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Abstract: For the past 40 years, the methodology for stress echocardiography (SE) has remained
basically unchanged. It is based on two-dimensional, black and white imaging, and is used to detect
regional wall motion abnormalities (RWMA) in patients with known or suspected coronary artery
disease (CAD). In the last five years much has changed and RWMA is not enough on its own to
stratify patient risk and dictate therapy. Patients arriving at SE labs often have comorbidities and are
undergoing full anti-ischemic therapy. The SE positivity rate based on RWMA fell from 70% in the
eighties to 10% in the last decade. The understanding of CAD pathophysiology has shifted from a
regional hydraulic disease to a systemic biologic disease. The conventional view of CAD encouraged
the use of coronary anatomic imaging for diagnosis and the oculo-stenotic reflex for the deployment of
therapy. This has led to a clinical oversimplification that ignores the lessons of pathophysiology and
epidemiology, and in fact, CAD is not synonymous with ischemic heart disease. Patients with CAD
may also have other vulnerabilities such as coronary plaque (step A of ABCDE-SE), alveolar-capillary
membrane and pulmonary congestion (step B), preload and contractile reserve (step C), coronary
microcirculation (step D) and cardiac autonomic balance (step E). The SE methodology based on
two-dimensional echocardiography is now integrated with lung ultrasound (step B for B-lines),
volumetric echocardiography (step C), color- and pulsed-wave Doppler (step D) and non-imaging
electrocardiogram-based heart rate assessment (step E). In addition, qualitative assessment based
on the naked eye has now become more quantitative, has been improved by contrast and based on
cardiac strain and artificial intelligence. ABCDE-SE is now ready for large scale multicenter testing in
the SE2030 study.
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1. Conventional Stress Echocardiography: Strengths and Pitfalls

Stress echocardiography (SE) is based on the assessment of inducible regional wall motion
abnormalities (RWMA) for the functional evaluation of patients with known or suspected coronary
artery disease (CAD). It has had a well-established clinical role for several decades [1] and is now
well recognized in guidelines and recommendations as a first-line imaging test [2,3]. In the last
20 years, the utilization rate of SE has increased by 5- to 10-fold in risk- and cost-sensitive environments
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due to the increase in the awareness of patients, doctors and payers of the importance of economic
costs and long-term radiation risks [4–6]. The unique versatility of SE also allows it to be applied
outside of CAD in conditions such as valvular heart disease, congenital heart disease, dilated or
hypertrophic cardiomyopathy, extreme physiology and post-heart transplant rejection [7,8]. SE is
considered to be a well-established technique but this strength is also its major limitation because
it has remained conceptually and methodologically unchanged since it was introduces 40 years ago
(see Figure 1, left panel). The methodology uses two-dimensional echocardiography technology for
patients with known or suspected CAD and involves the assessment of RWMA with the naked eye.
This approach has obvious merits since it provides a highly specific marker of myocardial ischemia
and underlying epicardial CAD, which provides the ability for excellent risk stratification, it has
an outstanding safety record even with pharmacological stress and contrast, and an unsurpassed
cost-benefit profile [9,10]. However, there are several limitations. The reliability of the test is dependent
upon the acoustic window [11]. The interpretation of RWMA is subjective and qualitative [12,13],
and the level of experience required by guidelines for professional accreditation and certification of
competence [14,15] does not guarantee reading accuracy and harmonization of the reading criteria [16].
The SE positivity rate based on RWMA fell from 70% in the eighties to 10% in the last decade for all
tests based on myocardial ischemia, most likely due to increased use of anti-ischemic therapy at the
time of testing [17]. Its diagnostic sensitivity and prognostic negative predictive value are suboptimal,
for example, its predictive value is lower than that of a test based on perfusion imaging [18,19] and
has declined over the last 40 years [20]. All of the limitations and weaknesses of the SE technique can
now be fixed or minimized with the use of state-of-art technology and protocols. Contrast enhances
the image quality, improves the reproducibility of RWMA assessment and reduces the number of
unreadable studies to <1% [21,22]. Cardiac strain can be measured quantitatively by assessing global
longitudinal strain. The assessment of regional strain can also be useful in apical and middle segments,
since not all segments were created equal. This can be done not only by visual estimation but also
with deformation imaging [23,24]. Most importantly, the state-of-the-art ABCDE-SE is able to evaluate
not only coronary plaque but it can also comprehensively assess patient vulnerabilities by taking
advantage of the extraordinary versatility of the technique. The old landline telephone has now been
replaced by a mobile smart-phone with a variety of applications that make it well-suited to tailor the
right test at the right time for the right patient [25].

Figure 1. The conceptual approach of advanced stress echocardiography (SE): from vulnerable stenosis
to vulnerable patient. Left panel: in the classical or conventional approach that has been used for
40 years and in first-generation multicenter studies such as Echo-Persantine Cooperative (EPIC) and
Echo-Dobutamine Cooperative (EDIC) studies, SE was only focused on the hemodynamic significance
of the coronary stenosis. Right panel: the advanced ABCDE protocol used in the last 5 years in second-
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generation SE2020 and SE2030 multicenter studies. The focus is shifted to the patient as a whole
and involves the assessment of vulnerability to ischemia (step A with RWMA is now corroborated
by regional and global longitudinal strain and artificial intelligence), pulmonary congestion (step B),
the left ventricular contractile and preload reserve (step C), coronary microcirculation (step D) and
chronotropic reserve (step E). CAD—coronary artery disease; 2D—2-dimensional echocardiography;
RWMA—regional wall motion abnormalities; LUS—lung ultrasound; ESV—end-systolic volume;
EDV—end-diastolic volume; CFVR—coronary flow velocity reserve; HRR—heart rate reserve.

Some aspects of the ABCDE protocol have already been discussed in previous review papers [26].
However, the field is evolving so rapidly that both the methodology and the understanding of the
method is being reshaped on the basis of new evidence and new experiences. For example, the so-called
quadruple imaging (ABCD) protocol was changed to incorporate the non-imaging component E as an
integral part of the core protocol. This review will present the updated view of the protocol while
paying special attention to evidence gathered in the last two years and the perspectives of new studies
that are underway.

2. ABCDE-SE: Rationale, Methodology, Results

In the novel state-of-the-art ABCDE SE protocol, RWMA remains the first and main step A,
which is corroborated by quantitative deformation imaging of global and regional strain. B-lines are
assessed in step B, the left ventricular contractile and preload reserve in step C, Doppler-based coronary
flow velocity reserve (CFVR) in the left anterior descending coronary artery or contrast myocardial
perfusion imaging is assessed in step D, and ECG-based assessment of heart rate reserve in non-imaging
takes place in step E. The five parameters converge conceptually, logistically and methodologically in
the ABCDE protocol, which can be applied to all stresses and all patients and it allows a comprehensive
color-coded risk stratification of the vulnerable patient beyond coronary artery stenosis (Figure 1,
right panel). A normal ABCDE-SE response identifies a “non-ischemic”, “dry”, “strong”, “warm”
and “fast” heart at very low risk. An abnormal ABCDE-SE response identifies an “ischemic”, “wet”,
“weak”, “cold” and “slow” heart, with RWMA, pulmonary congestion, dilated end-systolic volume,
reduced CFVR and blunted chronotropic response [26].

The assessment of lung water by lung ultrasound and B-lines is an extension of resting transthoracic
echocardiography, which was introduced in cardiology in 2004 [27] and since then it has been extensively
applied for diagnostic and prognostic purposes, mainly in heart failure patients [28–30]. The B-step
was proposed for scanning at rest and during stress [31] with the 28-site scan requiring several minutes
of imaging and analysis time; however it is more suitable for research than for clinical applications,
especially during stress when time is short and there are many things to observe. The ideal scanning
protocol is the simplified 4-site scan, which is as accurate as the 28-site scan but much easier to obtain
and can be analyzed in <1 min. This usually takes place once the test is finished since lung water
takes a few minutes to disappear after the end of exercise or antidote administration in the case of
pharmacological stress [32]. Each site is scored from 0 (horizontal A-lines in black lung) to 10 (coalescent
B-lines in white lung). The scores of the individual sites are added up and the final cumulative score
may range from 0 or 1 (normal) to 40 (alveolar pulmonary edema). The peak stress scores are quantified
as normal (0 to 1), mildly abnormal (2–4), moderate (5–9) or severe (≥10) [33]. The number of B-lines is
related to the amount of extravascular lung water, which ranges from normal values (<500 mL) to
mild (500–1000 mL), moderate (1000–1500 mL), and severe (>2000 mL) depending on the degree of
accumulation [34]. The number of stress B-lines are a better reflection of the cardiac natriuretic peptide
concentration and peak anaerobic threshold that rest B-lines. This is not surprising since interstitial
lung water accumulation during exercise compromises the gas exchange capability [35]. Stress B-lines
appear in one out of three patients without B-lines at rest [35]. More peak stress B-lines indicate a
worse prognosis [35–37], and they can be found in all situations associated with dyspnea of cardiac
origin [38], from CAD to diastolic dysfunction, from heart failure with reduced ejection fraction to
heart failure with preserved ejection fraction [39,40], from aortic insufficiency to mitral stenosis [41] or
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extreme physiological settings such as trekking in high altitude [42] or apnea diving [43]. If there is
water, there is a defect somewhere in the cardiovascular chain linking the alveolar capillary barrier
to cardiovascular performance [44]. The cutoff value for abnormal B-lines is a rest or stress value of
≥2 units and this is the same for all stresses. A normal heart without B-lines is called dry, while an
abnormal heart with B-lines is referred to as wet.

Volumetric echocardiography is the tool used for assessment in step C [45]. The biplane
Simpson’s rule method is used to measure the left ventricular volumes from apical four-chamber and
two-chamber views. When the two orthogonal views are not obtainable, an apical single chamber view
is sufficient [46]. When neither apical views are obtainable in non-distorted ventricles, a parasternal
view with volume measurements by the Teichholz rule is enough to obtain a reliable estimate of
left ventricular volume variations from rest to stress [47]. The feasibility of the method increases
with contrast injection, which enables better endocardial contour recognition [48]. The method can
be applied with shorter imaging time and greater accuracy without depending on the geometric
assumptions of real-time three-dimensional echocardiography, which is currently limited by low
frame rates and large transducer footprints. The image acquisition is the same as for RWMA, and the
analysis time is the same as that required for the ejection fraction, which is provided as part of
the minimum data set of SE. However, end-systolic volume and end-diastolic volume are analyzed
as a part of two different and equally important aspects of left ventricular function and form [49].
In fact, end-systolic volume is an index of function, and end-diastolic volume is an index of form [50].
The physiological companion of end-systolic volume is systolic blood pressure measured by cuff

sphygmomanometer to obtain force or elastance. Left ventricular contractile reserve (LVCR) is the stress
to rest ratio and is an index of contractility; it is conceptually different from the ejection fraction since it
is independent of preload, heart rate and afterload changes. Rather, it is a pure index of LVCR whereas
the ejection fraction is a hybrid index combining a functional index such as end-systolic volume with a
morphologic index such as end-diastolic volume. Therefore, it is simpler to obtain than the ejection
fraction since only the end-systolic volume (more reproducible than end-diastolic volume) is required
in addition to systolic blood pressure, which is already a part of the minimum data set provided by
SE. Therefore, the end-systolic volume provides an index of systolic function and contractile reserve
and can be obtained during exercise, noninvasive pacing, dobutamine or dipyridamole SE. For any
given systolic blood pressure, the smaller the end-systolic volume, the better the LV contractile reserve
and outcome [51]. For any given ejection fraction value at rest and during stress, the prognosis is
clearly worse with lower values of LVCR. The cutoff values for abnormal LVCR are lower (<1.1) for
vasodilators [52,53] and higher (<2.0) for stressors such as exercise and dobutamine, which have a
stronger inotropic effect. A normal heart with preserved LVCR based on force is referred to as strong,
while an abnormal heart with reduced LVCR is known as weak.

At low heart rates, the end-diastolic volume normally increases in response to stress, but beyond
100–110 bpm the diastolic time is reduced and further filling augmentation is precluded [54]. Therefore,
during exercise or dobutamine use, the end-diastolic volume response should be assessed at the
intermediate stages of exercise while the response to vasodilators can be evaluated at peak stress.
The normal response is an increase in end-diastolic volume of around 10% at the intermediate stages of
exercise [54]. The normal preload reserve is equally as important as the contractile and the chronotropic
reserve to guarantee an effective increase in cardiac output. A normal heart with preserved preload
reserve based on the increase in end-diastolic volume is called compliant, an abnormal heart with
reduced preload reserve is called stiff.

Step D is based on the color- and pulsed-wave Doppler evaluation of the coronary flow velocity
reserve (CFVR) in the mid-distal left anterior descending coronary artery [55]. CFVR is simply
calculated as the peak/rest values of the peak diastolic coronary flow velocity [56]. A readable signal is
obtained in >90% of consecutive cases, and contrast is needed in <5% of cases to enhance the signal.
The feasibility is >95% with vasodilators, but it is also excellent with pacing and dobutamine, and it
is >80% even with exercise if a semi-supine bicycle is used and flow monitoring is obtained in the
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early steps of exercise [57]. A reduced CFVR in the absence of RWMA is very frequent in the presence
of angiographically normal coronary arteries and indicates abnormal coronary microcirculatory
function, which predicts the recurrence of ischemia, development of heart failure and cardiac and
non-cardiac death [58]. A reduced CFVR is associated with low-grade inflammation, which is probably
a universal mechanism of disease that is also found in some forms of cancer, dementia and other
chronic inflammatory conditions [59]. The heart serves as physiological paradigm, since it increases in
thickness, stiffness, function and temperature with increased flow [60]. A normal heart with preserved
CFVR is called warm, an abnormal heart with reduced CFVR is called cold.

Step E is based on ECG, which evaluates the heart rate reserve as the peak/rest value of the heart
rate derived from a 12-lead ECG or simply from the ECG lead that is automatically read in the echo
monitor. It is an index of cardiac sympathetic reserve, is obtainable in all patients with 100% success
rate and reproducibility. It is an index of cardiac autonomic function, and in particular, of cardiac
sympathetic reserve, which can be impaired by several conditions other that CAD such as heart failure
or hypertrophic cardiomyopathy [61]. It is also a biomarker of cardiac autonomic dysfunction and as
such, mainly predicts sudden cardiac death and cardiac arrhythmias [62]. Chronotropic stress is higher
with exercise and dobutamine and milder with vasodilator stress, which also elicits an adrenergic
response unrelated to a decrease in blood pressure or inducible ischemia [63–65]. The cut-off for
abnormal values are higher with exercise and dobutamine (<1.80) than with vasodilators (<1.22)
and are maintained in populations using beta-blockers, in whom baseline heart rate is lower but the
frequency response is preserved. The prognostic value of a reduced heart rate reserve has been shown
to be independent of inducible RWMA with exercise [66], dobutamine [67] and dipyridamole [68].
With dipyridamole stress, the abnormality cut-off associated with a worse outcome is slightly lower
(1.17) in the presence of chronic atrial fibrillation [69] and provides incremental prognostic information
over RWMA and CFVR [70].

Much has changed as a result of this methodological and conceptual remodeling.
The pathophysiological model has shifted from stenosis vulnerability to patient vulnerability.
The prediction potential has shifted from the recurrence of angina to all events including cardiac
death, non-cardiac death, arrhythmic events and progression to heart failure. Risk stratification has
become multi-dimensional and color-coded (Figure 2), and thus, it more realistically addresses the
need for tailored functional characterization, risk assessment and SE-driven therapy in the age of
personalized medicine.

Figure 2. The prognostic approach with advanced SE. Left panel: in the classical or conventional
SE approach risk stratification is based only on the presence and extent or regional wall motion
abnormalities, which offers a limited measure of risk. Right panel: the advanced ABCDE
protocol acts as a Newton’s prism that offers a multi-dimensional response that includes regional
wall motion, pulmonary congestion, preload and afterload reserve, coronary microcirculation,
and sympathetic reserve. Each color identifies a specific vulnerability and is a possible target for
selective therapeutic interventions.
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3. The Limitations of the ABCDE Protocol

Not all the problems of cardiology are solved with the ABCDE protocol. Yet, it is a simple way to
capture a more comprehensive view than was possible in previous decades of the clinical use of SE.
Its application is more suitable for risk stratification and functional characterization than for primary
diagnosis of CAD. In general, the presence of multiple positive biomarkers points to more extensive
anatomic CAD in patients with chronic coronary artery disease, but in principle, each of the four new
markers can be present due to a variety of causes that are independent of the presence and severity of
underlying CAD.

Not all questions can be answered with the use of this protocol. However, the improvement in
clinically relevant information in the last five years did not come from a technological upgrade or
industrial innovation, but rather from a more integrated pathophysiological approach to the complexity
of the cardiac patient. Strain is useful, contrast helps, and three-dimensional imaging is the unavoidable
future, however, the conceptual and methodological framework of ABCDE can help to exploit these
technological innovations in a more clinically-oriented way.

More data and information are required for clinical use. In particular, we need to know
whether each letter or level of the protocol predicts specific, individual endpoints, for instance,
acute decompensated heart failure with step B or cardiac arrhythmias and sudden death with step
E. To achieve this critical mass of data, large scale effectiveness studies are needed and are currently
under way with the SE 2020, and the SE 2030 study which is about to start.

Last but not least, the application of the new ABCDE protocol should always start from a clinical
question or suspicion. The pathophysiological processes that underlie the protocol are always at work,
but not all of them are always relevant for the treatment or interpretation of symptoms in the individual
patient. Whether the steps in the protocol are essential or not may well depend on the different type of
patient and the scope of testing that is required, including the primary diagnosis of CAD, identification
of functional mechanisms of disease and symptoms, risk stratification, guide to therapy, or objective
assessment of therapy efficacy.

Apart from the limitations of the protocol as a whole, there are specific pitfalls in each step that
should be considered, and which can possibly be solved by technological and cultural advances in the
near future.

4. Pitfalls of Individual ABCDE Steps

Step A. SE has several obvious disadvantages. The three main disadvantages are patient-related
(that is, it depends on the acoustic window), operator-related (depends on the reader’s expertise),
and physiology-related (the complexity of the patient’s physiologically cannot be reduced to a
critical epicardial coronary stenosis and inducible RWMA). The inability to establish a good acoustic
window precludes testing in a limited proportion of patients, but with the use of contrast and
last-generation technology this percentage shrinks to <1%, even with the current morbid obesity
pandemic. The subjective reading of RWMA by the naked eye requires training and does not allow
improvisation. The training requirement for professionals in this field has been established as at
least 100 studies per year with an expert supervisor to gain certification, and 100 studies per year to
maintain accreditation.

Step B. Lung rockets reflect the presence of an interstitial syndrome, which can be due to water,
inflammation or fibrosis. B-lines must not be mixed up with Z-lines, which are frequently observed
as bundle-shaped reflections arising from the pleural line, but unlike true B-lines, they do not erase
A-lines, are ill-defined, less echogenic than the pleural line, are short and do not move in synchrony
with respiration. The training requirement for professionals are easier than for RWMA and have been
established as <50 studies per year with an expert supervisor to gain certification.

Step C. The image quality required for consistent quantitative measurements of LV volumes
is higher than that needed for RWMA. The delineation of LV volumes can be time-consuming on
unenhanced images, and calculations are faster and more repeatable with contrast-enhancement
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or artificial intelligence-based software, which is now on board commercially available machines.
The professional training requirements are the same as for RWMA, but the measurements of LV
volumes may lack repeatability when images are of sub-optimal quality.

Step D. The measurement of CFVR in LAD as a proxy for global coronary flow reserve is attractive
for its simplicity but it has conceptual and practical limitations. The variations in flow velocity are
proportional to the total blood flow if the diameter of the vessel lumen is kept constant. In reality,
the diameter of epicardial coronary arteries increases by an average of 30% in healthy subjects following
adenosine infusion Therefore, failure to take into account epicardial coronary artery vasodilation
during hyperemia may cause a nonsystematic underestimation of coronary flow reserve, which can be
more accurately calculated by the velocity-time integral and the cross-sectional area. CFVR assessment
in the right coronary artery and left circumflex is also feasible but imaging time is too long and the
technical difficulties are greater, and therefore, the clinical assessment of CFVR is restricted to one
single coronary district even though CAD is a regional and multi-district disease. The feasibility of
LAD flow imaging is extremely high, although 5% of patients remain unreadable even after contrast
enhancement. The professional training requirements are the same as for RWMA, but the interpretation
is much more quantitative and easier. Coronary flow is more difficult to obtain but easier to interpret
than RWMA.

Step E. If atropine is added to dobutamine or dipyridamole, the cutoff values may be higher
and are not validated. During pharmacological testing, the value of heart rate reserve is not affected
by physical conditioning and deconditioning, which affects the value of chronotropic incompetence
during exercise. The peak heart rate cannot be recorded at a fixed time corresponding to the end of
adenosine or dipyridamole infusion, since the greatest change in heart rate (measured each minute)
occurs in the time interval from 0 to 5 min after drug infusion. It is important to record the peak value
since there is minimal interpatient variability, whereas the peak value always corresponds with peak
stress during exercise. Beta-blockers reduce the absolute rest and peak values of heart rate, but the
relative rest-stress changes mirrored in heart rate reserve are essentially the same. No specific training
is required because the heart rate is given in real time and automatically by any machine.

5. Comparison with Other Imaging Techniques in Different Clinical CAD Scenarios

As with any new technique, there is a lack of direct comparative data with other imaging
techniques in different clinical CAD scenarios. If the ABCDE replaces the conventional SE protocol as
the new standard, this gap could be filled quickly. In line with this principle, some of the ABCDE steps
can be incorporated in other non-ultrasound cardiac functional stress testing techniques. Step E might
include perfusion data from radionuclide myocardial perfusion imaging, which can also estimate LV
volumes in step C, although with less temporal and spatial resolution. Cardiac magnetic resonance
is ideally suited to obtain information for step C with LV volumetric imaging and for step D with
myocardial perfusion imaging. Cardiac functional testing is an alternative approach to anatomic
imaging with noninvasive cardiac computed tomography angiography, that is recommended in current
guidelines for patients with low pre-test probability of disease. However, this approach may change
when sustainability considerations are incorporated into decision-making, as a more comprehensive,
less stenosis-centered approach gains popularity in the field of cardiac imaging and in line with the
pathophysiological lessons learned from COURAGE, ORBITA and ISCHEMIA trials.

6. The Sustainability of SE

The growth of SE in recent years is a result of the dramatically changed cultural milieu surrounding
health care delivery. The concept of sustainability has emerged as a key feature in shaping the all health
care practices including cardiac imaging [71]. Sustainability is also a concept that includes at least
four components and involves at least four stakeholders. The first component is diagnostic accuracy,
which measures the medical value of the test and which are important because missed diagnoses imply
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extra-risk and the extra-cost of further downstream examinations. The accuracy of SE is high and is
comparable to other available techniques.

The second component is the direct cost. SE is considerably less expensive than other alternative
imaging techniques, and economically, a test with similar accuracy and higher cost would not be
considered a viable option, although the situation is different in health care in that those who buy
usually do not pay. With the changing economic climate, there is less societal and political tolerance
for the delivery of high cost and low value health care.

The third component is safety. SE has an excellent safety profile since stress can be interrupted as
soon as RWMA appear during real-time monitoring, contrast has excellent tolerability and non-ionizing
radiation is used. Prioritizing safety is also important to minimize the legal concerns connected with
iodine contrast nephrotoxicity. Zero radiation is essential to mitigate the cancer burden due to
cumulative radiation exposure, and in Europe the law reinforces the use of radiation-free options when
available [72].

The fourth component is the environmental footprint due to carbon dioxide emissions.
Echocardiography produces 2 or 3 kg of carbon dioxide emissions per examination, which is 100-fold
lower than magnetic resonance cardiac imaging and is by far the lowest of all the alternative
techniques [73]. The cardiac imaging footprint affects climate change, and air pollution and climate
change are a strong risk factor for acute and chronic cardiac events [74].

The concept of sustainability is making its way into health care, and cardiac imaging is progressively
affected by sustainability issues. Small individual costs, risks, and ecological footprints multiplied
by billions of examinations worldwide become a significant societal cost, population risk and
environmental burden. There are four stakeholders in the imaging field: the patient, the physician,
the payer and the planet [75]. SE is good for all four of these stakeholders, and it will be increasingly
difficult to prescribe and practice examinations while ignoring the principles of achieving high value
care, zero radiation, low risk, and climate-neutral options whenever possible.

7. Perspectives: SE2030

The life of SE began 40 years ago and now life begins again at forty. We need effectiveness studies
that are based on real patients, real instruments and real doctors to obtain true and realistic results on
the performance of new tests or technologies [76–79].

ABCDE-SE was the result of the SE2020 study [80] and is the basis of the SE2030 study that is
about to get underway. SE2030 is an international, multicenter, effectiveness study and will focus
on a spectrum of conditions within and beyond CAD, from all-comers to suspected or known CAD
to post-COVID-19 cardiological surveillance, from heart failure with preserved ejection fraction to
hypertrophic cardiomyopathy, from valvular heart disease to status post-radiotherapy, from suspected
coronary vasospasm to extreme physiology with outdoor SEs performed with pocket size instruments.
One project will be devoted to cardiac strain and artificial intelligence to establish the transition from
qualitative naked eye to quantitative automated assessment of regional wall motion, in order to solve
the currently limitation of strain inter-vendor variability and to consider segmental heterogeneity
during stress [81,82]. In particular, artificial intelligence potentially provides a solution for automated
and in-depth handling of imaging information, by making measurement objective where it is currently
made by the naked eye (such as RWMA in step A) or by hand measurement (such as the calculation of
LV volumes in step C).

The new core ABCDE protocol [82] will be supplemented in selected patients by additional
parameters, for example, by including F for regurgitant flows [83], G for transvalvular and
intraventricular gradients [84], L for left atrial volume and function [85], P for pulmonary and
LV end-diastolic pressures [86,87], and R for right ventricular function [88]. A whole new “alphabet”
will allow SE to take advantage of its extraordinary versatility, and pave the way for tailored treatment,
since each parameter unmasks an important biomarker, a pivot of disease, a potential therapeutic
target, and a specific vulnerability in the patient that contributes to prognosis. The test is fully in the
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cardiologist’s domain, it allows a holistic and tailored view of the patient, exercise can be easily replaced
by pharmacological stress to minimize the personal protection needed in times of high epidemiological
viral pressure [89] and its safety profile, simplicity, climate-friendly and radiation-free testing make
it most appropriate in the quest for sustainability. Its safety and versatility also allow SE to be used
to assess the effects of therapy, from anti-ischemic drugs to mechanical coronary revascularization,
in reducing the presence and severity of stress-induced RWMA [90].
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