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Abstract: Deep brain stimulation (DBS) of the subthalamic nucleus is a neurosurgical intervention
for Parkinson’s disease patients who no longer appropriately respond to drug treatments. A small
fraction of patients will fail to respond to DBS, develop psychiatric and cognitive side-effects, or incur
surgery-related complications such as infections and hemorrhagic events. In these cases, DBS may
require recalibration, reimplantation, or removal. These negative responses to treatment can partly be
attributed to suboptimal pre-operative planning procedures via direct targeting through low-field and
low-resolution magnetic resonance imaging (MRI). One solution for increasing the success and efficacy
of DBS is to optimize preoperative planning procedures via sophisticated neuroimaging techniques
such as high-resolution MRI and higher field strengths to improve visualization of DBS targets and
vasculature. We discuss targeting approaches, MRI acquisition, parameters, and post-acquisition
analyses. Additionally, we highlight a number of approaches including the use of ultra-high
field (UHF) MRI to overcome limitations of standard settings. There is a trade-off between spatial
resolution, motion artifacts, and acquisition time, which could potentially be dissolved through the use
of UHF-MRI. Image registration, correction, and post-processing techniques may require combined
expertise of traditional radiologists, clinicians, and fundamental researchers. The optimization of
pre-operative planning with MRI can therefore be best achieved through direct collaboration between
researchers and clinicians.
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1. Introduction

Longevity is increasing and consequently triggering a surge in age-related, multimorbid
neurodegenerative diseases [1,2]. One of these diseases is Parkinson’s disease (PD). PD is the
second most common neurodegenerative disorder worldwide and typically occurs after 50 years of
age [3]. This is a multi-systems disease primarily characterized by symptoms that affect movement
control, such as bradykinesia, tremor, rigidity, postural instability, and gait difficulties [3].

Drug treatments for PD are symptomatic in nature and function to replace the dopamine deficiency
within the brain that occurs due to loss of nigrostriatal dopamine neurons [4–6]. While dopaminergic
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medications relieve the motor-related symptoms of PD, they do not address non-motor symptoms,
further complications, or disease progression [6]. Moreover, drug therapy in PD is associated with
side effects that include but are not limited to nausea and vomiting, sleep disorders, hallucinations,
and delusions. Furthermore, as the disease progresses, initially beneficial drug treatments become
less effective in about 40% of patients. At this stage, the therapeutic window begins to narrow
and the medication may wear off faster, resulting in the re-emergence or worsening of motor
fluctuations [7,8]. Chronic drug treatment and disease progression are also associated with
levodopa-induced dyskinesias, which refer to involuntary, uncontrolled movements that occur
when medications are most effective [7–9]. Increasing the dosages in response to reduced durability of
levodopa or dopamine agonists is not always feasible. Alternative treatments such as device-aided
therapies may then be considered.

The next step for a subset of patients is neurosurgery intervention by means of deep brain
stimulation (DBS) of the subthalamic nucleus (STN) [10–13]. The STN is a small, glutamatergic,
biconvex structure with a high iron content that is located within the subcortex [14,15]. DBS involves
the implantation of electrodes that emit persistent high frequency stimulation in this nucleus [11–13].
The STN is a viable target for DBS as it modulates output of both the indirect and hyper-direct
cortico-basal pathways, whose functions are assumed to suppress undesirable motor behavior and
inappropriate movements, respectively [16,17]. In PD, dopaminergic degradation of the substantia
nigra (SN) is thought to result in inhibition of direct pathways, as well as disinhibition of indirect
and hyper-direct pathways. Collectively, this leads to the functional disinhibition of output to
motor-related areas of the cortex, which is thought to produce impaired movement and reduced
movement control [16]. However the exact mechanisms underlying DBS are still poorly understood,
although the general consensus is that DBS results in a functional normalization of pathologically
overactive circuits [17–19].

While DBS may ameliorate between 60 to 90% of the motor-related symptoms of PD, it can
produce neuropsychiatric side effects and emotional or associative disturbances, with side effects
ranging from hypomania; apathy; hallucinations; and, as well as general changes in moral competency,
personality and reckless behavior [20–23]. A fraction of patients will fail to exhibit a long-term clinical
benefit in the reduction of parkinsonian symptoms [24,25]. Revisions or removals of the DBS system
occur in between 15 and 34% of operated patients, 17% of which are attributed solely to electrode
misplacement [26,27]. Additional risks can arise from the surgery itself, with implantation posing a
15% risk of “minor and reversible problems”, and a 2–3% risk of fatal or hemorrhagic events, infection,
lead fracture, and dislocation [28]. Between 2013 and 2017, there were 711 bilateral DBS placement
surgeries in The Netherlands, a subset of which were suffering from PD. Of those 711 surgeries, 169
patients required the DBS system to be either replaced or removed entirely [29]. These side effects
and adverse outcomes can partially be attributed to suboptimal placement of the DBS lead, which is
dependent on the accuracy of the preoperative planning procedures [30,31].

2. Using MRI to Target the STN in PD for DBS

As noted, the success of DBS treatment is partly determined by the accuracy of targeting
the STN. Further, targeting is dependent on stereotaxic precision, neuroimaging methods,
and electrophysiological mappings [32]. Identification of the STN can be achieved in two ways:
indirectly or directly. Indirect targeting refers to identification of the DBS target via application of
reformatted anatomical atlases, formulae coordinates, and distances from anatomical landmarks.
These standard targets can be applied to a patient’s individual magnetic resonance imaging (MRI),
or can be used as a coordinate for navigation with a stereotaxic reference system (see next paragraph).
Additionally, intra-operative microelectrode recordings, macrostimulation, and intraoperative
behavioral feedback are commonly used for verification with indirect targeting [32,33]. Direct targeting
refers to visualization of the STN on patient-specific MRI images [34,35].
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For indirect targeting, the most common landmarks are the mid-way point between the anterior and
posterior commissure (AC and PC, respectively), which are visualized and marked on a T1-weighted
(T1w) MRI, computer tomography (CT), or ventriculography [33,36]. The native brain is commonly
realigned to the AC-PC with a Euclidean transform [37,38]. This transform provides an augmented
matrix with a 3D homogenous coordinate system, allowing for application of formulae coordinates and
distances. The standardized STN coordinates are defined as 12 mm lateral, 4 mm posterior, and 5 mm
inferior to the mid commissural point [39]. Some centers may utilize their own reference points, such as
the top of the red nucleus [40–42].

Direct targeting with patient-specific MRI is generally preferred as the STN is known to shift
with both age and disease, as well as vary in size, shape, and location across individuals [43–47].
Clinical MRI typically visualizes the STN using T2-weighted (T2w) images, which present the nucleus
as a hypointense region relative to surrounding tissue. The optimal part of the STN is considered to
be the ventral dorsolateral portion, also termed the somatosensory region, and is assumed to have
direct connections with pre-motor cortical areas [48]. As with indirect targeting, direct targeting also
incorporates AC-PC alignment, which provides the common reference system required for frame-based
stereotaxic surgeries. Additionally, AC-PC alignment allows for comparisons between planned target
location, actual target location, and postoperative verification. Therefore, clinical identification of the
STN is usually achieved with a combination of both direct and indirect targeting methods.

The presence of extreme side effects and lack of clinical effect that can occur with DBS may
arise from either direct or indirect targeting. One method for increasing the success and efficacy of
DBS is to optimize preoperative planning procedures via neuroimaging techniques. For instance,
advanced MRI can be used to increase visualization and understanding of anatomy, connectivity,
and functioning of the STN. This information can then be used to inform on optimal electrode placement
on a patient-specific basis.

The goal of this paper is to explain the current procedures for structural target identification of the
STN for DBS in PD using MRI. We identify limitations that may contribute to suboptimal identification
of the STN and provide alternatives for optimizing MRI in order to visualize the STN. The organization
of topics is as follows: field strength; current procedures for intra and post-operative verification
with microelectrode recordings; SAR limitations; shimming and magnetic field corrections; sequence
types and contrasts; voxel sizes; motion correction; registration and image fusion; quantitative maps;
complications unrelated to pre-operative planning; and conclusions. The suggestions are presented
with the underlying expectation that more accurate visualization can translate into targeting and
implantation with increased precision.

3. Field Strength

Pre-operative MRIs are obtained to both visualize the DBS target and to assess for potential
comorbidity and identify venous architecture to ensure a safe entry route for surgery. The quality
of MRI is dependent on a large number of factors. One of these factors is the signal-to-noise ratio
(SNR), which is strongly influenced by field strength (Tesla or T for short) (see Figure 1) [24,49,50].
SNR can be defined as the difference in signal intensity, effectively determining the amount of signal
that represents the true anatomy compared to noise and random variation [51,52]. Low-field MRIs
such as 1.5 or 3 T are routinely used for DBS targeting. However, recently, an ultra-high field (UHF)
7 T MRI system has been approved for medical neuroimaging [53]. Compared to 7 T, 1.5 and 3 T
MRI tend to suffer from both inherently lower SNR and low contrast-to-noise (CNR). CNR reflects
the difference in SNR between different tissue types, which is therefore essential for specificity [54,55].
Moreover, the STN is an inherently difficult structure to visualize as it is a small structure located
within a very deep and dense portion of the basal ganglia and is surrounded by structures containing
similar chemical compositions. This is exemplified by vast inconsistencies in observed volumetric
measures, size, and location estimates of subcortical nuclei reported at low field strengths [44–46].
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Figure 1. Visualizing deep brain stimulation (DBS) targets with different magnetic resonance imaging
(MRI) field strengths (adapted from [24] illustrating DBS targets across field strengths, requiring different
contrasts. We obtained 1.5 T images from a 52-year-old male Parkinson’s disease patient at the Maastricht
University Medical Center (MUMC). Clinical 3 T and 7 T images were obtained from a from 57-year-old
male Parkinson’s disease patient at the Maastricht University Medical Center (MUMC), and the
optimized 3 T images were obtained from a healthy male age-matched subject at the Spinoza Center
for Neuroimaging, Amsterdam. All images are shown in the axial plane and are present in their
native space with no post-processing to replicate the visualization of each nucleus as performed on
neurosurgical planning software. The T1 contrasts show the anterior thalamic nucleus and nucleus
accumbens at all field strengths. The subthalamic nucleus and globus pallidus (GP) are shown with a
T2 contrast at 1.5 T and clinical 3 T scan. Note that in the 7 T contrast, the medial medullary lamina is
visible, allowing us to distinguish between the internal and external segment of the GP. For optimized
3 T and 7 T, the STN and GP are shown with a T2* contrast. The acquisition times (TA) for each scan
are included to highlight the fact that optimized 3 T can provide high-quality images similar to those
at 7 T but take nearly twice as long to obtain. While the STN and GP are visible in both 3 T images,
the contrast and sharpness of borders increases at 7 T.

The quality of the magnetic field is also determined by magnetic field gradients. MRI gradients
are characterized by the change in the magnetic field as a function of distance. The MRI gradient
arises from gradient coils, which are a set of electromagnetic components within the scanner that are
used to control the magnetic field [56,57]. Weaker gradients arising from lower magnetic fields cause
g-factor penalties, whereby an inhomogeneous B1 field causes artificial signal differences and noise
amplification in tissues further from the coil in the subcortex at 3 T compared with 7 T MRI [58,59].
SNR is therefore lower in subcortical structures relative to the cortex due to the larger distance between
the center of the brain and receiver coil elements. These differences are amplified at low field compared
to UHF [60–62].

However, SNR scales supra-linearly with the static magnetic field, with up to a sixfold increase
at 7 T compared to 3 T MRI [54,55]. This means that UHF-MRI can provide better quality
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images at a higher spatial resolution, increased contrast, and shorter acquisition times [51,63,64].
Reduced acquisition is essential, as clinical radiologists are often under strict time pressures that are
intrinsically linked to value-based healthcare systems and cost-effectiveness rather than scientific
value [65]. Numerous empirical studies and reviews have noted the advantages of utilizing UHF-MRI
in clinical settings, performing direct comparisons between low- and high-field strengths for visualizing
finer details of smaller nuclei, which are common targets for DBS [34,52,66–70].

Developments in array coil designs and parallel imaging techniques have resulted in the possibility
to measure specific portions of tissue simultaneously. The simultaneous measurement increases SNR
by a factor of 3 to 10 when compared to standard volume coils used at clinical field strengths, which are
unable to selectively excite separate portions of tissue [60,63]. This is discussed in more detail later in
the paper.

Importantly, there are caveats with regards to the implementation of UHF-MRI. Firstly, the
Siemens 7 T MAGNETOM Terra is the only UHF-MR system to have obtained Food and Drug
Administration (FDA) 510(k) clearance for clinical neuroradiology, and other applications of 7 T MRI
are therefore considered experimental. Expense and accessibility is among the most important and
most time-limiting factors in implementing UHF-MRI into clinical settings; less than one hundred
7 T systems exist worldwide, making up about 0.2% of all MRI systems [24,71]. Moreover, increased
specific absorption rates (SAR), field inhomogeneities, local signal intensity variations, and signal
dropout are factors that can reduce the benefits of 7 T MRI when not properly accounted for [72].
These can be countered with optimized shimming and pre-processing techniques such as bias field
correction. However, these techniques require expertise that is not typically available within clinical
settings [73–75].

4. Current Procedures for Intra- and Post-Operative Verification with Microelectrode Recordings

Current standard practices within The Netherlands includes both pre-operative planning with
neuroimaging methods and intra-operative verification with microelectrode recordings (MER). In this
case, once the target has been decided, the DBS system will be implanted in two steps. First, the surgeon
will create a burr hole in the skull on both hemispheres. If microelectrode recordings (MER) are used,
the MER leads will be inserted into predefined coordinates. In 0.5 to 2 mm intervals from around 10 mm
above the target coordinate, MER will start recording activity through macrostimulation. Multiple
MERs may be placed into the STN at around 2 mm apart within the anterior, posterior, central, medial,
and lateral portions. The MER lead that outputs consistent oscillations of beta bursts that are indicative
of STN activity will be selected for test stimulation and subsequent implantation. If the patient is
awake, additional intraoperative behavioral testing may be performed to assess the therapeutic effect
of specific stimulation programs. Once the target has been verified via intra-operative neuroimaging
(CT or ultra-low field MRI), the leads will be permanently implanted and then connected to a cortical
grid and a stimulator will be inserted under the chest [76–79].

Not all centers use pre-operative CT or MRI and instead rely on standard coordinates with
MER verification (and vice versa). There are reports that suggest MER significantly improves DBS
outcomes [80], and that MER fails to show any significant benefit compared to direct targeting [81].
Moreover, there remains a mismatch of around 20% in the planned target coordinate based on MRI,
compared to the actual optimal location identified with MER when using 1.5 and 3 T [82,83]. Further,
the use of intra-operative ultra-low field MRI for identification of the test leads during surgery has
shown to be as effective as MER in improving post-operative motor symptoms [84]. Moreover,
while not a strictly scientific issue, the application of MER more than doubles the cost of a bilateral
STN surgery [85]. See [86] for an extensive overview on comparisons between MER and MRI for STN
identification in PD.

Lastly, post-operative management requires the identification of optimal stimulation parameters.
These parameters can vary per patient, and some patients may require DBS in combination with
medication. Microlesioning effects and acute foreign body reactions can impact the homeostasis of
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STN function and lead to a misinterpretation of DBS efficacy. Therefore the patient should ideally be
assessed several times at different stages after the surgery [87]. Baseline motor function is initially
obtained after total withdrawal of dopaminergic medication [88]. Axial motor symptoms such as
bradykinesia, rigidity, stability, gait, posture, and dysarthria are assessed with rating scales such as
the Unified Parkinson’s Disease Rating Scale Part 3 (UPDRS, III) or Movement Disorders Society
(MDS)-UPDRS [79,89]. As the DBS lead consists of multiple contact points, each point is tested
separately through monopolar stimulation, beginning with a standard frequency of 130 Hz and pulse
width of 60 µs [90]. Amplitudes are varied in a step-wise manner and the lowest amplitude that
results in the highest suppression of clinical symptoms with the absence of sustained adverse effects
will be chosen as the optimal stimulation parameters [27]. More in-depth literature on practices
for post-operative verification, stimulation programming, and care can be found in [91–93] and the
references therein.

5. SAR Limitations

SAR refers to the amount of energy deposited into the body due to the radio frequency (RF) pulses
applied with MRI sequences. RF pulses are emitted via electrical currents through coils, being used to
generate the B1 field [74]. RF deposition can result in tissue heating, and to ensure that the absorbed
energy does not induce local thermal damage, there are SAR limitations based on the region of interest,
with the amount of SAR depending on tissue type [94,95]. However, field inhomogeneities increase
with field strength, as the RF wavelength scales according to the size of the object being imaged,
which then reduces its ability to penetrate the brain with a uniform power [96,97]. In the case of
UHF-MRI, stronger gradients are required to magnetize tissues in the middle of the brain and to create
a homogenous field, which results in higher SAR. Therefore, the safety limits are reached sooner at
UHF than with lower field. Moreover, SAR can vary person to person due to individual differences in
anatomy. This means that scan acquisition can require real-time parameter adaptation. Maintaining a
low SAR can be achieved by increasing the repetition time (TR), reducing the flip angle (FA), or by
reducing the number of acquired slices. Unfortunately, introducing these parameter changes to MR
sequences can negatively affect the quality of the scan [98,99]. This invites an ethical debate as to
whether future FDA-approved sequences and image pre-processing methods at UHF would allow
for such real-time deviations in a clinical protocol where SAR limitations are reached and sequence
amendments are required.

Further, there are more absolute and relative contraindications at UHF including pacemakers,
surgical implants and prosthesis, and foreign bodies, even if they are not metallic or comprised
of diamagnetic materials due to potential local heating and subsequent torque and increased SAR.
Moreover, in our experience, many DBS candidates may not be scanned due to site-specific criteria.
For instance, while a non-metallic or non-paramagnetic dental bridge is not listed as a contraindication,
the guidelines for the 7 T site at some locations required such patients to be excluded. Even more
contraindications exist at 7 T, including circulatory and clotting disorders, which makes UHF-MRI
less compatible with a larger portion of the elderly population, including the majority of PD DBS
patients [100]. Therefore, optimizing 3 T remains a viable option where UHF-MRI cannot be applied.
However, while 3 T may theoretically be optimized to allow for increased visualization of subcortical
nuclei, it is essential to remember that acquisition times will be much longer than that of an analogous
7 T sequence [24,101–103]; this concept will be discussed throughout the paper.

6. Shimming and Magnetic Field Corrections

Shimming refers to the process of homogenizing either the main magnetic field (B0) or the
radiofrequency field (B1). Inhomogeneity of the B0 field occurs when materials with different magnetic
properties and susceptibility enter the bore, resulting in image distortion and signal loss. For example,
the interface between brain tissue and air arising from the sinuses can cause artifacts within the frontal
and temporal areas. These brain–air interface-induced artifacts can result in large shifts in the observed
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anatomical locations of nearby brain structures and cortical surfaces [104]. While post-processing
techniques exist to correct some of these erroneous signals, they cannot control for complete signal loss
and dropout. Therefore, the field needs to be shimmed prior to the acquisition of the main MRI scan.

Shimming the B0 field can occur passively by strategically placing ferromagnetic sheets within
the bore itself to form the distribution of the magnetic field toward a more uniform state [105] or by
using patient-related inserts such as an intra-oral pyrolytic carbon plate [106]. This process is useful for
removing field imperfections related to hardware, although is not generally utilized in clinical practice
as it is laborious, inflexible, and temperature-dependent. More commonly, the field can be actively
shimmed, which uses currents within the MRI system to generate corrective magnetic fields in areas
showing inhomogeneous signals [105].

Active shimming is limited by the ability to model and reproduce the distortions that occur
within the field. Shimming is generally based on the principles of spherical harmonics (SH), which use
orthonormal equations to index changes in signal waveforms representative of field inhomogeneity.
The mapping and the correction of the inhomogeneity is achieved by superimposing the magnetic field
with an opposing corrective field equal to and a reversal of the polarity within a spatial distribution
deemed erroneous by the SH coefficients [107,108].

The order of SH is dependent on the number of dedicated current-driven coils. Traditional clinical
and low-field MR systems will employ lower-order shimming methods mainly due to cost and space
restraints [57]. Low-order shims primarily utilize linear terms including addition, scaling, and rotation
of the SH coefficients to model the magnetic field. Linear SH coefficients function to resemble and
compensate large-scale, shallow magnetic field components that can be corrected with a current offset
applied with a standard gradient coil. This is typically achieved automatically with the use of a
pre-scan B0 map. More local changes can be compensated for with dynamic shimming. However,
this is most commonly used for multi-slice MR, which is prone to additional eddy current distortions
and requires dedicated amplifier hardware. Further, the optimal shim method will depend on the
desired contrast [109]. Ideally, each sequence should require an additional shim.

As field inhomogeneities increase with field strength, higher order harmonics are therefore
required for UHF. Higher order SH allows for correcting more complex-shaped inhomogeneities by
incorporating an additional non-linear quadratic field variation that allows for modelling the bending
of curves in space. This requires supplementary dedicated shim coils, which can counter-intuitively
induce additional distortions in the middle of the brain. Despite efforts to harmonize parameters,
shimming is often site- and field-dependent, and manual iterative shimming is not always possible
due to time constraints and/or limited expertise.

Additional B1 mapping is essential for accurate quantitative measures of signal intensities within
the correct geometric space. Inhomogeneous B1 fields can result in distorted flip angles (FAs). FAs index
the amount of net magnetization rotation experienced during the application of an RF pulse. If FAs are
incorrectly calculated, geometric distortions occur, which reduces the accuracy in T1 and T2 values.
B1 mapping allows for the correction of FA values prior to acquiring a structural scan. Primary B1+

mapping methods can be incorporated into sequence acquisition. This is most commonly achieved with
the double angle method (DAM), which estimates local FAs from the ratio of two images obtained with
different FA values. An additional 3D multi-shot method can be incorporated, which uses non-selective
excitation to minimize inhomogeneous spin excitation across slices. Alternatively, spoiled gradient
echo (GRE) sequences with variable FAs (VFA) and actual FA imaging (AFI) are commonly employed,
which sample multiple T1 values to simulate signal differences across tissues [110–113].

Pre-processing of gradient non linearities (GNL) and intensity non-uniformity with retrospective
image-based interpolation is also possible. Corrections for GNL are rarely accomplished in clinical
settings but are commonplace for research-based applications. The magnitude of GNL increases with
distance from the isocenter and can cause the visualization of structures to shift by up to 5 mm, which is
detrimental for preoperative planning [114]. Correcting for GNL can be achieved by incorporating a
low-pass filter to remove smooth spatially varying functions. Other GNL correction schemes include
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surface fitting and feature matching that rely on intensity-based methods. Intensity-based methods
assume that different tissue intensities do not vary significantly unless they are subject to an erroneous
bias field, where variations within one area can be corrected from the field of another spatial location
within the image. Alternatively, histogram-based methods use a priori knowledge and manual input of
known intensity and gradient probability distributions to correct images. B1 corrections can be achieved
offline via image pre-processing steps with the FMRIB Software Library (FSL), Statistical Parametric
Mapping (SPM), or Advanced Normalization Tools (ANTs) [115–118]. However, these methods must
be considered experimental and their use in image correction for MRI in pre-operative planning is not
currently FDA-approved.

7. Sequence Types and Contrasts

7.1. T1

As discussed, accurate DBS implantation requires careful trajectory planning and identification of
vasculature to limit the risk of hemorrhagic complications. Visualization of larger venous architecture
is most commonly achieved with an anatomical T1w scan with added gadolinium [119,120]. In its
most basic form, T1w can be viewed as an anatomical scan that approximates the appearance of
macroscopic tissues. T1w will visualize white matter as hyperintense; fluid, e.g., cerebral spinal fluid
(CSF) as hypointense; and grey matter at intermediate intensity. A T1w contrast is achieved with a
short echo time (TE) and repetition time (TR) and is a function of the longitudinal relaxation time,
referring to the time it takes excited protons to return to their equilibrium subsequent to the application
of an RF pulse. T1 is more sensitive to fat and fluid and therefore provides excellent differentiation
between grey and white matter. Additional intravenous contrast agents will cause the recovery of
the longitudinal magnetization of blood to quicken and therefore increase further contrast between
veins and white matter [121–123]. For visualization of venous architecture, some centers may use
any or a combination of T1w structural imaging, or they may use post-processing techniques such
as susceptibility weighted imaging (SWI) and venography, which can be created from GRE-based
sequences with flow compensation, or time-of-flight angiography. These types of sequences apply
multiple RF pulses with short TRs to over-saturate static tissues and therefore suppress their signal,
causing moving components such as blood to appear more hyperintense [124–126]. T1w MRI can also
be used to rule out co-morbidities such as oedema, tumors, or other brain pathologies. See Figure 2 for
an example of different contrasts.

7.2. T2

T2w images visualize grey matter as intermediate intensity and white matter as hypointense,
although deep grey matter structures can appear even darker depending on the ferromagnetism of
their tissue composition. As mentioned, visualization of STN is traditionally achieved with T2w
sequences [127–129]. T2w MRI represents transverse relaxation, referring to the amount of time it takes
excited protons to lose phase coherence. This dephasing is a tissue-specific process and takes longer
for areas with high paramagnetic metal deposition such as iron. As the STN is iron-rich, the contrast is
increased, and the nucleus appears hypointense compared to white matter tracts and surrounding grey
matter structures. Typically, T2w contrasts within the clinic will come from fast-spin echo sequences
that have both a long TE and TR, which are relatively immune to magnetic susceptibility artifacts.
However, there is no general consensus as to the optimal sequence required for prime STN imaging.
Theoretically, various sequences can achieve the same weighting but vary significantly in terms of
their ability to accurately visualize the STN [130]. Moreover, the type of sequence will depend on the
field strength, and contrasts are not always analogous across, for instance, 3 and 7 T [131]. Similarly,
different MRI vendors will supply similar contrasts via sequences and sequence parameters with
different names, making it difficult to draw comparisons between them [50,132,133].
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7.3. T2* and Susceptibility-Based Contrasts

Traditional clinical T2w sequences suffer from low signal and contrast. An alternative contrast
that can be used to image the STN directly comes from 3D gradient echo (GRE) sequences, which can
be used to create T2* images. Typically, GRE sequences will include a low FA, long TEs, and long
TRs. Moreover, gradients are applied to initiate dephasing, as opposed to an RF pulse in traditional
spin echo sequences [109,134]. These gradients do not refocus field inhomogeneities such as RF
pulses do. Therefore the T2* contrast arising from GRE reflects magnetic field inhomogeneities caused
by the dephasing of neighboring areas that occurs at different rates, and further interact with the
signal of adjacent voxels [135]. As GRE sequences assess macroscopic intervoxel and microscopic
intravoxel magnetic susceptibilities, it is important to adapt sequence parameters according to the
tissue of interest [136]. The tissue characteristics of the STN undergo PD-specific changes, such as
dopaminergic denervation and excessive iron deposit, which require adjusted parameters such as TE
for optimal contrast [137,138]. Similarly, iron increases with normal aging requires different adaptations
to TEs [139]. GRE sequences also incorporate multiple echoes to account for differences in magnetic
susceptibility across tissues. Further, susceptibility effects are stronger for smaller voxel sizes as the
dephasing is reduced [135]. This makes T2* imaging more appropriate for higher field strength MR,
as smaller voxel sizes can be achieved with faster acquisition times [130,140]. These T2* images can be
further processed to create quantitative maps that will be discussed in later sections.

Alternatively, susceptibility weighted images (SWI) can be created from T2*-based sequences
by independently processing magnitude and phase images. Magnitude images reflect the overall
MR signal, and their corresponding phase image contains information about field inhomogeneity,
differences in local precession frequencies, and motion [141]. Phase images were largely discarded
before the implementation of SWI as they require complex unwrapping, referring to the extraction of
their original numerical range, which is constrained in the outputted image to [−π, +π] [142]. However,
phase can be used to visualize information that would otherwise be barely visible in magnitude images.
Small structures result in field variations with high spatial frequencies, which can be used to enhance
contrast by applying a high pass filter. The resulting SWI image is the product of multiplying the
phase mask with the magnitude image [142–144]. It remains somewhat controversial to what extent
SWI signal increases from 1.5 T to 3 T MRI. Moreover there is little evidence for increased accuracy
for SWI at 3 T compared to classic T2 imaging [145]. However, SWI is significantly more accurate
compared to traditional contrasts at higher field strengths [146–148]. GRE-based sequences and T2*
contrasts can provide more detail regarding the shape, surface, and location of the STN compared to
standard T2w spin echo-based sequences. This could translate to more accurate DBS targeting if it
were used for preoperative planning. Improvements can refer to a smaller deviation between planned
and actual lead location, a reduction in reimplantation or removal requirements, increased clinical
efficacy, or decrease in associated side effects. However, the use of T2* contrasts and UHF-MRI remains
widely debated and requires further validation [37,70,144,148–150].

We attempted to use a T2*-based UHF-MRI with a GRE-ASPIRE sequence [151] on a 7 T Siemens
MAGNETOM system (Siemens Healthcare, Erlangen, Germany) for STN DBS planning in PD patients.
The 7 T T2* scan consisted of a partial volume covering the subcortex, obtained with multiple echoes
(TE1–4 = 2.47, 6.75, 13.50, 20.75) and 0.5 mm isotropic voxel sizes in just under 8 min. This was overlaid
with a 3 T T2w turbo field echo sequence obtained on a 3 Tesla Phillips Ingenia system, with a single TE
of 80 ms and voxel sizes of 0.45 × 0.45 × 2 mm, and an acquisition time of around 6 min. When merging
the 3 T and 7 T data, the STN appeared elongated along the posterior direction on 7 T. The optimal
target coordinate appeared more superior, posterior, and lateral on the 7 T image than the optimal
coordinate on 3 T. Here, the 7 T coordinate was used as the posterior test site sampled with MER was
used as a target for DBS surgery. Typical STN activity was not observed, although intraoperative
behavioral testing revealed that patients would exhibit a beneficial clinical effect. Such a finding may
be explained by the fact that the test electrode was instead stimulating white matter fibers exciting
the STN, such as the fasciculus lenticularis or medial fiber bundles. It is, however, unclear as to
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whether this discrepancy in optimal STN coordinate is due to errors in registration across field strength,
smoothing factors and interpolation automatically applied by the pre-operative planning system that
reduced the resolution of the 7 T data, magnetic field inhomogeneity, or geometric distortions of the
T2* image. The issues regarding image correction and manipulation are discussed in later sections.
It is entirely plausible that the discrepancy in optimal target location across field strength was due to
human error, and the operating surgeons perhaps were not used to interpreting the high-resolution
susceptibility-based images. Therefore, factors other than contrast and sequence type can influence the
usability and accuracy of susceptibility-based imaging for neurosurgical applications.

It is important to note that the sequences described in this specific instance are not standardized
across centers, and scanner vendors, field strengths, contrasts, and sequence parameters, even within
the same sequence type, will differ across DBS centers and research institutes. This makes a direct
comparison across the quality and replicability of MRI scans very difficult, and unless systems are
harmonized, interpretations should be site-specific. See [86,130] for a comprehensive review on
sequences used for imaging the STN.

7.4. Multi-Contrast MRI

Multi-contrast sequences may offer a novel alternative for eliminating the requirement of
registration and resampling of separate scans while simultaneously reducing scan acquisition time
(Figure 2) [152]. A recently developed multiparametric imaging sequence is the Multi Echo (ME)
MP2RAGE, which is largely unaffected by B1 inhomogeneities [153–160]. This allows for the acquisition
of T2*-based contrasts from which subsequent SWI and quantitative susceptibility maps (QSM) can be
created in the same space as the T1 images [158,160]. Other benefits of multiple contrasts is that they
contain complimentary information that can be used to jointly denoise and improve the SNR of the
acquired images [161–163].
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Figure 2. Multi-contrast imaging. The top row shows MP2RAGE T1-weighted, T1, T2*, and R2* maps
and a quantitative susceptibility map (QSM) image obtained at 7 T within a single multi echo (ME)
MP2RAGE sequence. Below are a 3 T T1-weighted map, a T2* map, and a QSM image, where each T1
and T2* were obtained with different sequences but were optimized to provide a contrast comparable
to those obtainable at 7 T but without the inversions required for creating T1 maps. Both the 3 and 7 T
images came from the same subject and are shown in the axial plane. The contrast and visibility of
subcortical structures is indeed comparable across field strengths [164].
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8. Voxel Sizes

Clinical T2w images often incorporate anisotropic voxel sizes with large slice thickness in the z
direction. This allows for higher in-plane resolution along the axial plane, which is primarily used
for targeting (Figure 3) [145,149]. Voxel sizes will typically range between 0.45 × 0.45 × 2 mm and
1 × 1 × 3 mm. Lower resolution allows for shorter acquisition times of around 5 min, simultaneously
limiting the effect of artifacts due to subject movement. However, anisotropic voxels suffer from partial
voluming effects (PVE), which refer to the blurring of signals across voxels, resulting in averaging
different tissue types and reducing specificity [165]. PVE are especially problematic for small structures
such as the STN. Volume estimates are commonly used as an index of scan quality, and have shown
consistent deviations of more than 50% from ground truths when slice thicknesses were three times
the size of the alternate planes [166]. Moreover, anisotropic voxels will decrease the accuracy of
resampling to super resolutions, which is an automatically incorporated step of pre-operative planning
systems [167].
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Figure 3. The effects of voxel geometry on the visualization of subcortical structures (adapted from [164]).
Figure 3 shows clinical 3 T T2-weighted (T2w) with 0.45 × 0.45 × 2.0 mm voxel sizes, optimized 3 T
T2* with 1.0 × 1.0 × 1.0 mm voxel sizes, and 7 T T2* maps with 0.64 × 0.64 × 0.7 mm voxel sizes. All
images are acquired from a single subject and are shown at approximately the same anatomical level.
The subthalamic nucleus (STN) and substantia nigra (SN) are shown at sagittal, coronal, and axial
planes, with the red nucleus (RN) also highlighted in the axial plane. The anisotropic nature of the
sagittal and coronal planes on the clinical 3 T do not allow for identification of any structure.

As spatial resolution is dependent on voxel size; smaller voxels should allow for more detailed
and finer grained visualization of smaller structures. Voxel sizes can be reduced by increasing the
acquisition matrix, reducing slice thickness, or decreasing the field of view. However, these factors
can each negatively affect the SNR. The loss of SNR can be compensated by simply including more
repetitions per sequence, which is an issue for PD populations as it necessitates an increase in acquisition
time and requires the patient to be still. However this is often not possible for patients with movement
disorders [166]. The loss of SNR caused by decreasing voxel sizes at lower fields can be counteracted
through the use of UHF-MRI [130].

When targets in clinical MRI are verified with MER, the large slice thickness means that the
spatial resolution is penalized along the z-axis. Therefore the depth of the electrode cannot be
optimally planned and electrophysiological samplings are conducted to identify the ideal electrode
placement [32,38,40]. This testing often requires that the patient is awake and endures behavioral
assessments, which are stressful and physically demanding, prolong the time of the surgery, and can
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increase the risk of infection or hemorrhaging [168–170]. If smaller voxels can increase spatial resolution,
three-dimensional anatomical accuracy, and tissue specificity, the requirement for intraoperative
microelectrode recordings, multiple test electrode implantations, and awake behavioral testing could
be eliminated, ultimately increasing patient comfort and reducing operation time.

However, voxels with a sub millimeter isotropic resolution used purely for identification of DBS
targets, rather than for instance venous architecture, may not directly improve targeting accuracy.
This is because the spatial resolution of stereotaxic coordinate systems is around 1.2 mm and chronically
implanted conventional DBS electrodes are larger than 1 mm [171]. In addition, segmented DBS leads
with directional steering may offer increased spatial resolution when recording local field potentials
compared to traditional omnidirectional contacts [172,173]. Further, the development of microscale
DBS contacts via multiresolution electrodes would allow for finer control of the stimulation volume and
more precise targeting of smaller regions, matching the order and spatial resolution of submillimeter
resolution MRI [174].

9. Motion Correction

Generally, clinical imaging for preoperative planning for DBS does not correct for motion, and the
scans do not tend to incorporate acceleration methods such as parallel imaging. Accurate imaging
requires the subject to remain still. If a patient scan exhibits severe motion artifacts, the scan is simply
run again. MR images can be distorted by multiple sources of motion arising from breathing, cardiac
movement, blood flow, pulsation of cerebrospinal fluid, and patient movement [104]. This can cause
distortions in the image such as ghosting, signal loss, and blurring, as well as Gibb’s and chemical
shift artifacts [175]. Such artifacts can mask or simulate pathological effects [104]. Motion artifacts
are particularly prevalent when imaging patients with movement disorders but can be controlled for
in a number of ways such as timing medication to be most optimal during the time of scanning or
administering additional sedatives during the scan. Moreover, the head and neck should be supported
with pads to improve patient comfort, which will also limit movement.

The most logical method of limiting motion artifacts is to decrease the acquisition time.
Sequence paraments can be manipulated to shorten the acquisition time by obtaining larger voxel sizes,
a partial field of view (FOV), incorporating simultaneous multi slice 3D imaging and parallel imaging
techniques, signal averaging, or obtaining multi contrast images. To correctly utilize these potential
solutions, each factor should be considered relative to one another. For instance, partial FOVs can
induce aliasing, fold over artifacts, and reduce the SNR, which can, to a certain extent, be countered by
isolating the excitation to a localized region by using either multiple pulses, signal averaging, or fat
suppression methods. Contrary to this, it may increase the effects of field inhomogeneity, but be
combated with factors such as spatial pre-saturation. Such issues highlight the dynamic nature and
interplay of sequence parameters and hardware, which can be largely overcome through the use of
stronger field strengths such as 7 T.

Parallel imaging (PI) is a reconstruction technique rather than a sequence commonly employed
to accelerate acquisition time [176]. Magnetic resonance (MR) images are not directly collected but
are instead stored in a Cartesian grid, representing a spatial frequency domain known as k-space.
K-space data is collected via superimposing spatially varying magnetic field gradients onto the main
magnetic field [55,177]. Generalized auto-calibrating partially parallel acquisition (GRAPPA) methods
speed up acquisition n time under-sampling each line of k-space in the phase-encoding direction.
Additionally, partial FOVs are collected independently, corrected, and then reconstructed within the
frequency domain [178–180]. Alternatively, sensitive encoding methods (SENSE or ASSET) can shorten
scan times, and these methods occur in the image domain where data are obtained using multiple
independent receiver channels where each coil is sensitive to a specific volume of tissue, which is then
unfolded and recombined to form the MR image [177]. However, PI methods are associated with a
number of artifacts including ghosting, speckling, wrap around, and g factor penalties and ought to be
used with caution [181–183].
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Motion correction can be conducted prospectively in real time by updating the image geometry
during the scan, or retrospectively by post-acquisition registration techniques and manipulations
during image reconstructions [184]. Additional hardware is required for prospective methods that
are implemented within the scanner itself. In this case, fiducials can be attached to the patient’s head,
which assesses the extent of movement and adjusts the gradients accordingly. Alternatively, you can
employ optical tracking or reflective markers, which are linked to a camera inside the bore. Motion
correction is then achieved by either re-registration slice-by-slice during the scan, adjusting first order
shims, and/or varying the gradient system online [185,186]. As discussed, motion artifacts do not have
to come from patient movement but can arise on a much smaller scale at the proton level. Protons in
blood, for example, exhibit a non-static magnetic field due to the variation of gradients in space. That is,
they can miss rephasing pulses and therefore decay in signal before it can be read out by the scanner,
especially for spin echo sequences that are used for obtaining T2w images [187]. This phenomenon is
known as flow-related dephasing and results in artifactual phase shifts and signal distortion. In some
instances, this can be useful, for example in angiography sequences, the negative effect is larger in
sequences with longer TEs, such as those required for accurately imaging the STN. Adding in flow
compensation or gradient moment nulling, which applies additional gradient pulses prior to the signal
readout to compensate for signal decay, can compensate for this dephasing [188,189]. However, this is a
computationally heavy process and is largely only suitable for partial FOVs. Alternatively, the sequence
may be synchronized so that the acquisition occurs in time with the cardiac or respiratory cycle, which is
known as cardiac gating and simultaneously requires pulse recordings or electrocardiograms [104].

10. Registration and Image Fusion

Using MRI to visualize deep brain structures such as the STN for DBS is a multi-stage process
that involves the acquisition of multiple separate contrasts that require registration to a common,
patient-specific native space. For pre-operative planning, at least two sets of image registrations are
required: (i) anatomical T2 to T1 and (ii) pre-registered anatomical T1 and T2 to stereotaxic space
defined by the CT or MRI including the coordinate frame. In this section, we focus on registration and
fusion of MRI. For literature including alternative imaging modalities such as CT and ventriculography,
see [190,191].

Image registration refers to the process of aligning a moving source image onto a fixed target
through an estimated mapping between the pair of images. While the exact parameters incorporated
within pre-operative planning systems are mostly proprietary, the general process will require a rigid
registration, defined by six parameters: translation and rotations along the x-, y-, and z-axes. This refers
to the spatial transformation of how a voxel can move from one space to another [192]. Transformations
also require additional parameters such as interpolation and cost function. Interpolation refers to
the process of re-gridding voxels from the source image to the target, an essential procedure as
each pixel within the transformed image may not represent a whole integer within the target image.
This is especially true when T2w images consist of anisotropic voxel sizes and the T1 images are
isotropic. Therefore, the goal of interpolation is to piece back together the voxels that have been
moved. Clinical neuroimaging traditionally employs the simplest intensity-based methods such as
nearest neighbor interpolation, also known as point sampling, which assumes that similar values in
different images are closer together and therefore constitute the same location [193,194]. Cost functions
are used to assess the suitability of a given transform. This can be achieved with either similarity
metrics such as mutual information, which compares, on the basis of pixel intensities, the differences
between the transformed source and target image [195]. These registration steps are all conducted
automatically within pre-operative planning systems, with the only manual alterations relating to
viewing criteria such as brightness and intensity. This is suboptimal, as registrations often need
tweaking and optimizing, and it becomes challenging to suggest exact methods for optimizing
registrations with regards to pre-operative planning systems as it remains unclear as to what exact
parameters are employed.
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Linear within-subject registrations typically employ intensity-based similarity metrics,
matching images on the basis of intensities or intensity distributions. Intensity methods can be optimized
to incorporate local patches that account for textures and geometric information that are missed when
assessing for global identical intensities. An example is boundary-based registration, which forms
the basis of intra-subject registration of T2 to T1 images within the Human Connectome Project
minimal processing pipeline [196,197]. Registrations could be optimized to include an additional
affine transform that incorporates scaling or sheering [198]. Alternatively, deformable registrations via
attribute matching and mutual saliency (DRAMMS) can be achieved. DRAMMS applies confidence
weightings for matching voxels across contrast and will relax deformation in local regions where
contrast-specific tissues are mutually exclusive to image type. DRAMMS has proven useful in
accounting for pathology, subcortical structures, and cortical thinning, which are all factors to consider
when imaging PD patients [199].

Further, no quality or standardized evaluation for registration accuracy currently exists in clinical
neuroimaging beyond subjective visual assessment. This is problematic as it becomes unclear as to
whether the initial rigid body transforms are an accurate spatial representation of individual anatomy,
which, if erroneous, could result in targeting errors and DBS lead placement. The gold standard of
accuracy is instead dependent on the stereotaxic frame, which is an extrinsic marker and does not
include information directly related to the MR image.

Medical imaging often incorporates automated image fusion, which refers to the process of aligning,
resampling, smoothing, and combining the information of multiple images into a more informative
and descriptive output; for instance, by combining T1 and T2 into a single image. Fusion occurs after
registration with the goal of interpolating and smoothing MRI images to make them more visually
appealing, which can theoretically recover a signal within the data despite the noise [200]. However,
smoothing and resampling voxel sizes will reduce anatomical variability and location accuracy as
they can include signal from neighboring structures, leading to an erroneous increase in the size of
the nucleus and PVEs [166,201]. Such smoothing methods may not be compatible with quantitative
images such as T2* maps and QSM, as these images represent distinct signal intensities of specific
voxels that are outside the predefined values of the planning system. In effect, this could be a simple
viewing error, rather than a total incompatibility.

11. Quantitative Maps

Broadly speaking, MR contrasts are driven by how much T1 or T2 signal contributes to the image.
These T1w or T2w images are qualitative in nature and fail to accurately assess tissue parameters
such as recovery or relaxation time. However, certain sequences allow for parametric mapping
(quantitative MRI or qMRI), where the intensities within each pixel are proportional to the T1 or
T2. These values can be used to quantify intrinsic, biologically meaningful tissue information [202].
Additionally, qMRI allows for direct comparison across time, across subjects, and across scanners
or sites, which is essential for the development of neuroscientific research and its application to the
clinical situation [203]. Moreover, quantitative measures can aid identification and visualization of
target structures with an objective approach and can minimize human error resulting from subjective
interpretation. qMRI can only be made from specific sequences that comply with the principles of
differential weightings, which incorporate an inversion or saturation recovery parameter with multiple
inversion times or spoiled gradient echo sequences with variable flip angles [204]. However, in our
experience, quantitative sequences at 3 T take at least twice as long as weighted MRI sequences used in
clinical settings.

As mentioned, quantitative maps are used to index anatomical composition. For instance,
the observed relaxation of T1 is extremely fast in myelinated white matter. The inverse of longitudinal
relaxation rates, known as R1 [205], is thought to be linearly related to myelin concentrations [206,207].
T1 maps have been utilized clinically, for example, with quantifying perfusion; imaging hemorrhages
and infarctions; evaluating contrast uptake; monitoring of tumors, gliosis, and multiple sclerosis
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lesions [205,208,209]. Quantitative T1 maps will usually require post-processing, most commonly
achieved with the look-up table method, which functions to relate pixelwise T1 values within the native
map with predefined and validated intensity values [159]. The automated creation of these T1 parametric
maps can be built into the sequence at a cost of both time and capacity. Further post-processing is
often required and relies on expertise that is again typically not available within a standard clinical
setting [160,210].

For DBS of the STN, T2* maps can be used to improve visualization of the STN because iron
content causes the T2* relaxation time to shorten, which for the STN at 7 T is around 15 ms [61,211]. A
frequently used method to create T2* maps is done by fitting an exponential decay curve to the signal
intensities per pixel from each of the multiple echoes obtained from a GRE sequence [212]. Moreover,
the pixel intensities of reciprocal T2* maps (R2*) are proportional to iron load, with STN R2* values
hovering around 67 s−1 (1/15 ms) at 7 T [155,213–216]. Alternatively, T2* images can be post-processed
to create quantitative susceptibility maps (QSM), which quantify a tissue’s magnetic susceptibility
distribution on the basis of its perturbation of the magnetic field [213]. They are similar to SWI in that
they are made from the separate magnitude and phase images of a GRE sequence, but they comprise
multiple echoes and allow for quantitative measures rather than weightings. QSM requires initial phase
unwrapping, background field extraction, and calculation of locally generated phase offsets, which refer
to the fact that the phase of a single voxel can be expressed as either positive of negative, depending on
its orientation relative to the magnetic field [214]. These phase-offsets are then deconvolved, typically
with a dipole kernel, from which the underlying tissue susceptibility can be extracted per voxel,
independently of surrounding voxels [215]. Moreover, QSMs are preferred over SWI, as SWI is limited
by the non-local orientation-dependent effects of phase, which means that the same tissues can appear
with different intensities on the basis of their location, whereas QSM solves this problem by convolving
dipole fields [216,217]. Background removal methods based on principles of sophisticated harmonic
artifact reduction for phase data (SHARP, also known as spherical mean value (SMV) filtering) and
projection onto dipole fields (PDF) are commonly employed. SHARP is based on a theory similar to
shimming, in that static magnetic fields and the corresponding phase maps are represented by harmonic
functions. In regions of inhomogeneous susceptibility, the field will be non-harmonic, and background
fields that are harmonic are eliminated from the phase data by subtraction [213,218]. The PDF method
removes background fields by comparing the magnetic fields of dipoles inside a region of interest with
those directly outside [219,220]. Alternatively, Laplacian boundary values can be used, which are based
on a finite difference scheme [221]. However, quantifying an arbitrary distribution of susceptibility
from the phase signal is challenging and poses an inverse problem whereby effects are first calculated
from which parameters or causes are then determined, resulting in a noise amplification of the ensuing
signal. The inversion problem can be solved with calculation of susceptibility through multiple
orientation sampling (COSMOS). However, this method requires the acquisition of multiple head
orientations, which is time-consuming and impractical for clinical use [222,223]. Morphology-enabled
dipole inversion, or MEDI, will match the boundaries of each dipole with those observed in the
T2*-weighted magnitude images [222]. Quantitative susceptibility and residual mapping (QUASAR)
accounts for biophysical frequency contributions, which acknowledges that the notion that the local
Larmor frequency is affected by the static field perturbations related to tissue susceptibility, as well as
the magnetic field, chemical shifts, directional alignment of axons, and energy exchange between water
and macromolecules [224]. Alternatively, some algorithms solve the entire equation within a single step
by incorporating SHARP principles with simultaneous total generalized variation (TGV)-regularized
dipole inversion [225,226]. Similarly phase removal using the Laplacian operator (HARPERELLA)
simultaneously combines phase unwrapping and background removal [227]. These methods comprise
tool boxes that are largely available in Matlab or Python (see [228] and the references therein).

The clinical potential of QSM lies in its sensitivity to variations in iron stored in ferritin and
hemosiderin, lipids and calcium, levels of differential oxygenation-saturation present in venous blood,
and identification of sub millimeter white matter microstructure [229–231]. Further, QSM has been
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shown to be superior to T2* in parcellations of the STN, which could translate into better visualization
and targeting for DBS [223,228,232]. T2 relaxometry has been shown to predict motor outcome in
some PD patients with STN DBS, where patients who have low T2 values may fail to show a clinical
benefit [233]. It is possible that this can be explained by the fact that patients with low T2 relaxometry
will have less contrast between the STN and the surrounding tissue, hindering the accurate visualization
and targeting of the structure, which could be solved by employing QSM. However, QSM obtained
during a scanning session is still experimental and under development. Further, there are many
competing post-processing methods for creating QSM images, which makes translation challenging.

12. Complications Unrelated to Pre-Operative Planning

Lastly, we would like to mention that while this paper specifically refers to suboptimal placement
of DBS leads due to the limitations of neuroimaging, negative outcomes of DBS application can arise
independently of planning procedures and surgical expertise. For example, neurosurgery has been
linked to brain deformation and shift, changes in cerebral spinal fluid volume, and intracranial pressure,
which may induce spatial variability both during the surgery and cause a shift in the implanted lead
location during recovery [27,234]. Similarly, DBS surgeries are associated with infection (mostly found
in the chest and connector) [235]; reactive gliosis and gliotic scarring [236]; hemorrhage either during
the surgery or delayed (in less than 5%) [237]; and, although rare, cerebral pneumocephalus [238].
In all these cases, the DBS system may require reimplantation, replacement, or removal.

13. Conclusions

In this paper, we have discussed some of the differences in current clinical MRI practices with
optimized and UHF-MRI methods commonly employed in research environments. Clinical MRI
hinges on weighted imaging with anisotropic voxel sizes and maintaining short acquisition, therefore
being limited in signal and resolution. These current clinical practices are FDA-approved and are
therefore deemed acceptable for neurosurgical purposes. However, the presence of side effects and
non-responding patients nonetheless exist. Optimized 3 T and UHF-MRI tend to incorporate isotropic
high-resolution imaging with quantitative and susceptibility-based contrasts for better visualization
of deep brain structures, which, however, require more complex pre-processing and longer scan
durations. The limitations incurred regarding reduced signal in clinical MRI and increased acquisition
time with optimized 3 T can be largely overcome with the use of UHF-MRI. However, many of the
image registration, correction, and post-processing techniques will typically require expertise that is
outside the realm of traditional clinical settings. Importantly, the use of UHF-MRI and alternative
contrasts such as QSM can only be implemented once pre-operative planning systems allow for their
compatibility, which will require further FDA approval, not only for the MRI system but also for
specific sequences. Additional approval for clinical use may be required for pre- and post-processing,
such as the algorithms used for registration or calculation of quantitative maps.

We therefore propose that where UHF-MRI is not accessible, higher quality imaging can be
obtained with optimized 3 T, although this will take longer than is perhaps clinically feasible for
patients with severe movement disorders. Continued direct collaboration and combined efforts between
fundamental neuroscience researchers and clinicians will be essential for the development of optimized
3 T and UHF-MRI in the pre-operative planning process for DBS of the STN in PD. Multi-site clinical
trials can facilitate the optimization and validation of certain sequences. Sequences with identical
parameters should be compared on identical MRI systems and different sites to ensure harmonization
and reliability, as well as to validate the desired sequences. Rates of deviations between planned and
actual target locations should be compared across vendors and systems as well as across sequences.
Similarly, access agreements to work-in-progress protocols from MR vendors would facilitate the
development and optimization of sequences, and would open access to underling algorithms and
adjustable parameters within to pre-operative planning software vendors (e.g., Medtronic, St. Judes,
Brainlab, Abott, Nextim, and Boston Scientific).
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Of note, while this paper focused specifically on the STN as the most popular target for DBS in
PD, alternative targets also exist (for example, see Figure 1). Some centers have long preferred the
internal segment of the globus pallidus, and more recent research is being conducted on the suitability
of alternate areas such as the ventral intermediate nucleus or the pedunculopontine nucleus for DBS
targets. For a more in-depth review, please see [10,239,240] and the references therein.
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