated an encouraging
safety profile and efficacy potential [78]. Another phase 1

2 trial NCT04287868 is utilizing a combination
of M7824 and vaccinations in patients with advanced HPV-associated malignancies [79].

6. Tumor Mutational Burden

Tumor Mutational Burden (TMB) was described as the number of nonsynonymous somatic
mutations in the coding area of tumor cells per megabase (MB) of DNA. These somatic mutations
influence the expression of tumor-specific epitopes (neoantigens) that are targetable by the host
immune system [80]. TMB has been described in tumors with mismatch repair defect (MMR), or
microsatellite instability (MSI) defect, such as colorectal cancers, or defect in DNA replication [81,82].
However, the prevalence of TMB varies widely across tumors, with non-small cell lung cancer (NSCLC)
demonstrates the largest number of these mutations (0.1–100 mut/Mb) [83,84]. The reported wide
variance in the prevalence of TMB is also partly due to the lack of standardization of TMB quantification
and reporting system.

TMB has been suggested as a potential biomarker of patients’ prognosis. It has been hypothesized
that increased expression of TMB indicates increased expression of PD-L1 and durable response to
immune checkpoints inhibitors [85]. Recently, the Food and Drug Administration (FDA) has approved
the use of pembrolizumab in patients with TMB ≥10 mutation/megabase [86]. This was based on
the data from the non-randomized, open-label KEYNOTE-158 trial. They reported an objective
response rate of 29% (95CI: 21%–39%), with approximately 50% of the responses were greater than two
years [86,87].

Cancers with mismatch repair (MMR) deficiency, which invariably contributes to very high
mutation rates, have consistently responded to pembrolizumab (PD-L1 blockade) [88]., Additionally,
atezolizumab, an engineered humanized immunoglobulin G1 monoclonal antibody for PD-L1,
has shown tolerability and durable activity in urothelial cancers with high TMB in proportion to
increased levels of PD-L1 expression on immune cells [89]. Moreover, Van Allen et al. studied the
relationship between response to CTLA-4 blockade and the genetic sequencings and mutations [90].
They reported that TMB and expression of cytotoxic cells in the tumor microenvironment were
significant predictors of response to CTLA-4.

In addition to that, IFN-gamma related genes were also associated with durable response to
immunotherapy. In a study of top genes associated with response to pembrolizumb in patients with
metastatic melanoma, the preliminary IFN-gamma 10 gene signatures were significantly associated
with good response and were able to predictor responders from non-responders to pembrolizumab [91].
These genes included IFNG, STAT1, CCR5, CXCL9, CXCL10, CXCL11, IDO1, PRF1, GZMA, and MHCII
HLA-DRA [91].

However, some chromosomal mutations are associated with poor response to immunotherapy.
Davoli et al. reported that tumor aneuploidy or somatic copy number alterations (SCNAs) was
associated with poor response to immunotherapy [92]. In addition, Xiao et al. studied in metastatic
melanoma patients the relationship between TP53 mutation and the response to anti-CTLA-4 therapy.
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The authors reported that increased TP53 expression is significantly associated with poor response,
poor progression-free survival, and poor overall survival, suggesting it as a negative predictor for
response to CTLA-4 blockade [93].

Specific somatic mutations, copy number alterations, and gene and miRNA expression patterns
have been demonstrated to be significantly associated with shorter time to progression or decreased
survival. A 2018 study of 25 penile SCC patients treated with 1st-line cisplatin-based chemotherapy
studied the expression of 738 genes. In univariate analysis, upregulated MAML2 (p = 0.004), KITLG
(p ≤ 0.0001), and JAK1 (p = 0.029) genes were associated with poor overall survival. In contrast, genes,
such as upregulated FANCA, were associated with better overall survival (p = 0.024) [94].

Despite the significant correlation of specific genetic alterations and expression patterns to penile
SCC prognosis, a study of 27 whole-exome sequenced penile SCC tumors, investigating 810 genes, could
not demonstrate an association between overall mutational burden and tumor stage, grade, or age
though this relationship remains to be further explored in relation to immunotherapy response [95].

Feber et al. studied the genetic alteration in penile squamous cell carcinoma patients. Interestingly,
the authors reported that tumors with high HPV viral load have a lower tumor mutational load than
HPV negative tumors. This, in combination with the identification of a strong CpG signature in
HPV-negative tumors (p < 0.001), suggests that studies of changes to the epigenome rather in addition
to direct genetic alteration, may unveil key targets in the development of penile SCC [95]. Of note,
Genetic studies of penile SCC have demonstrated at least 30% of cases exhibited a targetable gene
alteration with many similarities with other SCCs, suggesting similar biology and potential targeting
agent [96].

Additionally, recent reports have described the upregulation of Sox2 and Ptgs2 transcriptional
factors in skin and penile SCC [57,97]. Sox2 is a β-catenin transcriptional target, upregulated in cancer
stem cells, and absent in normal epidermis, while Ptgs 2, or better known as Cox2, is a pro-inflammatory
gene that induces prostaglandins production from arachidonic acid resulting in cytokine upregulation
and inflammatory reactions. These genes act as the master regulators of cancer stem cells that play an
important role of Sox-2 in tumor initiation and progression. Boumahdi et al. reported that conditional
deletion of Sox2-gene results in tumor cell regression, consistent with their critical role for disease
continuity [97].

7. Conclusions

Penile squamous cell carcinoma is a complex disease with a debilitating nature. However,
the current revolution and advances in immunotherapies hold promises for cancer patients, including
penile cancer. Despite the lack of level1 evidence for using immunotherapy in penile cancer, most penile
squamous cell carcinoma expresses PD-L1, which provides a rationale for considering immunotherapy.
There are ongoing trials studying the use of a combination of anti-PD-1 and anti-CTLA-4 in rare
Genitourinary cancers. Additionally, Preclinical data suggested synergistic efficacy with using
combination therapy of Immune Checkpoints blockades (ICB) with MDSC-inhibiting agents, such as
cabozantinib or celecoxib, particularly in the setting of chemoresistant disease. Moreover, the current
advances in the understanding of tumor microenvironment and tumor mutational burden could
help to select patients with a higher chance to respond and benefit from therapy. Given the rarity
of the disease, there is an immense need for a multi-institutional collaboration alongside industrial
support, as well as patient advocacy, to develop the second stage of treatment of penile cancer in the
era of immunotherapy.
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