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Abstract: Vessel flow quantification by two-dimensional (2D) phase-contrast magnetic resonance
imaging (PC-MRI) using a three-dimensional (3D) magnetic resonance angiography (MRA) model to
measure cerebral blood flow has unclear analytical reliability. The present study aimed to determine the
inter- and intra-rater reliability of quantitative vessel-flow PC-MRI and potential factors influencing its
consistency. We prospectively recruited 30 Asian participants (aged 20–90 years; 16 women; 22 healthy
and 8 stroke patients) for performing 1.5-T MR equipped with a head coil. Each participant was
first scanned for time-of-flight magnetic resonance angiography (TOF-MRA) images for localization
of intracranial arteries. The 2D PC-MRI for each cerebral artery (total 13 arteries in fixed order)
was performed twice by two well-trained operators in optimal position. Using the same 3D MRA
as a map and facilitated with the non-invasive optimal vessel analysis (NOVA) system, each scan
was taken on a plane perpendicular to the target artery. Two consecutive full 13-artery scans were
performed at least 15 min apart after participants were removed from the scanner table and then
repositioned. A total of four PC flow images obtained from each target artery were transmitted
to a workstation facilitated with the NOVA system. Flow data were calculated semi-automatically
by the NOVA system after a few simple steps. Two-way mixed-effect models and standard errors
of measurements were used. In 13 cerebral arteries, repeatability, using the intra-rater estimate
expressed as the average-measures intraclass correlation coefficient, ranged from 0.641 to 0.954,
and reproducibility, using the inter-rater estimate, ranged from 0.672 to 0.977. Except in the middle
cerebral artery and the distal segment of the anterior cerebral artery, repeatability and reproducibility
were excellent (intraclass correlation coefficient exceeded 0.8). The use of quantitative vessel-flow
PC-MRI is a precise means to measure blood flow in most target cerebral arteries. This was evidenced
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by inter-rater and intra-rater correlations that were good/excellent, indicating good reproducibility
and repeatability.

Keywords: blood flow; magnetic resonance imaging; repeatability; reproducibility; quantitative imaging

1. Introduction

The reduction or occlusion of cerebral blood flow appears to be an important pathologic mechanism
leading to stroke as well as some degenerative brain diseases. Quantitative imaging analysis is beyond
morphological parameters (such as diameters, areas, and volumes), and the quantification of flow
rates is becoming increasingly important in clinical applications. To serve as a valuable diagnostic tool,
the evaluation of quantitative parameters needs to be repeatable, reproducible, and largely independent
of the operator’s skill or experience level. Since its original description in the 1980s [1–4], phase-contrast
magnetic resonance imaging (PC-MRI) has seen broad clinical acceptance for the visualization and
quantitative evaluation of blood flow. With the phase-induced component applied, flow information
can be acquired without injecting a contrast agent for phase imaging. When applied with one bipolar
gradient, the dynamic tissue can show phase differences from static tissue, and the phase shift is
proportional to the velocity when using a suitable velocity-encoded cine value. Using phase-contrast
MRI (PC-MRI), a validated, non-invasive imaging technique, rapid measurement of cerebral blood flow
in brain can be quantitatively assessed [1]. Potential sources of error that can significantly affect the
accuracy and precision of flow measurement include slice orientation, the velocity encoding (VENC)
value, complexity of the region of interest (ROI), partial volume effects, and intra-voxel dephasing [5].

Based on phase-contrast MRI, Amin-Hanjani et al. first demonstrated the non-invasive optimal
vessel analysis (NOVA; VasSol, Inc., Chicago, IL, USA) system in 2005 [6]. A combination of PC-MRI
and the computer simulation algorithms of NOVA facilitated non-invasive blood flow measurements
during clinical MRI examinations. NOVA has been utilized for accurate measures of hemodynamic
changes in cerebral circulation after the onset of arterial stenosis [7]. NOVA-facilitated blood flow
measures were very similar to those obtained using an invasive sonographic flow probe (R2 = 0.9869)
in a phantom study; the maximum error between the two was 7.9% [8]. Nevertheless, the precision of
the method might depend on analyst experience and is limited by the analytical algorithm. Therefore,
it is important to understand its inter- and intra-rater reliability before applying it.

Using PC-MRI with automatic positioning algorithms to identify brain-feeding arteries
(e.g., the right and left internal carotid arteries and the right and left vertebral arteries) allows
the determination of individual cerebral artery blood flow [9]. Optimal perpendicular scan plane
determination was based on the scan line calculated by a line-fitting algorithm introduced by
Zhao et al. [5]. However, patient movements during scanning and large individual variability in
arterial anatomy, such as arterial stenosis, arterial tortuosity, or proximate to adjacent non-stationary
structure, can result in failure or improper application of the automatic algorithms. Thus, an operator
well-trained in patient positioning and manual slice positioning of the PC-MRA scan is required for
reducing measurement bias and flow measurement inaccuracy [10].

Although clinically safe, quantitative vessel-flow PC-MRI has unclear analytical reliability.
The knowledge of a measurement’s repeatability and reproducibility is essential for its usefulness
in clinical practice. When either the inter-rater or intra-rater reliability across consecutive tests is
unacceptable, the value of the measures after interventions and comparisons between laboratories will
be limited. Therefore, we aimed to determine the inter-rater or intra-rater reliability of quantitative
vessel-flow PC-MRI and potential factors influencing its consistency.
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2. Materials and Methods

2.1. Study Population

This prospective study was approved by the Institutional Review Board of Taipei Medical
University (TMU-JIRB No. N201505004); informed consent was obtained from all participants.
Volunteers, aged 20–90 years, including normal volunteers who underwent health examinations and
did not have prior histories of stroke (healthy control group) as well as post-stroke patients who
had single-sided hemi-paresis or hemiplegia with or without aphasia (stroke group) were recruited.
Excluded were those with irritable behaviors, who had difficulty in understanding the consent form,
and who had metallic implants such as clips, nails, plates, cochlear implants, cardiac pacemakers,
infusion pumps, bullet fragments, joint replacement prostheses, prosthetic heart valves, or other
replacement prostheses inside their bodies. Other exclusion criteria included cardiac arrhythmia
(heart rate < 50 beats/min or > 150 beats/min) [9], abnormal blood pressure (mean artery pressure not
within 60–150 mm Hg), inability to maintain constant perfusion from cerebral autoregulation [11],
claustrophobia, and pregnancy.

Of the 31 participants recruited from 1 September 2015 to 31 December 2016, one stroke patient
who experienced cardiac dysrhythmia during the first examination was excluded. Consequently, 22
healthy participants and 8 stroke patients (large-artery atherosclerosis, n = 2; small-vessel occlusion,
n = 3; and intracerebral hemorrhage, n = 3) completed the study (Table 1).

Table 1. Population characteristics.

Variable, Unit Time 1 Time 2

Group
Healthy 22 (73%) -

Post-stroke 8 (27%) -
Sex

Male 14 (47%) -
Female 16 (53%) -

Age, years 46.9 ± 14.4 (23.0–69.0) -
<50 15 (50%) -
>50 15 (50%) -

Systolic blood pressure, mm Hg 120.8 ± 17.3 (92.5–161.0) 120.2 ± 14.3 (94.5–158.0)
Diastolic blood pressure, mm Hg 74.8 ± 13.8 (45.0–105.5) 74.5 ± 11.3 (48.5–97.0)
Mean arterial pressure, mm Hg 90.1 ± 14.5 (67.2–121.0) 89.8 ± 11.4 (64.7–113.7)

Pulse rate, beats/min 72.6 ± 11.7 (49.8–103.4) 72.7 ± 18 (51–134.3)
Mean volume blood flow, mL/min 755.5 ± 173.4 (472.5–972.5) 726.8 ± 146.9 (515–1007)

Values are given as n (%) or mean ± standard deviation (range).

2.2. Techniques

All participants underwent three-dimensional time-of-flight MRA (3D TOF-MRA) procedures
for vessel visualization, obtained using a 1.5-T MR scanner (Magnetom Avanto; Siemens Healthcare,
Erlangen, Germany) with a head matrix coil (12 channel), software version B17, and the following
parameters: repetition time/echo time [9], 28 ms/7 ms; flip angle, 25 degrees; slice thickness, 0.7 mm;
field of view (FOV), 220 mm × 220 mm; matrix, 256 × 192; and NEX, 1. The three-dimensional
TOF-MRA was performed and then transmitted to a workstation where rotating 3D surface-rendered
vascular images were reconstructed using a marching-cube algorithm. The optimal perpendicular scan
plane determination was based on the scan line calculated by a line-fitting algorithm introduced by
Zhao et al. [8]. Finally, operators manually selected the two-dimensional (2D) PC plane at the optimal
location of interest, which was automatically perpendicular to the target vessel and displayed in the
3D surface-rendered image for vessel verification. Operators were trained to place the vessel cut in
the proper position (1 cm below the tip of the vessel), and avoid stenotic segments (at least 3.0 mm
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proximal or distal to stenosis), since turbulence and flow wave reflection affect flow values. Short
vessel segment length less than 3.0 mm or small diameter vessels less than 1.5 mm were not used for
a vessel cut to avoid partial volume effect. The PC images that were not free of noise (could be due
to gating problems, patient movement, or transient arrhythmias) or undesired vasculature, or that
presented velocity aliasing or vessel cross-section not circular (due to vessels cuts not perpendicular to
the longitudinal axis of vessel) would be rescanned to acquire accurate flow values.

The flow of each artery was measured using a two-dimensional phase-contrast sequence with
peripheral gating and the following imaging parameters: number of phases: 16; TR, 111.8 ms; TE, 4.7 ms;
flip angle, 25 degrees; number of excitations, 1; section thickness, 4 mm; FOV, 140 mm × 140 mm; and
matrix, 256 × 160. VENC value is the most important parameter for PCMRI, and it was automatically
adjusted with the NOVA software if necessary; in this study, VENC = 80 cm/s was used for vertebral
arteries and distal anterior cerebral arteries and VENC = 100 cm/s was used for the other arteries.
It took about one minute to perform one vessel from PC-MRI.

All participants were scanned twice by two different operators (operator A with 3 years of
experience and operator B with 25 years of experience performing MRI scans) (Figure 1) for PC-MRI
of 13 arteries. The scanning summary is listed in Figure 1, and the two operators shared nothing
about the access while they were performing the PC-MRI for the participants. Blood pressure and
pulse rate were also measured twice in each participant. Using the same rotating 3D surface-rendered
vascular images, PC scan was performed in a fixed order: left middle cerebral artery (LMCA), right
middle cerebral artery (RMCA), left proximal anterior cerebral artery (pLACA), right proximal anterior
cerebral artery (pRACA), left distal anterior cerebral artery (dLACA), right distal anterior cerebral
artery (dRACA), left posterior cerebral artery (LPCA), right posterior cerebral artery (RPCA), basilar
artery (BA), left vertebral artery (LVA), right vertebral artery (RVA), left internal carotid artery (LICA),
and right internal cerebral artery (RICA) (Figure 2). Proximal and distal segments of the anterior
cerebral arteries were defined by proximal and distal to anterior communicating artery, respectively.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 5 of 12 
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• Flow check: Motion correction was applied if necessary. 
• VENC check: It was checked to see if improper VENC was detected. 

Figure 1. Summary of study procedures. NOVA, non-invasive optimal vessel analysis. a Target vessels
included basilar artery, bilateral vertebral arteries, bilateral posterior cerebral arteries, bilateral middle
cerebral arteries, proximal and distal segments of bilateral anterior cerebral arteries, and bilateral
internal carotid arteries.
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dLACA 79.9 ± 23.1 (42–135) 74.7 ± 18.3 (41–112) 
dRACA 69.3 ± 26.1 (34–139) 66.5 ± 16.4 (31–103) 

Operator B   
LVA 129.3 ± 54 (33–257) 123.9 ± 52.6 (35–235) 
RVA 84 ± 37.5 (39–169) 87.9 ± 32.2 (41–157) 
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RPCA 76 ± 24 (39–132) 80.7 ± 21.1 (36–122) 
LMCA 158.1 ± 52.4 (30–298) 157.5 ± 50.2 (72–309) 

Figure 2. Magnetic resonance angiogram of cerebral arteries for non-invasive optimal vessel analysis
(NOVA). Blood flow volume measures were performed on a plane (square cutting area) perpendicular
to the plane of blood flow (arrow) in the vessels. The flow curve is also shown. The distal and proximal
segments of the anterior cerebral arteries were defined as distal and proximal to anterior communicating
artery, respectively. A, anterior; R, right; S, superior.

Two consecutive full 13-artery scans were performed at least 15 min apart with the participant
removed from the scanner table and then repositioned on the same day at time 1 and time 2 (Figure 1).
The total acquisition time necessary was 40–50 min for the full 13-artery scan (by two operators) and
3 h for complete study on a single participant.

2.3. Image Review and Flow Calculation

PC scans were performed in 13 cerebral arteries (Figure 2). For each participant, a total of four PC
flow images were obtained from each target artery (operator A at time 1, operator B at time 1, operator
A at time 2, and operator B at time 2) and transmitted to a workstation facilitated with the NOVA
system (Table 2). Flow data were calculated semi-automatically by the NOVA system on the next day
using the following steps:

• Vessel identification: In the 2D image frame, the target artery in the flow ROI (region of interest)
was centered. The size of the flow ROI was adjusted so that the artery diameter was 1/2–2/3
of the size of the flow ROI. The cut on the 3D image was confirmed to be on the correct artery
and perpendicular to the artery’s longitudinal axis. We corrected the measurement with one
background ROI to avoid the eddy current effect while image distortion happened.

• Vessel contour edit: The artery contours (automatically drawn) were checked to determine if they
accurately tracked the artery borders on the magnitude, phase, and/or velocity images; were then
modified, as necessary, to ensure that they tracked the velocity images.

• Flow check: Motion correction was applied if necessary.
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• VENC check: It was checked to see if improper VENC was detected.

Table 2. Flow measurements by two radiology technologists.

Variable, Unit Time 1 Time 2

Operator A
LVA 124.8 ± 48.5 (37–215) 121.1 ± 50.9 (34–251)
RVA 78.6 ± 36.1 (16–144) 78.3 ± 26.7 (26–134)
BA 148.2 ± 60.3 (25–306) 140.7 ± 50.8 (14–243)

LPCA 88.2 ± 29.9 (46–188) 79.7 ± 18.7 (49–118)
RPCA 83.2 ± 23.5 (41–141) 77.8 ± 21.8 (42–126)
LMCA 163.6 ± 50.8 (81–298) 156.7 ± 38.9 (98–223)
RMCA 172.3 ± 42.6 (91–285) 161.8 ± 35.9 (93–226)
pLACA 111.6 ± 29.9 (60–208) 103.5 ± 25.1 (54–159)
pRACA 101.1 ± 30.3 (29–168) 96.8 ± 41.9 (14–222)

LICA 271.5 ± 79.4 (142–477) 256.1 ± 54.1 (155–361)
RICA 273.8 ± 81.5 (103–446) 265.8 ± 66.1 (148–419)

dLACA 79.9 ± 23.1 (42–135) 74.7 ± 18.3 (41–112)
dRACA 69.3 ± 26.1 (34–139) 66.5 ± 16.4 (31–103)

Operator B
LVA 129.3 ± 54 (33–257) 123.9 ± 52.6 (35–235)
RVA 84 ± 37.5 (39–169) 87.9 ± 32.2 (41–157)
BA 149.2 ± 64.1 (16–261) 142.4 ± 51.8 (28–232)

LPCA 81.3 ± 28.1 (43–177) 80.5 ± 20.4 (39–111)
RPCA 76 ± 24 (39–132) 80.7 ± 21.1 (36–122)
LMCA 158.1 ± 52.4 (30–298) 157.5 ± 50.2 (72–309)
RMCA 164.3 ± 41.2 (87–265) 167.7 ± 49.8 (98–335)
pLACA 110.7 ± 34 (57–202) 106.7 ± 31.5 (48–202)
pRACA 97.1 ± 36.4 (25–172) 94.4 ± 32.5 (32–159)

LICA 273.7 ± 91.3 (152–629) 247 ± 49.4 (144–312)
RICA 276 ± 73.6 (141–498) 257.2 ± 72.7 (115–385)

dLACA 77.9 ± 27.4 (47–178) 74.7 ± 23.7 (33–140)
dRACA 67.2 ± 25 (21–129) 70.8 ± 29.4 (35–181)

Values are given as mean ± standard deviation (range). LVA, left vertebral artery; RVA, right vertebral artery; BA,
basilar artery; LPCA, left posterior cerebral artery; RPCA, right posterior cerebral artery; LMCA, left middle cerebral
artery; RMCA, right middle cerebral artery; pLACA, proximal segment of the left anterior cerebral artery; pRACA,
proximal segment of the right anterior cerebral artery; LICA, left internal carotid artery; RICA, right internal carotid
artery; dLACA, distal segment of the left anterior cerebral artery; dRACA, distal segment of the right anterior
cerebral artery. Mean across operator A and operator B.

2.4. Statistical Analysis

Two-way mixed-effect models were used to estimate intraclass correlation coefficients (ICCs),
thus assessing the test–retest reliability of each operator (intra-rater repeatability) and the reliability
between different operators (inter-rater reproducibility) [12,13]. Both single- and average-measures
ICCs were calculated [12]. At each target artery, the average-measures ICC included the mean blood
flow measures from both operators across all participants, and it was used to calculate intra-rater
repeatability. It included the mean measures on both occasions for inter-rater reproducibility. Cerebral
blood flow often reduces after 50 years of age [14]; therefore, the average-measures ICCs for each
cerebral artery were compared between participants aged less than 50 years and those aged at least 50
years. Likewise, those ICCs were compared between the controls and the patient group. When ICC is
between 0.61 and 0.80, reliability is found to be good; when it is greater than 0.80, it is found to be
excellent [15].

The standard error of measurement (SEM) was used to indicate the precision error of the NOVA
technique and is the estimated error between repeated measures. The pooled standard deviation
(SDpooled) and the average-measures ICC obtained on two separate occasions in the same individual
were used to calculate the SEM (SEM = SDpooled×

√
(1-ICC)). To explore the cut-off value of surpassing

the randomized change or measurement error over consecutive measurements, the minimum detectable
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change at the 95% confidence level (MDC95%) was determined: MDC95% =
√

2 × 1.96 × SEM [15].
Statistical analyses were conducted using the Statistical Package for Social Sciences (v.13.0; SPSS,
Chicago, IL, USA). With the Bonferroni correction, results were considered significant when P < 0.003.

3. Results

The intra-rater and inter-rater reliabilities of volume blood flow measurements using the NOVA
technique were good (ICC > 0.6) for all target arteries. The repeatability of the intra-rater estimate,
expressed as the average-measures ICC, ranged from 0.641 to 0.954 for the studied arteries. Except for
the RMCA, dLACA, and dRACA, blood flow in all cerebral arteries could be measured with excellent
repeatability (ICC > 0.8). Table 3 also shows, for each artery, the SEM and MDC95%, references for
significant changes over consecutive tests. The average-measures ICCs for the estimated inter-rater
reproducibility ranged from 0.672 to 0.977 for the target arteries, showing that inter-rater reliability
was excellent except in the LMCA, dLACA, and dRACA.

Figure 3 compares, for each cerebral artery, average-measures ICCs between participants aged
less than 50 years and those aged at least 50 years and between the two study groups. Compared with
participants aged less than 50 years, those aged at least 50 years had higher intra-rater ICCs for 11
(85%) target arteries. Likewise, patients with stroke had higher intra-rater ICCs than healthy controls
for 10 (77%) target arteries.
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Figure 3. Intra- and inter-rater repeatability and reproducibility of blood flow volume measures at each
cerebral artery, compared between participants aged less than 50 years (triangle, n = 15) and those aged
at least 50 years (circle, n = 15) and between patients with stroke (square, n = 8) and without stroke
(controls; diamond, n = 22). The dotted horizontal line indicates the minimum intraclass correlation
coefficient (ICC) for good reliability; the solid line indicates the minimum ICC for excellent consistency.
BA, basilar artery; dLACA, distal segment of the left anterior cerebral artery; dRACA, distal segment of
the right anterior cerebral artery; ICC, average-measures intraclass correlation coefficient; LICA, left
internal carotid artery; RICA, right internal carotid artery; LMCA, left middle cerebral artery; RMCA,
right middle cerebral artery; LPCA, left posterior cerebral artery; RPCA, right posterior cerebral artery;
LVA, left vertebral artery; RVA, right vertebral artery; pLACA, proximal segment of the left anterior
cerebral artery; pRACA, proximal segment of the right anterior cerebral artery.
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Table 3. Intraclass correlation coefficients of intra-rater comparisons of volume blood flow measurements for each cerebral artery in the circle of Willis.

Artery Operator A Operator B Average Measure * SEM * MDC95%

ICC (95% CI) P-Value ICC (95% CI) P-Value ICC (95% CI) P-Value (mL/min) (mL/min)

LVA 0.85 (0.689–0.931) <0.001 0.773 (0.551–0.893) <0.001 0.925 (0.83–0.967) <0.001 20.1 55.7
RVA 0.794 (0.573–0.907) <0.001 0.883 (0.749–0.948) <0.001 0.954 (0.892–0.981) <0.001 12.0 33.3
BA 0.799 (0.6–0.904) <0.001 0.773 (0.555–0.891) <0.001 0.893 (0.761–0.952) <0.001 24.2 67.1

LPCA 0.568 (0.231–0.784) 0.001 0.695 (0.42–0.853) <0.001 0.837 (0.63–0.928) <0.001 11.6 32.2
RPCA 0.548 (0.185–0.78) 0.003 0.676 (0.39–0.843) <0.001 0.841 (0.625–0.933) <0.001 12.3 34.1
LMCA 0.75 (0.518–0.88) <0.001 0.888 (0.767–0.948) <0.001 0.881 (0.73–0.948) <0.001 18.2 50.4
RMCA 0.523 (0.177–0.753) 0.003 0.638 (0.34–0.82) <0.001 0.749 (0.43–0.889) 0.001 23.2 64.3
pLACA 0.65 (0.358–0.826) <0.001 0.858 (0.712–0.933) <0.001 0.855 (0.677–0.935) <0.001 12.8 35.5
pRACA 0.786 (0.572–0.9) <0.001 0.861 (0.718–0.934) <0.001 0.936 (0.856–0.972) <0.001 14.0 38.8

LICA 0.687 (0.415–0.846) <0.001 0.624 (0.318–0.812) <0.001 0.841 (0.645–0.929) <0.001 31.7 87.9
RICA 0.787 (0.58–0.899) <0.001 0.554 (0.22–0.772) 0.001 0.880 (0.733–0.946) <0.001 34.7 96.2

dLACA 0.482 (0.124–0.729) 0.005 0.141 (−0.262–0.502) 0.25 0.641 (0.185–0.842) 0.007 13.8 38.3
dRACA 0.526 (0.181–0.755) 0.002 0.687 (0.415–0.847) <0.001 0.796 (0.537–0.91) <0.001 13.0 36.0

ICC, intraclass correlation coefficient; CI, confidence interval; SEM, standard error of measurement; MDC95%, minimum detectable change at 95% CI; LVA, left vertebral artery; RVA, right
vertebral artery; BA, basilar artery; LPCA, left posterior cerebral artery; RPCA, right posterior cerebral artery; LMCA, left middle cerebral artery; RMCA, right middle cerebral artery;
pLACA, proximal segment of the left anterior cerebral artery; pRACA, proximal segment of the right anterior cerebral artery; LICA, left internal carotid artery; RICA, right internal carotid
artery; dLACA, distal segment of the left anterior cerebral artery; dRACA, distal segment of the right anterior cerebral artery. * Average blood flow measure between operator A and
operator B.
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4. Discussion

After repeatedly measuring blood flow through 13 cerebral arteries in each participant using
the NOVA technique and two independent operators, the intra-rater and inter-rater reliabilities were
assessed. The former showed that the technique was sufficiently reliable in both healthy people and
patients with prior stroke. This supports the use of NOVA as a reliable technique for measuring
cerebral blood flow over consecutive tests. Additionally, the average-measures ICCs were higher
than single-measures ICCs when comparing intra-rater repeatabilities. This finding could be partly
because the average value for blood flow obtained over multiple NOVA measurements is more reliable
than a single measurement [12] and partly because it is the nature of the ICC method. In clinical
practice, where a single NOVA measurement must be reliable, an experienced operator is necessary.
The inter-rater reliability was also acceptable, showing that the NOVA technique is a good reference
measure when applied by several operators or several laboratories.

The NOVA technique is important and safe. Patients are not exposed to irradiation, and contrast
media are not necessary. Early detection of decreased blood flow in cerebral arteries can be possible
during the course of daily clinic work. In addition, in participants aged at least 50 years, excellent
consistency was found for measures obtained from most of the target arteries (Figure 3). Thus, when
cerebral blood flow is measured as a part of serial monitoring in those with high stroke risk, the NOVA
technique via MRI is practical in that it is accurate, safe, and convenient, despite its cost.

The dLACA and dRACA lie parallel and close to each other (Figure 2), rendering measures of
the blood flow signal from a single segment difficult. Consequently, the ICCs for flow in the distal
segments were lower than those for the proximal segments. Prior NOVA-determined findings that
anatomic variations contribute to unequal flow distribution between paired vessels and reduced flow
in vessels distal from the circle of Willis [16] suggest that analytical reliability might be dependent
not only on operator skill, but also on variation in the cerebrovascular anatomy. The ICCs for flow
might not be related to arterial size. Those arteries with smaller sizes (Tables 1 and 2), such as RVA,
LPCA, and RPCA, were measured with excellent repeatability (average-measures ICC > 0.8, Table 3) in
this study.

Participants aged more than 50 years and post-stroke patients showed greater ICCs for most target
arteries, and the reasons for this were not clear. However, arteries of people aged more than 50 years
and post-stroke patients were likely to have experienced atherosclerotic changes. The vascular wall of
an atherosclerotic artery can be stiff in motion, and the cyclic change of the oscillatory blood flow could
be reduced as a result [17]. The ICC can be higher when the measured values vary within a narrow
range, compared to those that vary widely [18]. The systemic errors over consecutive measurements,
hence, can be small. This must be further verified.

Analytical errors can influence not only the accuracy, but also the reliability of PC-MRI
measurements. Studies have shown that complex flow patterns can be interpreted incorrectly
when flow velocity and direction data are not properly encoded or if the phase unfolding method is
invalid for characterizing low-velocity or reverse flow [19,20]. Studies using NOVA have shown that
participant age and the anatomical locations of vessels can affect analytical results [16,21].

This study had three major limitations. First, all participants were from a single center, limiting
the generalizability of these results. Further multicenter studies should include participants from
various regions. Second, operator B had higher ICCs than operator A for most of the target arteries
even though both were well trained. Familiarity can improve measurement reliability [22]. Thus,
frequent practice using the technique can be an important factor for improving intra-rater reliability.
Third, the number of participants with prior stroke was small; therefore, care should be taken when
extending the results to post-stroke patients.

5. Conclusions

The blood flow of 13 targeted cerebral arteries of each participant (22 healthy controls and 8
post-stroke patients) was measured repeatedly using the quantitative vessel-flow PC-MRI technique



J. Clin. Med. 2020, 9, 3099 10 of 11

by two independent operators. The results of the intra- and inter-rater correlations demonstrated good
consistency and reproducibility of this technique, suggestive of a reliable tool for measuring blood
flow through cerebral arteries in the circle of Willis in the clinical practice. Although atherosclerotic
changes are likely to be observed in individuals age above 50 and post-stroke patients, this technique
can be a good reference measure of blood flow for individuals aged at least 50 years.
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